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Abstract In many situations, when dealing with several populations, equality of
the covariance operators is assumed. An important issue is to study whether this
assumption holds before making other inferences. In this paper, we develop a test for
comparing covariance operators of several functional data samples. The proposed test
is based on the Hilbert–Schmidt norm of the difference between estimated covariance
operators. In particular, when dealing with two populations, the test statistic is just
the squared norm of the difference between the two covariance operators estimators.
The asymptotic behaviour of the test statistic under both the null hypothesis and local
alternatives is obtained. The computation of the quantiles of the null asymptotic dis-
tribution is not feasible in practice. To overcome this problem, a bootstrap procedure
is considered. The performance of the test statistic for small sample sizes is illustrated
through a Monte Carlo study and on a real data set.
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1 Introduction

In many applications, we study phenomena that are continuous in time or space and can
be considered as smooth curves or functions. The data collected in such situations can
be viewed as realizations of a stochastic process, often assumed to be in L2(I), with I
a bounded interval, and are usually called functional data in the literature. Statistical
procedures to deal with such functional data may be found, for instance, in Ramsay
and Silverman (2005), Ferraty and Vieu (2006) and Ferraty and Romain (2010). We
also refer to Horváth and Kokoszka (2012) and Hsing and Eubank (2015) where a
description of different procedures for functional data and their properties is given,
and to Cuevas (2014) and Goia and Vieu (2016) who present a summary of recent
advances in infinite-dimensional statistics. For functional data, most of the literature
on hypothesis testing deals with tests on the mean function including the functional
linear model. However, inference on the covariance operators recently emerged due to
its multiple applications. In what follows, we review several papers where the compar-
ison among covariance operators in practical problems is an issue. To analyse a data
set from food industry quality control, Ferraty et al. (2007) considered tests for com-
paring groups of curves based on their covariances. Benjamini and Yekutieli (2001)
proposed two-sample bootstrap tests for specific aspects of the spectrum of functional
data, such as the equality of a subset of eigenfunctions of the covariance operators,
and presented an application of the method to the implied volatilities of European
options on the German stock index. On the other hand, Panaretos et al. (2010) gave an
example based on DNA minicircles in which mean functions comparisons detected
no differences, whereas covariance structures presented differences between the two
groups. As mentioned therein, the comparison of the mean functions was related to
the shape of the minicircles, while that of covariance operators was associated to the
flexibility or stiffness of the minicircles, which was in fact the scientific hypothe-
sis. Pigoli et al. (2014) explained that, in linguistic problems, language comparison
using their phonetic structure is related to the analysis of their covariance operators
and developed a two-sample test using different distances between covariance opera-
tors. Their procedure is based on a permutation test. These results have been recently
extended from the two-sample case to the several population setting in Cabassi et al.
(2017), where the proposed procedure is applied to compare the evolution of loco-
motor behaviour in mice. Furthermore, as pointed out in Fremdt et al. (2013), when
dealing with two functional samples, if some of the parameters between populations
are different, estimating them using the pooled sample may lead to inappropriate
conclusions. For instance, Donoghue et al. (2008) studied human movement data of
the Achilles tendon on injured and healthy individuals using a functional principal
analysis of the combined centred data. However, to allow for a clear interpretation of
the results, this approach implicitly assumes equality between covariance operators
or at least equality of the eigenfunctions with the eigenvalue order preserved across
populations. This point was also discussed in Coffey et al. (2011), who provide a
different analysis based on functional common principal components, revealing dif-
ferences in the variation of movement patterns of injured versus control subjects which
were not detected by the analysis of the combined data. The previous discussion moti-
vates the need of defining procedures to test equality among covariance operators and
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Testing equality between several covariance operators

providing a deep analysis on their asymptotic behaviour, in particular, to study their
capability to detect local alternatives. Even if several procedures have been presented
to deal with this problem, most of them only study the null asymptotic distribution
to define critical values. Among others, we can mention Fremdt et al. (2013), who
considered an approach based on the projection of the data over a suitable chosen
finite-dimensional space, such as that defined by the functional principal components.
These results generalized those provided in Panaretos et al. (2010), who assumed that
the processes have a Gaussian distribution. Further details may be found in Horváth
and Kokoszka (2012). On the other hand, Gaines et al. (2011) presented a different
approach to test equality of two covariance operators, where an univariate likelihood
ratio test is combined with Roy’s union–intersection principle for testing the equality
of two covariance operators, and derived its asymptotic behaviour under both the null
hypothesis and a set of local alternatives converging to the null hypothesis with rate
n1/2, where n stands for the total sample size. Even if the permutation test defined
in Pigoli et al. (2014) has been adapted to the situation of more than two populations
in Cabassi et al. (2017), one drawback of such tests is that they rely strongly on the
exchangeability assumption, under the null hypothesis. In particular, if the popula-
tions have the same underlying distribution except for changes in their means and
covariance operators, this assumption corresponds to assuming known means across
populations, for otherwise the procedure is not exact but asymptotic. Moreover, as
far as we know, the asymptotic behaviour under local alternatives of the test statistic
proposed in Pigoli et al. (2014) and generalized in Cabassi et al. (2017) has not been
studied yet, nor their asymptotic null distribution when means are unknown.

This paper aims to not only propose a test statistic to compare covariance operators
of k populations, but also provide a theoretical framework which clarifies the ability
of the test statistic to detect local alternatives and their rate of convergence. Hence,
our results extend the approaches based on distances between covariance operators
estimators given in the case of two independent samples to the several samples situa-
tion and provide a full asymptotic analysis not only under the null but also under local
alternatives converging at a root−n rate, which include, for instance, the functional
common principal components model. The asymptotic distribution of the test statistic
proposed for comparing covariance operators among multiple populations depends
on unknown quantities. For this reason, in order to implement the test we introduce a
bootstrap calibration method whose validity is studied. It is worth noticing that even if
the existing literature devoted to theoretical advances in bootstrapping for functional
data is scarce, some bootstrap-based testing procedures have been previously consid-
ered in the literature. Contributions in functional nonparametric regression were given
in Ferraty et al. (2010, 2012) and more recently in Raña et al. (2016), who provided
bootstrap procedures to construct pointwise confidence intervals when the covariate
is functional. As previously mentioned, bootstrap procedures for testing equality of
means and equality of a fixed number of eigenfunctions for two populations have been
studied in Benko et al. (2009). On the other hand, Chang and Ogden (2009) gave gen-
eral results for sums of independent but not identically distributed processes which are
applied to brain imaging. However, the results given therein cannot be applied to our
setting. Finally, Paparoditis and Sapatinas (2016) presented a bootstrap-based scheme
which allows for testing either equality of mean functions or equality of covariance
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operators for functional data, obtaining its null behaviour for the two population case.
Our contribution provides a new path in the literature of bootstrapping for functional
data, since it applies a bootstrap procedure to calibrate the critical values of the test
statistic rather than constructing bootstrap samples as done recently in Paparoditis and
Sapatinas (2016). This approach enhances previous proposals by allowing to study the
null test performance but also its power for root−n local alternatives when comparing
the covariance operators of several populations.

The paper is organized as follows. Section 2 presents the notation and reviews some
basic concepts. In Sect. 3, we introduce the test statistic and derive its asymptotic
distribution under the null hypothesis. An important issue is to describe a set of local
alternatives that the proposed statistic is able to detect. For that purpose, the asymptotic
distribution under a set of local alternatives converging to the null hypothesis at rate
n1/2 is studied in Sect. 4. These alternatives include the functional common principal
component model. A bootstrap calibration for the null distribution of the test statistic
is described in Sect. 5. The results of a Monte Carlo study are summarized in Sect. 6,
while Sect. 7 presents a real data example. Proofs are relegated to Appendix.

2 Preliminaries and notation

From now on, H stands for a separable Hilbert space with inner product 〈·, ·〉 and
norm ‖u‖ = 〈u, u〉1/2. Let H : H → H be a compact operator. The operator H is
said to be a trace class operator if

∑∞
�=1〈Hu�, u�〉 < ∞ for any orthonormal basis

{u� : � ≥ 1} of H, while it is said to be Hilbert–Schmidt if
∑∞

�=1 ‖Hu�‖2 < ∞. The
Hilbert space of Hilbert–Schmidt operators over H is denoted as F , while H∗ stands
for the adjoint of the operator H. Given H1, H2 and H Hilbert–Schmidt operators, the
inner product in F is defined as 〈H1,H2〉F = trace(H∗

1H2) = ∑∞
�=1〈H1u�,H2u�〉,

while the norm equals ‖H‖F = 〈H∗,H〉1/2
F = {∑∞

�=1 ‖Hu�‖2}1/2, with {u� : � ≥ 1}
any orthonormal basis of H. These definitions are independent of the basis choice.
Besides, as is well known, Hilbert–Schmidt operators have a countable number of
eigenvalues, all of them being real when the operator is self-adjoint. Hence, given
a nonnegative and self-adjoint operator H and choosing the eigenfunctions of H as
the orthonormal basis, we get that ‖H‖2

F = ∑∞
�=1 λ2

� , where {λ� : � ≥ 1} are the
eigenvalues of H ordered so that λ� ≥ λ�+1.

Let us consider independent random elements X1, . . . , Xk in H and assume that
E‖Xi‖2 < ∞. Denote byμi ∈ H the mean of Xi ,μi = E(Xi ) and byΓ i : H → H the
covariance operator of Xi . Let ⊗ stand for the tensor product on H, e.g., for u, v ∈ H,
the operator u⊗v : H → H is defined as (u⊗v)w = 〈v,w〉u. With this notation, the
covariance operator Γ i can be written as Γ i = E{(Xi −μi )⊗(Xi −μi )}. The operator
Γ i is a linear, self-adjoint and compact operator with finite trace, so it is a Hilbert–
Schmidt operator. From now on, we denote as {φi,� : � ≥ 1} the eigenfunctions of Γ i

related to the eigenvalues {λi,� : � ≥ 1}, ordered as a non-increasing sequence, i.e.,
λi,� ≥ λi,�+1. Recall that the trace of Γ i is given by

∑∞
�=1 λi,�.

When H = L2(I) for some bounded interval I and 〈u, v〉 = ∫
I u(s)v(s)ds, it is

well known that the covariance operator is defined through the covariance function of
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Xi , γi (s, t) = Cov(Xi (s), Xi (t)), s, t ∈ I as (Γ i u)(t) = ∫
I γi (s, t)u(s)ds. Besides,

‖Γ i‖2
F = ∑∞

�=1 λ2
i,� = ‖γi‖2 = ∫

I
∫
I γ 2

i (t, s)dt ds.
Our goal is to test whether the covariance operators Γ i of several populations are

equal or not. For that purpose, let us consider independent samples of each population,
i.e., let us assume that we have independent observations Xi,1, . . . , Xi,ni , 1 ≤ i ≤ k
such that Xi, j ∼ Xi , 1 ≤ j ≤ ni . A natural way to estimate the covariance operators
Γ i is through their empirical versions. The sample covariance operator Γ̂ i is defined
as

Γ̂ i = 1

ni

ni∑

j=1

(
Xi, j − Xi

) ⊗ (
Xi, j − Xi

)
,

where Xi = (1/ni )
∑ni

j=1 Xi, j . Dauxois et al. (1982) obtained the asymptotic

behaviour of Γ̂ i . In particular, they have shown that when E(‖Xi‖4) < ∞,√
ni

(
Γ̂ i − Γ i

)
converges in distribution to a zero mean Gaussian random element

of F , Ui , with covariance operator Υ i given by

Υ i =
∑

m,r,o,p

λ
1/2
im λ

1/2
ir λ

1/2
io λ

1/2
i p E

(
fim fir fio fip

)
φi,m ⊗ φi,r ⊗̃φi,o ⊗ φi,p

−
∑

m,r

λimλir φi,m ⊗ φi,m⊗̃φi,r ⊗ φi,r (1)

where ⊗̃ stands for the tensor product in F and, as mentioned before, {φi,� : � ≥ 1} is
an orthonormal basis of eigenfunctions of Γ i with associated eigenvalues {λi,� : � ≥
1} such that λi,� ≥ λi,�+1. The random variables fim are the standardized coordinates
of Xi − μi on the basis {φi,� : � ≥ 1}, that is, fim = λ

−1/2
i,m 〈Xi − μi , φi,m〉 and

E( fim) = 0. Using that Cov (〈u, Xi − μi 〉, 〈v, Xi − μi 〉) = 〈u,Γ iv〉, we get that
E( f 2

im) = 1, E( fim fis) = 0 for m �= s. In particular, the Karhunen–Loéve expansion
leads to

Xi = μi +
∞∑

�=1

λ
1
2
i,� fi� φi,� . (2)

It is worth noticing that, since E‖Ui‖2
F < ∞, Υ i is a linear operator over F with

finite trace, so it is also a Hilbert–Schmidt operator. Thus, any linear combination of
the operators Υ i , Υ = ∑k

i=1 aiΥ i , with ai ≥ 0, will be trace class operator, that is,
if {θ�}� ≥1 stands for the eigenvalues of Υ ordered in decreasing order, we have that
θ� ≥ 0 and

∑
� ≥1 θ� < ∞. This property will be used later in Theorem 1.

WhenH = L2(I), smooth estimators Γ̂ i,h of the covariance operators were studied
in Boente and Fraiman (2000). The smoothed operator is the operator induced by the
smooth covariance function

γ̂i,h(t, s) = 1

n1

ni∑

j=1

(
Xi, j,h(t) − Xi,h(t)

) (
Xi, j,h(s) − Xi,h(s)

)
,
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where Xi, j,h(t) = ∫
I Kh(t − x)Xi, j (t)dt are the smoothed trajectories, Kh(·) =

h−1K (·/h) is a nonnegative kernel function, and h a smoothing parameter. Boente
and Fraiman (2000) have shown that the smooth estimators have the same asymptotic
distribution as the empirical version, under mild conditions.

3 The test statistic

To motivate our test statistic, we first consider the two sample setting, that is, the
problem of testing the hypothesis

H0 : Γ 1 = Γ 2 against H1 : Γ 1 �= Γ 2, (3)

from two independent samples X1,1, . . . , X1,n1 and X2,1, . . . , X2,n2 . A natural
approach is to consider Γ̂ i as the empirical covariance operators of each population
and construct a statistic Tn based on the difference between the covariance operators
estimators, i.e., to define

Tn = n‖Γ̂ 1 − Γ̂ 2‖2
F , (4)

where n = n1 + n2, ni/n → τi with τi ∈ (0, 1). As mentioned in Pigoli et al.
(2014), the null hypothesis can be written as d(Γ 1,Γ 2) = ‖Γ 1 − Γ 2‖F = 0 while
the alternative corresponds to ‖Γ 1 −Γ 2‖F > 0. Thus, if Γ̂ j are consistent estimators
of Γ j for j = 1, 2, any test based on the distance d(Γ̂ 1, Γ̂ 2) between Γ̂ 1 and Γ̂ 2 will
be consistent.

To generalize the procedure to several populations, let Γ i stand for the covariance
operator of the i−th population. We wish to test the null hypothesis

H0 : Γ 1 = · · · = Γ k against H1 : ∃ i �= j such that Γ i �= Γ j . (5)

The null hypothesis is equivalent to
∑k

j=2 ‖Γ j − Γ 1‖2
F = 0 allowing to

construct a consistent test using consistent covariance operator estimators. To be
more precise, let Xi,1, . . . , Xi,ni , 1 ≤ i ≤ k, be independent samples, n =
n1 + · · · + nk and assume that ni/n → τi , 0 < τi < 1,

∑k
i=1 τi =

1. Denote by Γ̂ i the sample covariance operator of i−th population. A natu-
ral generalization of the statistic defined in (4) is to consider the test statis-
tic

Tk,n = n
k∑

j=2

‖Γ̂ j − Γ̂ 1‖2
F . (6)

To define the test, we need the asymptotic distribution of Tk,n under the null hypothesis,
which is derived in Corollary 1.

The following result allows to study the null asymptotic behaviour of n
∑k

j=2 ‖Γ̃ j−
Γ̃ 1‖2

F when considering a general class of covariance estimators Γ̃ i rather than the
sample covariance operators.

Theorem 1 Let Xi,1, . . . , Xi,ni , for 1 ≤ i ≤ k, be independent observations from k
independent distributions inH, withmeanμi and covariance operatorΓ i . Assume that
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ni/n → τi with τi ∈ (0, 1) where n = ∑k
i=1 ni . Let Γ̃ i be the independent estimators

of the i−th population covariance operator such that
√
ni

(
Γ̃ i − Γ i

) D−→ Ui , with
Ui a zero mean Gaussian random element with covariance operator Υ i . Denote
Υ w = (

Υ w,1, . . . ,Υ w,k−1
)
the trace operator Υ w : Fk−1 → Fk−1 with i−th

component defined as

Υ w,i (u1, . . . , uk−1) = 1

τi+1
Υ i+1(ui ) + 1

τ1
Υ 1

(
k−1∑

�=1

u�

)

for 1 ≤ i ≤ k − 1 .

(7)
Let {θ�}� ≥1 stand for the sequence of eigenvalues of Υ w ordered in decreasing order.
Then, we have that

n
k∑

j=2

‖(Γ̃ j − Γ j ) − (Γ̃ 1 − Γ 1)‖2
F

D−→
∑

� ≥1

θ�Z
2
� ,

with Z� ∼ N (0, 1) independent. In particular, if H0 : Γ 1 = · · · = Γ k holds, we have

that n
∑k

j=2 ‖Γ̃ j − Γ̃ 1‖2
F

D−→ ∑
� ≥1 θ�Z2

� .

When E(‖Xi‖4) < ∞, the results in Theorem 1 apply in particular to the sample
covariance operator, i.e., when Γ̃ i = Γ̂ i , leading to the asymptotic distribution of Tk,n
under the null hypothesis stated in Corollary 1. However, it also allows to use other
covariance estimators to define the test statistic, such as the smooth ones Γ̂ i,h defined
in Boente and Fraiman (2000).

Corollary 1 Let Xi,1, . . . , Xi,ni , for 1 ≤ i ≤ k, be independent observations from
k independent distributions in H, with mean μi and covariance operator Γ i such
that E(‖Xi‖4) < ∞. Let Γ̂ i be the sample covariance operator of the i−th pop-
ulation. Assume that ni/n → τi with τi ∈ (0, 1) where n = ∑k

i=1 ni . Denote
Υ w = (

Υ w,1, . . . ,Υ w,k−1
)
the trace operator Υ w : Fk−1 → Fk−1 where Υ w,i is

defined in (7) with Υ i given in (1). Let {θ�}� ≥1 stand for the sequence of eigenvalues
of Υ w cH0 : Γ 1 = · · · = Γ k , we have

n
k∑

j=2

‖Γ̂ j − Γ̂ 1‖2
F

D−→
∑

� ≥1

θ�Z
2
� , (8)

with Z� ∼ N (0, 1) independent.

Remark 1 (a) The fact that E(‖Xi‖4) < ∞ entails that E(‖(Xi − μi ) ⊗ (Xi −
μi )‖2) < ∞. Thus, the covariance operator Υ i of (Xi − μi ) ⊗ (Xi − μi ) is
well defined and

∑
�≥1 θ� < ∞. Hence, for any sequence of integers {qn} such

that qn → ∞, the sequence Un = ∑qn
�=1 θ�Z2

i is Cauchy in L2(P), so the limit
U = ∑

� ≥1 θ�Z2
� is well defined. In fact, analogous arguments to those considered

in Neuhaus (1980) allow us to show that the series converges almost surely.
Moreover, since Z2

1 ∼ χ2
1 , U has a continuous distribution function FU entailing
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that the distribution function FUn of Un converges to FU uniformly (see, for
instance, Lemma 2.11 in Vaart (2000)).

(b) It is worth noticing that Corollary 1 is a natural extension of its analogous in
the finite-dimensional case. To be more precise, let Zi j ∈ R

p with 1 ≤ i ≤ k
and 1 ≤ j ≤ ni be independent random vectors and let �̂i be their sample
covariance matrix. Then,

√
niVi = √

ni (�̂i − �i ) converges to a multivariate
normal distribution with mean zero and covariance matrix Υi . Let

A =

⎛

⎜
⎜
⎜
⎝

−Ip Ip 0 . . . 0
−Ip 0 Ip . . . 0

...
...

...
...

...

−Ip 0 . . . 0 Ip

⎞

⎟
⎟
⎟
⎠

,

where Ip stands for the identity matrix of order p. Then, straightforward calcu-

lations allow us to show that
√
nA(V1, . . . ,Vk)

t D−→ N (0, Υ ), where

Υ =

⎛

⎜
⎜
⎜
⎝

τ1
−1Υ1 + τ2

−1Υ2 τ1
−1Υ1 . . . τ1

−1Υ1

τ1
−1Υ1 τ1

−1Υ1 + τ3
−1Υ3 . . . τ1

−1Υ1
...

...
...

...

τ1
−1Υ1 τ1

−1Υ1 . . . τ1
−1Υ1 + τk

−1Υk

⎞

⎟
⎟
⎟
⎠

.

Therefore, under the null hypothesis of equality of the covariance matrices �i ,

we have that n
∑k

i=2 ‖�̂i − �̂1‖2 = ‖√nAV‖2 D−→ ∑kp4

�=1 θ�Z2
� where V =

(V1, . . . ,Vk) and θ1, θ2, . . . , θkp4 are the eigenvalues of Υ . It is worth noticing
that the matrix Υ is the finite-dimensional version of the operator Υ w.

(c) From Corollary 1 we have that, under the null hypothesis H0 : Γ 1 = · · · = Γ k ,

the test statistic Tk,n = n
∑k

j=2 ‖Γ̂ j − Γ̂ 1‖2
F ,

D−→ U = ∑
� ≥1 θ�Z2

� . Hence, an
asymptotic test may be based on Tk,n , rejecting the null hypothesis for large values
of Tk,n . To obtain the critical values, the distribution of U and thus the eigenvalues
of Υ w need to be estimated. In particular, when k = 2, the test statistic Tk,n equals
Tn = n‖Γ̂ 1 − Γ̂ 2‖2

F and Υ w = τ−1
1 Υ 1 + τ−1

2 Υ 2. As mentioned before, the
distribution function of U can be uniformly approximated by that of Un allowing
us to approximate the critical values by the (1 − α)−quantile of Un . Gupta and
Xu (2006) provide an approximation for the distribution function of any finite
mixture of χ2

1 independent random variables that can be used in the computation
of the (1 − α)−quantile of

∑qn
�=1 θ̂�Z2

� , where θ̂� are estimators of θ�. It is also
worth noticing that, under H0 : Γ 1 = · · · = Γ k , the operator Υ i given in (1)
reduces to

Υ i =
∑

m,r,o,p

λ
1/2
m λ

1/2
r λ

1/2
o λ

1/2
p E[ fim fir fio fip] φm ⊗ φr ⊗̃φo ⊗ φp

−
∑

m,r

λmλr φm ⊗ φm⊗̃φr ⊗ φr
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for i = 1, . . . , k, where, for the sake of simplicity, we denote as λm the m−th
largest eigenvalue of Γ 1 and φm its corresponding eigenfunction.
In particular, if all the populations have the same underlying distribution except for
their means and covariance operators, as it happens when comparing the covari-
ance operators of Gaussian processes, the random functions fim , i = 2, . . . , k,
have the same distribution as f1m , so, in this case, Υ 1 = Υ i , for i = 2, . . . , k,
under H0.

(d) Assume that the processes are Gaussian. Then, using that E( fim fir fio fip) equals
1 when pairs of indices are equal, 3 when m = r = o = p and 0 otherwise, we
have that, under the null hypothesis

Υ i = Υ 1 =
∑

i �= j

λiλ j φi ⊗ φ j ⊗̃φ j ⊗ φi +
∑

i �= j

λiλ j φi ⊗ φ j ⊗̃φi ⊗ φ j

+2
∑

i

λ2
i φi ⊗ φi ⊗̃φi ⊗ φi

= 2
∑

i

λ2
i φi ⊗ φi ⊗̃φi ⊗ φi

+
∑

i< j

λiλ j (φi ⊗ φ j + φ j ⊗ φi )⊗̃(φi ⊗ φ j + φ j ⊗ φi ) .

Using that φi ⊗φi and (φi ⊗φ j +φ j ⊗φi )/
√

2, for i < j , constitutes a complete
orthonormal basis of the space of self-adjoint Hilbert–Schmidt operators, we
conclude that they are the eigenfunctions of Υ 1 associated to the eigenvalues 2λ2

i
and 2λiλ j , respectively. Furthermore, if τi = 1/k for i = 1 . . . , k, we get that for
1 ≤ i ≤ k − 1

Υ w,i (u1, . . . , uk−1) = k

[

Υ 1(ui ) + Υ 1

(
k−1∑

�=1

u�

)]

= k

[

Υ 1(ui ) +
k−1∑

�=1

Υ 1 (u�)

]

, (9)

which entails that θi,i = 2k2λ2
i and θi, j = 2k2λiλ j , for i < j , are eigenval-

ues of Υ w = (Υ w,1, . . . ,Υ w,k−1), related to the eigenfunctions vi,i = (φi ⊗
φi , . . . , φi⊗φi ) and vi, j = ((φi⊗φ j+φ j⊗φi )/

√
2, . . . , (φi⊗φ j+φ j⊗φi )/

√
2),

respectively. On the other hand, if α is an eigenvalue of Υ w, α/k2 is an eigenvalue
of Υ 1, meaning that we have obtained all the eigenvalues of Υ w.

4 Behaviour under local alternatives

In this section, we study the behaviour of the test statistic Tk,n under a set of local
alternatives. It is clear that, as in the multivariate situation, there are many ways in
which the covariance operators may differ, one of them being the functional common
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principal model in which discrepancies from the null hypothesis arise only in the
eigenvalues and not in the eigenfunctions of the covariance operators. Our results
include that setting but also a situation in which the processes can be written as sums
of two independent processes, one of them having the same covariance operator along
populations.

We decided to fix the distribution of the first population, while that of the remaining
ones will depend on the sample size, in such a way that for each fixed n the alternative
assumption holds but, as is usual for local alternatives, when the sample sizes increase,
the alternatives considered converge to the null hypothesis at a given rate. To avoid
burdening the notation, in this section, for 1 ≤ j ≤ ni , 2 ≤ i ≤ k, we will use Xi, j

to denote the observations under the local alternatives X (n)
i, j when it is clear. Similarly,

we denote by Xi instead of X (n)
i the random element with common distribution, that

is, Xi, j ∼ Xi .
As in Sect. 3, the following result presents a general framework which allows to

study the distribution of the test statistic under root−n local alternatives. Theorem 2
together with Propositions 1 and 2 allows to derive the behaviour of the test statistic
Tk,n under the local alternatives described before. However, Theorem 2 may also
be applied when considering covariance estimators other than the sample covariance
estimators.

Theorem 2 Let Xi,1, . . . , Xi,ni for i = 1, . . . , k be independent observations from k
independent distributions inHwith covariance operatorsΓ i such that, for i ≥ 2,Γ i =
Γ i,n = Γ 1 +n−1/2Δi . Assume thatΔi is a self-adjoint trace operator such that Γ i,n is
nonnegative. Denote as Δ(k−1) = (Δ2, . . . ,Δk)

t ∈ Fk−1, n = ∑k
i=1 ni and assume

that ni/n → τi ∈ (0, 1). Let Γ̃ i be the independent estimators of the i−th population

covariance operator such that, for 1 ≤ i ≤ k,
√
ni

(
Γ̃ i − Γ 1

) D−→ Ui + τ
1/2
i Δi

where Ui is a zero mean Gaussian random element with covariance operator Υ i and
Δ1 = O stands for the null operator. Define Υ w = (Υ w,1, . . . ,Υ w,k−1) where Υ w,i

is given in (7) and let {υ�}�≥1 be an orthonormal basis of eigenfunctions ofΥ w related
to the eigenvalues {θ�}�≥1 ordered in decreasing order. Then,

n
k∑

i=2

‖Γ̃ i − Γ̃ 1‖2
F

D−→
∑

� ≥1

θ�

(

Z� + η�√
θ�

)2

,

where Z� are independent and Z� ∼ N (0, 1) and η� = 〈Δ(k−1), v�〉F k−1 , i.e.,
Δ(k−1) = ∑

� ≥1 η�υ�.

The requirement that Δi is a self-adjoint trace operator is needed to guarantee that
Γ i = Γ i,n is a valid covariance operator. Besides, since Δi has finite trace, we have
that Δ(k−1) ∈ Fk−1, so

∑
� ≥1 η2

� < ∞. Furthermore, if η� �= 0 for some �, then the

test based on the asymptotic null distribution of n
∑k

i=2 ‖Γ̃ i − Γ̃ 1‖2
F is consistent.

As mentioned at the beginning of this section, we will consider two scenarios where
the assumptions of Theorem 2 are satisfied. The first one is a generalization of Example
2.2 in Gaines et al. (2011) and assumes that, for i = 2, . . . , k, the observations from
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the i-th population can be written as the sum of two independent processes, the first
one having the same covariance operator as X1. Namely, we assume that

Xi, j = X (n)
i, j = Wi, j + n−1/4Ri, j , for 2 ≤ i ≤ k, (10)

where Wi, j , Ri, j are independent and such that Wi, j ∼ Wi , Ri, j ∼ Ri and Wi has
the same covariance operator as X1, for 1 ≤ i ≤ k. Notice that the distribution of the
term Ri is free to vary across populations, for 2 ≤ i ≤ k, as well as the distribution of
Wi as long as Wi and X1 share the same covariance operator.

From now on, let {φ�}�≥1 be the eigenfunctions of Γ 1, the covariance operator of
X1, and denote λ� the eigenvalues of Γ 1 related to φ�, that is, we omit the subscript 1
in λ1,� and φ1,�.

Proposition 1 Let Xi,1, . . . , Xi,ni , i = 1, . . . , k be independent observations from k
independent distributions inH such that (10) holds. Assume that ni/n → τi ∈ (0, 1)

with n = ∑k
i=1 ni , E(‖X1‖4) < ∞ and that, for 2 ≤ i ≤ k, E(‖Wi‖4) < ∞ and

E(‖Ri‖4) < ∞. Let Δi be the covariance operator of Ri , for i = 2, . . . , k and
assume that Γ 1 = E{(X1 − μ1) ⊗ (X1 − μ1)} is also the covariance operator of Wi ,
for i = 2, . . . , k. Denote as Γ̂ i the sample covariance operator of the i−th population.

Then, we have that
√
ni

(
Γ̂ i − Γ 1

) D−→ Ui + τ
1/2
i Δi with Ui a zero mean Gaussian

random element with covariance operator Υ i given in (1), that is,

Υ i =
∑

m,r,o,p

λ
1/2
m λ

1/2
r λ

1/2
o λ

1/2
p E

[
fim fir fio fip

]
φm ⊗ φr ⊗̃φo ⊗ φp

−
∑

m,r

λmλr φm ⊗ φm⊗̃φr ⊗ φr , (11)

where fim are the standardized coordinates of Wi −E(Wi ) on the basis {φ� : � ≥ 1},
i.e., λ1/2

� fi� = 〈Wi − E(Wi ), φ�〉.
If Wi has the same distribution as X1, then we have that Υ i = Υ 1.
The second model for local alternatives to be considered in this section is the

functional common principal model. These alternatives include, as a particular case,
alternatives following the proportional model Γ i,n = (1 + ρi/

√
n)Γ 1. For details on

the functional principal component model, we refer to Benko et al. (2009) and Boente
et al. (2010) , for instance. By assuming local alternatives satisfying a functional
common principal model, we get that the processes Xi , 1 ≤ i ≤ k, can be written as

X1 = μ1 +
∞∑

�=1

λ
1
2
� f1� φ� and Xi = X (n)

i = μi +
∞∑

�=1

λ
(n)
i,�

1
2 fi� φ�, for i ≥ 2

(12)
with λ1 ≥ λ2 ≥ · · · ≥ 0, λ

(n)
i,� → λ� at a given rate, while fi� are random variables

such that E( fi�) = 0, E( f 2
i�) = 1, E( fi� fis) = 0 for � �= s.

Proposition 2 gives the asymptotic behaviour of the sample covariance operators
when choosing λ

(n)
i,� = λ�(1 + n−1/2�i,�) in (12). It is worth noting that if (1 +
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n−1/2�i,�) ≥ 0 and some additional conditions on �i,� to be stated below are fulfilled,
then Γ i = Γ i,n = Γ 1+n−1/2Δi , for i ≥ 2, where Δi = ∑

� ≥1 �i,�λ�φ�⊗φ�. Hence,
Proposition 2 together with Theorem 2 leads to the asymptotic behaviour of the test
statistic Tk,n under local alternatives following a functional common principal model,
as stated in Corollary 2.

Proposition 2 Let Xi,1, . . . , Xi,ni , i = 1, . . . , k, be independent observations from
k independent distributions in H, such that Xi, j ∼ Xi . Assume that Xi satisfy (12)

with λ
(n)
i,� = λ�(1 + n−1/2�i,�) and that ni/n → τi ∈ (0, 1) where n = ∑k

i=1 ni .

Let Γ̂ i be the sample covariance operator of the i−th population. Furthermore,
assume that E(‖X1‖4) < ∞, σ 2

4,i,� = E( f 4
i�) < ∞,

∑∞
�=1 λ�|�i,�| < ∞,

∑∞
�=1 λ��

2
i,�σ4,i,� < ∞,

∑∞
�=1 λ��

2
i,� < ∞ and

∑∞
�=1 λ�σ4,i,� < ∞, for i =

2, . . . , k. Then,
√
ni

(
Γ̂ i − Γ 1

) D−→ Ui + τ
1/2
i Δi , where Δi = ∑

� ≥1 �i,�λ�φ� ⊗φ�

and Ui a zero mean Gaussian random element with covariance operator Υ i given by
(11) where fim are defined in (12).

Remark 2 The conditions
∑∞

�=1 λ�|�i,�| < ∞ and λ�(1 + n−1/2�i,�) ≥ 0 ensure
that Δi is a self-adjoint trace operator and that Γ i,n is nonnegative, respectively. It
is worth noticing that if the observations Xi, j have a Gaussian distribution for all
the populations, then fi� ∼ N (0, 1), so σ 2

4,i,� = 3. This implies that the conditions
∑∞

�=1 λ��
2
i,�σ4,i,� < ∞,

∑∞
�=1 λ��

2
i,� < ∞ and

∑∞
�=1 λ�σ4,i,� < ∞ reduce to

∑∞
�=1 λ��

2
i,� < ∞, since

∑∞
�=1 λ� < ∞. Moreover, when considering root−n local

proportional alternatives, i.e., when �i,� = ρi , the condition
∑∞

�=1 λ��
2
i,� < ∞ is

immediately fulfilled since Γ 1 is a trace operator.

Theorem 2 and Propositions 1 and 2 lead immediately to the asymptotic distribution
of the test statistic Tk,n under the local alternatives studied before. We summarize this
result in Corollary 2.

Corollary 2 Let Xi,1, . . . , Xi,ni for i = 1, . . . , k be independent observations from k
independent distributions in H, with mean μi and covariance operator Γ i such that
Γ i = Γ i,n = Γ 1 + n−1/2Δi , for i ≥ 2. Let Γ̂ i be the sample covariance operator
of the i−th population. Assume that the assumptions of Propositions 1 or 2 hold and
denote Υ w = (Υ w,1, . . . ,Υ w,k−1) where Υ w,i is defined in (7) with Υ i given in
(11). Let {υ�}�≥1 be the orthonormal eigenfunctions of Υ w related to the eigenvalues
{θ�}�≥1 ordered in decreasing order and η� = 〈Δ(k−1), v�〉F k−1 . Then, we have that

Tk,n = n
k∑

i=2

‖Γ̂ i − Γ̂ 1‖2
F

D−→
∑

� ≥1

θ�

(

Z� + η�√
θ�

)2

,

where Z� are independent, Z� ∼ N (0, 1).

Under the local alternatives Γ i,n = Γ 1 + n−1/2Δi , for i ≥ 2, and, in particular,
under those given in Propositions 1 and 2, similar arguments to those considered in
the proof of Proposition 4 in Boente and Fraiman (2000) allow us to show that, if
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h = hn → 0, the smooth estimator Γ̂ i,h has the same asymptotic behaviour as Γ̂ i ,

i.e., that
√
ni‖(Γ̂ i,h − Γ 1,h) − (Γ̂ i − Γ 1)‖F p−→ 0, where Γ 1,h is the smoothed

covariance operator. On the other hand, Proposition 3 in Boente and Fraiman (2000)
entails that

√
n‖Γ 1,h − Γ 1‖F → 0 if, in addition, n h → 0, the kernel K has finite

first moment and the covariance kernel γ1 satisfies the following Lipschitz condition
|γ1(t, u) − γ1(t, t)| ≤ C |t − u|, so that the asymptotic distribution of the statistic test
Tk,n,h = n

∑k
j=2 ‖Γ̂ j,h − Γ̂ 1,h‖2

F is that given in Corollary 2.

Remark 3 Proportional alternatives of the form Γ i,n = (1 + ρi/
√
n)Γ 1 are obtained

taking �i,� = ρi in Proposition 2, so that Δi = ρiΓ 1. In this particular case, we have
that

〈
Δ(k−1), vi,i

〉
=

k∑

j=2

< ρ jΓ 1, φi ⊗ φi >= λi

k∑

j=2

ρ j

and
〈
Δ(k−1), vi, j

〉
= 1√

2

k∑

j=2

< ρ jΓ 1, φi ⊗ φ j + φ j ⊗ φi >= 0 ,

where Γ 1 = ∑
λiφi ⊗ φi . Moreover, if the processes are Gaussian, using Remark 1,

we get that the asymptotic distribution given in Theorem 2 can be written as

Wk = 2k2
∑

i≥1

λ2
i

(

Zi +
∑k

j=2 ρ j

k
√

2

)2

+ 2k2
∑

i≥1

∑

j≥1

λiλi+ j Z
2
i, j (13)

and it depends only on the eigenvalues of Γ 1 different from zero.

Figure 1 contains the theoretical power computed using Monte Carlo for different
number of populations and alternatives, when the underlying processes are Brownian
motions. In Fig. 1a–c, we choose identical values of ρ j , i.e., we considered the alterna-
tives �i = (1 + ρn−1/2)�1, for 2 ≤ i ≤ k. On the other hand, Figure 1d corresponds
to a three population situation in which �i = (1 + ρi n−1/2)�1, for 2 ≤ i ≤ 3, and
shows the surface plot of the theoretical power π(ρ2, ρ3).

To numerically compute the power, we have truncated the statistic Wk defined in
(13) as

Wk = 2k2
20∑

i=1

λ2
i

(

Zi +
∑k

j=2 ρ j

k
√

2

)2

+ 2k2
∑

1≤i< j≤20

λiλ j Z
2
i, j .

The value 20 was chosen since the proportion of explained variance
∑20

i=1 λi/∑
i≥1 λi is approximately 0.9898. Figure 1a–c displays the theoretical power π(ρ) as

a function of ρ for different values ρ ∈ [0, 10] and different number of populations.
More precisely, Figure 1a corresponds to k = 2, 3, 4, (b) to k = 5, 6, 7 and (c) to
k = 8, 9, 10. The solid lines correspond to k = 2, 5, 8, the circles to k = 3, 6, 9
and the triangles k = 4, 7, 10. On the other hand, Figure 1d corresponds to k = 3
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Fig. 1 Theoretical power for proportional Brownian motions. Figures a to c correspond to the situation
ρ1 = · · · = ρk = ρ, where k = 2 to 4 in (a), k = 5 to 7 in (b) and k = 8 to 10 in (c). The solid lines
correspond to k = 2, 5, 8, the circles to k = 3, 6, 9 and the triangles k = 4, 7, 10. Figure d corresponds to
k = 3 and ρ2, ρ3 ∈ [0, 20]

populations and provides a surface plot for the theoretical power π(ρ2, ρ3) when
ρi ∈ [0, 20] for i = 2, 3. The horizontal grey line in (a) to (c) and the horizontal
grey plane in (d) correspond to the level 0.05. These plots show that the test improves
its performance considerably when k = 3 populations are compared instead of two
populations. Besides, the power is quite stable for values of k larger than 5 and for the
proportional alternatives considered it shows an important detection capability, when
k ≥ 4.

When the stronger condition supn≥1 E‖X (n)
i ‖4+δ < ∞ holds, Theorem 2.1 in

Gaines et al. (2011) together with Theorem 2 leads immediately to the asymptotic dis-
tribution of test statistic Tk,n under root−n local alternatives as stated in Proposition 3.

Proposition 3 Let X (n)
i,1 , . . . , X (n)

i,ni
for i = 1, . . . , k be independent observations from

k independent distributions in H, with covariance operators Γ i such that, for i ≥ 1,
Γ i = Γ i,n = Γ 1 + n−1/2Δi , where Δi is a trace operator and supn≥1 E‖X (n)

i ‖4+δ <

∞, with X (n)
i, j ∼ X (n)

i . Assume that, for i ≥ 2, the covariance operator of Y(n)
i =
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(X (n)
i − E(X (n)

i )) ⊗ (X (n)
i − E(X (n)

i )) converges to an operator Υ i in trace norm.
Denote Υ w = (Υ w,1, . . . ,Υ w,k−1) where Υ w,i is defined in (7) and Υ 1 is given in
(11). Let {υ�}�≥1 be the orthonormal eigenfunctions of Υ w related to the eigenvalues
{θ�}�≥1 ordered in decreasing order and η� = 〈Δ(k−1), v�〉F k−1 . Then, if Γ̂ i stands
for the sample covariance operator of the i-th population, we have that

Tk,n = n
k∑

i=2

‖Γ̂ i − Γ̂ 1‖2
F

D−→
∑

� ≥1

θ�

(

Z� + η�√
θ�

)2

,

where Z� are independent, Z� ∼ N (0, 1).

It is worth noting that if Xi, j satisfy (10) and E‖Wi‖4+δ < ∞ and E‖Ri‖4+δ < ∞,
the proof of Proposition 1 is a consequence of Theorem 2.1 in Gaines et al. (2011).
Similarly, if �i,� ≥ 0 and E‖X (1)

i ‖4+δ < ∞, the proof of Proposition 1 can also be
derived from Theorem 2.1 in Gaines et al. (2011) through straightforward calculations.
However, in both cases, we prefer to avoid imposing higher moment conditions and/or
to consider more general alternatives and for that reason we have included their proof
in Appendix.

5 Bootstrap calibration

The asymptotic null behaviour derived in Sect. 3 motivates the use of the boot-
strap methods given that the asymptotic distribution obtained in (8) depends on
the unknown eigenvalues θ�. For that reason, we will consider a general bootstrap
method to approximate the distribution of the test which can be described as fol-
lows.

Step 1. For 1 ≤ i ≤ k, and given the sample Xi,1, . . . , Xi,ni , let Υ̂ i be consistent
estimators of Υ i . Define Υ̂ w = (Υ̂ w,1, . . . , Υ̂ w,k−1) where

Υ̂ w,i (u1, . . . , uk−1) = 1

τ̂i+1
Υ̂ i+1(u1) + 1

τ̂1
Υ̂ 1

(
k−1∑

i=1

ui

)

,

and τ̂i = ni/
∑k

s=1 ns . In particular, if k = 2, Υ̂ w = τ̂ −1
1 Υ̂ 1 + τ̂ −1

2 Υ̂ 2 with
τ̂i = ni/(n1 + n2).
Step 2. For 1 ≤ � ≤ qn denote by θ̂� the positive eigenvalues of Υ̂ w.
Step 3. Generate Z∗

1 , . . . , Z∗
qn i.i.d. such that Z∗

i ∼ N (0, 1) and let U∗
n =

∑qn
j=1 θ̂ j Z∗

j
2.

Step 4. Repeat Step 3 Nb times, to get Nb values of U∗
nr for 1 ≤ r ≤ Nb.

The (1 −α)−quantile of the asymptotic null distribution of Tk,n can be approximated
by the (1 − α)−quantile of the empirical distribution of U∗

nr for 1 ≤ r ≤ Nb. The
p−value can be estimated by p̂ = s/Nb where s is the number of U∗

nr which are larger
than or equal to the observed value of Tk,n .
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Remark 4 It is worth noticing that this procedure depends only on the asymptotic
distribution of Γ̂ i . For the sample covariance estimator, the covariance operator Υ i to
be estimated in Step 1 is given in (1). Assume that all the populations have a Gaussian
distribution, then Υ i can be estimated using the eigenvalues and eigenfunctions of the
sample covariance, since fi j are independent and fi j ∼ N (0, 1). For non Gaussian
samples, Υ i can be estimated noticing that it is the covariance operator of Yi =
(Xi − μi ) ⊗ (Xi − μi ). When considering other asymptotically normally estimators
of Γ i , such as the smoothed estimators Γ̂ i,h for L2(I) trajectories, the estimators need
to be adapted.

Taking into account that the space of covariance operators of random elements on
H is a Hilbert space with the inner product defined in F , we have that the covariance
of any covariance operator estimator is also an element of a Hilbert space, which we
denote as G. Then, for instance, Υ i and Υ̂ i in Step 1 belong to G, while Υ̂ w and Υ w

are random elements of the product Hilbert space Gk−1 with norm denoted as ‖·‖Gk−1 .
The following theorem entails the validity of the bootstrap calibration method. More

precisely, let X̃n = (X1,1, . . . , X1,n1 , . . . , Xk,1, . . . , Xk,nk ), Theorem 3 states that the
conditional distribution function of U∗

n given X̃n , converges to the asymptotic null
distribution of Tn . Denote as FU∗

n |X̃n
the distribution function of U∗

n given the sample,

i.e., FU∗
n |X̃n

(t) = P(U∗
n ≤ t |X̃n). It is worth noticing that FU∗

n |X̃n
is a sequence of

random distribution functions depending on X̃n , so ρk(FU∗
n |X̃n

, FU ) is a sequence of
random variables depending only on the given observations.

Theorem 3 Let qn such that qn/
√
n → 0. Denote by FU∗

n |X̃n
(·) = P(U∗

n ≤ · |X̃n)

and by FU the distribution function of U = ∑
� ≥1 θ�Z2

� , where Z� are i.i.d. and
Z� ∼ N (0, 1). Assume that E(‖Xi‖4) < ∞ and ni/n → τi with τi ∈ (0, 1) and
n = ∑k

i=1 ni . Then, if √
n‖Υ̂ w − Υ w‖Gk−1 = OP(1) , (14)

we have that ρk(FU∗
n |X̃n

, FU )
p−→ 0, where ρk(F,G) stands for the Kolmogorov

distance between the distribution functions F and G.

Remark 5 From Theorem 3, we have that the asymptotic significance level of the test
based on the bootstrap critical value is indeed α, since the (1 − α)−quantile of the
limiting null distribution of Tk,n is well approximated by the (1 − α)−quantile of the
empirical distribution ofU∗

nr for 1 ≤ r ≤ Nb. It is worth noticing that Theorem 3 holds
whenever

√
n‖Υ̂ w − Υ w‖Gk−1 = OP(1), regardless of whether the null hypothesis is

true or not. For instance, (14) holds under the sequence of local alternatives considered
in (10) or (12), when taking Υ̂ i the sample covariance operator of Yi = (Xi − μi ) ⊗
(Xi − μi ), so the power of bootstrap test mimic that of the infeasible test constructed
from the asymptotic null distribution given in Sect. 3. Furthermore, under (14), the
bootstrap procedure leads to a consistent test.
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6 Simulation study

This section contains the results of two simulation studies carried on with k = 2
and k = 3 populations and designed to illustrate the finite-sample performance of
the test procedure described in Sect. 5, under the null hypothesis and under different
alternatives. In all scenarios, we generate N R = 1000 samples of size ni , 1 ≤ i ≤ k
and each trajectory was observed atm = 100 equidistant points in the interval [0, 1]. To
analyse the dependence on the sample size, we choose ni = 50, 100 and 200, for 1 ≤
i ≤ k which allows to study the behaviour of the test in terms of level approximation
as well as power performance depending on the sample size. To summarize the test
performance, we compute the observed frequency of rejections over replications with
nominal level α = 0.05.

6.1 Simulation settings

Under the null hypothesis, we consider infinite-dimensional processes generating inde-
pendent centred Brownian motion processes, denoted from now on as BW(0, 1).
On the other hand, to check the test power performance, we consider root−n local
alternatives. To be more precise, when comparing two populations, we generate inde-
pendent observations X1, j ∼ X1, 1 ≤ j ≤ n1, and X2, j ∼ X2, 1 ≤ j ≤ n2, such
that X1 ∼ BW(0, 1) and X2 ∼ W1 + δn W 2

2 , where W1 and W2 are independent
Wi ∼ BW(0, 1), i = 1, 2 and δn = ρn−1/4 with n = n1 + n2. The situation ρ = 0
corresponds to the null hypothesis, while to study the test power ρ takes values from
1 to 10. The set of alternatives considered corresponds to the local alternatives studied
in Proposition 1 since the covariance operator of X2,1 equals Γ 2 = Γ 1 + ρ2 n−1/2 Δ,
where Δ is the covariance operator of W 2

2 .
On the other hand, for the three populations case, we consider a proportional model

taking independent observations Xi, j ∼ Xi , 1 ≤ j ≤ ni , 1 ≤ i ≤ k, such that
X1 ∼ BW(0, 1), while Xi ∼ (1 + δn)

1/2BW(0, 1), for i = 2, 3, where δn = ρn−1/2

with n = ∑3
i=1 ni . The parameter ρ takes values on an equidistant grid of points

between 0 and 20 of size 11. In this case, the covariance operators of X2 and X3 equal
Γ 2 = Γ 3 = (1+ρn−1/2)Γ 1 corresponding to the proportional alternatives described
in Remark 3.

6.2 Testing procedures

We study the behaviour of the test based on Tk,n defined in (6) using the boot-
strap calibration described in Sect. 5 with Nb = 5000 bootstrap replications. To
perform the bootstrap calibration, we project the centred data onto the M largest
principal components of the pooled sample covariance matrix n−1 ∑

ni Γ̂ i . We
then estimate the covariance operator Υ̂ w through a finite-dimensional matrix.
To evaluate the dependence on the number of principal components chosen, we
select M = 3, 10, 20 and 30. In this situation, the value qn used in Step 2
equals qn = M(M + 1)/2. The percentage of total variance explained by the
selected number of principal components is reported in Table 1, while the fre-
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Table 1 Percentage of the total variance explained by the first M principal components

k ρ ni = 50 ni = 100 ni = 200
M M M

3 10 20 30 3 10 20 30 3 10 20 30

2 0 0.935 0.982 0.993 0.996 0.934 0.981 0.991 0.995 0.934 0.980 0.991 0.994

3 0 0.934 0.981 0.991 0.995 0.934 0.980 0.991 0.995 0.934 0.981 0.991 0.994

quencies of rejection at the 5% level, for k = 2 and k = 3, are given in
Figs. 2 and 3, respectively. The frequencies of rejection corresponding to M =
3, 10, 20 and 30 are given in circles, upper, lower triangles and squares, respec-
tively. The obtained values for the rejection frequencies can be seen in Boente et al.
(2014).

Taking into account the fact that, under the null hypothesis, the processes are Gaus-
sian, Remark 1.d) entails that θi,i = 2k2λ2

i and θi, j = 2k2λiλ j , for i < j . Then, from
the eigenvalues λ̂� of the pooled sample covariance matrix, one may easily provide
estimators θ̂ j of θ j to replace those considered in Step 2. This approximation, referred
as Gaussian, is plotted with dashed lines in Figs. 2 and 3 and was computed using the

n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 200
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Fig. 2 Frequency of rejection when k = 2 for the bootstrap test �b,M , �b,g , and �p,5000. The solid and
dashed lines correspond to �p,5000 and �b,g , respectively, while the circles, upper, lower triangles and
the square correspond to �b,M , with M = 3, 10, 20 and 30, respectively
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Fig. 3 Frequency of rejection when k = 3 for the bootstrap test �b,M , �b,g , and �p,5000. The solid and
dashed lines correspond to �p,5000 and �b,g , respectively, while the circles, upper, lower triangles and
the square correspond to �b,M , with M = 3, 10, 20 and 30, respectively
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fact that the trajectories were generated over a grid of 100 points for all the sample
sizes leading to at most 100 non-null values λ̂�.

We also compare the behaviour of our test statistic with the permutation test intro-
duced in Pigoli et al. (2014) when k = 2. Our choice for the permutation test is based
on the numerical study reported in Pigoli et al. (2014), where it is shown that the permu-
tation test provides a good competitor to the tests introduced in Panaretos et al. (2010)
and Fremdt et al. (2013). We perform the permutation test taking the same discrepancy
measure between covariance operators used for Tk,n , i.e., d(Γ 1,Γ 2) = ‖Γ 1 −Γ 2‖F .
The results obtained when using Np = 5000 random permutations are given in solid
lines in Fig. 2, while those corresponding to Np = 1000 are available in Boente et al.
(2014). In the case of k = 3 populations, a permutation test was also considered
taking D = d(Γ̂ 1, Γ̂ 2, Γ̂ 3) = ‖Γ̂ 2 − Γ̂ 1‖2

F + ‖Γ̂ 3 − Γ̂ 1‖2
F + ‖Γ̂ 3 − Γ̂ 2‖2

F as test
statistic. As in Pigoli et al. (2014), we first centre the samples using the sample mean
and then, we consider Np random permutations of the labels 1, 2, 3 on the centred

sample curves. For each permutation j , we compute Dj = d(Γ̂
( j)
1 , Γ̂

( j)
2 , Γ̂

( j)
3 ), for

j = 1, . . . , Np, where Γ̂
( j)
i is the sample covariance operator of the group indexed

with label i in the given permutation. As in the two populations case, the p−value of
the test is the proportion of Dj greater than or equal to D.

We also used this approach taking as test statistic D� = d(Γ̂ 1, Γ̂ 2, Γ̂ 3) = ‖Γ̂ 2 −
Γ̂ 1‖2

F + ‖Γ̂ 3 − Γ̂ 1‖2
F , which corresponds to Tk,n , but is not invariant by permutation

of the labels. The results for D� are similar to those obtained for D and are not reported
here.

From now on, we denote as �b,M , for M = 3, 10, 20 and 30 the bootstrap calibra-
tion of Tk,n computed using M principal components, �b,g the bootstrap calibration of
Tk,n computed using the Gaussian approximation for θi, j and �p,Np the permutation
test computed using Np random permutations.

6.3 Simulation results

Regarding the bootstrap calibration described in Sect. 5 for the test based on Tk,n ,
Figures 2 and 3, as well as the results reported in Boente et al. (2014), show the
improvement attained in level when the Gaussian approximation is used, both for
k = 2 and k = 3 populations. Also, when we project the data on the first M principal
components, the empirical size of the test based on the bootstrap calibration is quite
close to the nominal one. To analyse the significance of the empirical size, we study if it
is significantly different from the nominal level α = 0.05. To be more precise, for a test

�n based on a statistic Tn , let π be such that πH0(�n)
p−→ π . Then, using the central

limit theorem, the hypothesis H0,π : π = α is rejected at level γ versus H1,π : π �= α

if πH0(�n) /∈ [a1(α), a2(α)] where a j (α) = α + (−1) j zγ /2 {α(1 − α)/N R}1/2,
j = 1, 2. If H0,π : π = α = 0.05 is not rejected, the testing procedure based
on Tn is considered accurate, whereas if πH0(�n) < a1(α) the testing procedure is
conservative and when πH0(�n) > a2(α) the test is liberal. In all the considered
scenarios for k = 2, the test is accurate with significance level γ = 0.01. On the other
hand, for k = 3 populations, the test is liberal when n1 = n2 = n3 = 50 and M = 3
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or 10, being accurate in all other scenarios. Hence, in almost all considered situations
the proposed method has a good level performance.

Regarding the power behaviour, the bootstrap test detects the considered alternatives
for different values of M and also when using the Gaussian approximation to the
eigenvalues θi, j . As expected, the observed frequencies of rejection converge to 1 as ρ

increases. Since local alternatives are taken, the power is almost similar for all choices
of sample sizes and shows the test’s capability to detect the selected local alternatives.
However, it is worth noticing that the test shows a slower power convergence for k = 2
and n1 = n2 = 50.

Figures 2 and 3 also show that the permutation test is an accurate test for both
k = 2 and k = 3. When comparing the power of the permutation test and the bootstrap
calibration, we notice that both tests lead to similar results. However, the permutation
test has a better power performance for k = 2 when large values of ρ and small sample
sizes are combined. On the contrary, for k = 3 populations a better power is attained
with the bootstrap calibration.

To help in the effective comparison of the power performance of the two
tests, we compute the size-corrected relative exact powers ρH1(�b,M ,�p,Np ) and
ρH1(�b,g,�p,Np ), where as mentioned before, �b,M stands for the bootstrap cali-
bration of Tk,n computed using M principal components, �b,g denotes the bootstrap
calibration of Tk,n computed using the Gaussian approximation, and �p,Np is the per-
mutation test computed using Np random permutations. For two test φ1 and φ2 and
an alternative H1, the size-corrected relative exact power ρH1(φ1, φ2) was defined in
Morales et al. (2004) as

ρH1(φ1, φ2) =
(
DH1(φ1)

DH1(φ2)
− 1

)

× 100 ,

with DH1(φ) = πH1(φ)−πH0(φ), where πH1(φ) and πH0(φ) denote the power of the
test φ under H1 and the null hypothesis, respectively. This measure allows to clarify
the fluctuations in the powers which are harder to observe in Figs. 2 and 3, since large
negative values of ρH1(φ1, φ2) indicate that φ2 outperforms φ1, while large positive
values show that φ1 is preferable.

Figure 4 gives the plots of ρH1(�b,M ,�p,Np ) and ρH1(�b,g,�p,Np ), for two pop-
ulations, when the permutation test �p,Np is computed with Np = 5000 random
permutations. As expected the test obtained using the Gaussian approximation outper-
forms the permutation test specially for local alternatives close to the null hypothesis.
On the other hand, the permutation test shows its advantage for n1 = n2 = 50, in
particular when ρ = 1, since the asymptotic approximation leads to some loss of
power in the bootstrap test. The better performance for ρ = 1 is also observed when
n1 = n2 = 100, while for n1 = n2 = 200 the test defined in Sect. 5 is much bet-
ter than the permutation test. In general, the bootstrap test shows its advantage, for
large sample sizes. The worse behaviour of the permutation test for large samples may
be due to the fact that the number of random permutations should increase with the
sample size.

When considering k = 3 populations, Fig. 5 shows the size-corrected values
ρH1(�b,M ,�p,Np ) and ρH1(�b,g,�p,Np ) when Np = 5000. In this setting, the boot-
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Fig. 4 Size-corrected relative exact powers, ρH1 (�b,M , �p,Np ) and ρH1 (�b,g, �p,Np ), for the bootstrap
tests �b,M (M = 3, 10, 20 and 30) and �b,g (in dashed black lines) with respect to the permutation test
�p,Np with Np = 5000 random permutations, for k = 2. The lines with the circles (in grey), upper (in
blue), lower triangles (in maroon) and the square (in green) correspond to �b,M , with M = 3, 10, 20 and
30, respectively
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Fig. 5 Size-corrected relative exact powers, ρH1 (�b,M , �p,Np ) and ρH1 (�b,g, �p,Np ), for the bootstrap
tests �b,M (M = 3, 10, 20 and 30) and �b,g (in dashed black lines) with respect to the permutation test

�p,Np based on D = ‖Γ̂ 2 −Γ̂ 1‖2
F +‖Γ̂ 3 −Γ̂ 1‖2

F +‖Γ̂ 3 −Γ̂ 2‖2
F with Np = 5000 random permutations

when k = 3. The lines with the circles (in grey), upper (in blue), lower triangles (in maroon) and the square
(in green) correspond to �b,M , with M = 3, 10, 20 and 30, respectively

strap calibration test always outperforms the permutation test, specially for alternatives
close to the null hypothesis. The better performance may be explained by the fact that
the asymptotic behaviour of the tests and so its bootstrap calibration detects alterna-
tives following a proportional model more easily than those considered in the two
population case. The higher capability of �b,M to detect proportional local alterna-
tives for three populations is related to power performance described in Remark 3.
Furthermore, the obtained results suggest that as the number of populations increases
the number of permutations needed to attain a good power performance also needs to
be increased considerably leading to a larger computing time.

Although a formal computational analysis of the different test statistics is beyond
the scope of this paper, we tested the speed of our R codes using an Intel i7-2600K
CPU (3.4 GHz) machine running Windows 7. Table 2 reports the average time in CPU
seconds of the different test procedures computed over 10 random samples generated
as in the simulation settings under H0 and for the sample sizes ni considered before.
The results obtained show that the computing time increases linearly as the number
of permutations increases and in all situations �p,Np is much more time expensive
than �b,M . On the other hand, as expected, the number M of principal components
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Table 2 Average timing (in seconds) of the test procedures

k = 2 k = 3
ni = 50 ni = 100 ni = 200 ni = 50 ni = 100 ni = 200

�b,3 0.053 0.059 0.090 0.055 0.072 0.114

�b,10 0.125 0.120 0.151 0.164 0.173 0.215

�b,20 0.334 0.309 0.367 0.693 0.693 0.828

�b,30 0.867 0.906 1.069 3.510 3.580 3.822

�b,g 3.424 3.363 3.379 3.317 3.315 4.413

�p,5000 5.831 9.493 17.825 15.544 25.957 47.575

used considerably increases the computation time. However, the computing time of
�b,M is quite stable through sample sizes, for a fixed number of populations and a
fixed M . The Gaussian approximation takes almost the same computing time in all
the considered scenarios and shows a larger average time than �b,M , except when
M = 30 and k = 3, in which they both give similar average timings.

From the obtained results, we see that our procedure is, in terms of level and power
behaviour, a good competitor for the permutation test introduced for two populations
in Pigoli et al. (2014). On the other hand, when k = 3 it has a better detection capability
with a much lower computing time. Furthermore, our method has the advantage of
allowing to develop a theory regarding its asymptotic behaviour as described in Sects. 4
and 5.

7 Real data example

The following real data set corresponds to an example of speech recognition. This
data set was introduced in Hastie et al. (1995). A completed description and the
data are available at http://www-stat.stanford.edu/ElemStatLearn. The data consist
of 2000 log-periodograms of length 150 divided in five groups according to five
speech frames. The classes correspond to five phonemes transcribed as “sh” as in
“she”(group 1); “iy” as in “she”(group 2); “dcl” as in “dark”(group 3); “aa” as the
vowel in “dark”(group 4); “ao” as the first vowel in “water”(group 5).

Functional data analysis has been used previously to study linguistic and phonetic
problems which are beyond speech recognition. As mentioned in Pigoli et al. (2014),
comparison of covariance operators has its own interest in this setting, since they pro-
vide a good characterization of language. For that reason, we compare the covariance
operators of the five phoneme data sets using the bootstrap test described in Sect. 5 with
5000 bootstrap replications. Different values of M , the number of principal compo-
nents of the pooled estimated covariance operator, are considered. As shown in Table
3, a large number of components is needed to explain an 85% of the total variance.
When testing equality between five groups of phonemes, the obtained p−values are
reported in Table 3. In all cases, the results are consistent for all choices of M , reject-
ing the hypothesis of equality among the covariance operator between the phoneme
groups.

123

http://www-stat.stanford.edu/ElemStatLearn


Testing equality between several covariance operators

Table 3 p-values for the bootstrap calibrated test to compare the five class of phonemes and percentage
of variance explained for different values of the number M of components

4 8 16 24 32 40 48 56 64

p−value 0 0 0 0 0 0 0 0 0

% variance 0.4812 0.5697 0.6674 0.7255 0.7480 0.7856 0.8170 0.8437 0.8665

As shown in our simulation results, the test is quite stable with respect to the
selection of M . However, in a practical analysis, a key point is the selection of the
number of components M . Usually, the value of M is chosen so that the M prin-
cipal components explain a given amount of the total variability. Nevertheless, it
may be of interest to study the dependence of the obtained results on the number of
components and a global p−value may be obtained controlling the False Discovery
Rate (fdr). Recall that if M different statistical hypotheses are tested, then the fdr
is the expected proportion of wrongly rejected hypotheses. In our situation, all the
hypotheses are equal; hence, the fdr coincides with the level of the procedure. As in
Cuesta-Albertos and Febrero-Bande (2010), to provide a corrected p−value, one may
proceed as follows. Assume that we select � values, M1, . . . , M�, for the number of
components M and for each value Mj , 1 ≤ j ≤ �, we perform the test obtaining a
p−value p j . Denote p(1) ≤ · · · ≤ p(�) the ordered p−values. The results in Ben-
jamini and Yekutieli (2001) allow us to reject the null hypothesis for every level α

such that α ≥ inf1≤i≤� � p(i)/ i . Therefore, the corrected p−value may be taken as
the quantity inf1≤i≤� � p(i)/ i . Even though this procedure is conservative, it is less
conservative than the Bonferroni one. It is clear from Table 3 that, in this example, the
corrected p−value equals any of the obtained p−values for the different dimension
choices.

As mentioned in Sect. 6, a possible competitor of the bootstrap test is the per-
mutation test based on

∑
j<s ‖Γ̂ s − Γ̂ j‖2

F , which is the extension of the procedure
described in Pigoli et al. (2014) to several populations. The test introduced in Fremdt
et al. (2013) cannot be applied in this setting, since it allows comparisons only between
two covariance operators. Its extension to the several population case is beyond the
scope of this paper and for that reason, we only considered the permutation test which
leads to a p−value of 0.000. As mentioned in Sect. 6.3, the permutation test is com-
putationally more expensive than the proposed bootstrap procedure, in particular,
when dealing with more than two populations. However, its main disadvantage is
that it relies on the samples exchangeability under the null hypothesis which means
that, in particular, all the populations have the same underlying distribution except
for changes in their mean and covariance operators. To explore the validity of this
assumption, we projected the samples over a random direction u generated accord-
ing to a Brownian motion BW(0, 1). The random variables 〈Xi, j , u〉. 1 ≤ i ≤ 5,
1 ≤ j ≤ 400, are then centred and standardized within each group, leading to sam-
ples Yi = {Yi, j : 1 ≤ j ≤ 400}, 1 ≤ i ≤ 5. If the five phoneme samples have
the same underlying distribution except for changes in their means and covariance
operators, the samples Yi should have approximately the same distribution. Figure 6
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Fig. 6 Estimators of the density of a random projection of the phoneme data. The projected data are first
centred and standardized within each group before computing the kernel density estimator

shows the obtained density estimators computed using a Gaussian kernel and Silver-
man’s rule of thumb bandwidth, see Silverman (1986). The plot shows that the density
estimator corresponding to the data group 3 and related to the phoneme “dcl” has a
different shape that those of the other groups. Indeed, its density is strongly skewed
showing a long left tail, while that of group 1, corresponding to the phoneme “sh” is
slightly asymmetric to the right, the other ones being more symmetric. It is also
worth noticing that the mad, i.e., the normalized median of the absolute deviation
with respect to the median of Yi is close to 1 for all groups except when i = 3, in
which case it is equal to 0.578, which also suggests that the samples have a different
underlying distribution. To test if the group labelled as 3 has the same distribution
as the other ones up to changes in means and covariance operators, we have com-
pared, for each i �= 3, the distribution of the standardized projected data Y3 with that
of Yi using the Kolmogorov–Smirnov test statistic. As expected, the Kolmogorov–
Smirnov test rejects the null hypothesis for each i �= 3. The obtained p−values
(7 × 10−6, 5 × 10−5, 7 × 10−6, 0.00013) reject with level 0.001 the null hypothesis
of equality between the distribution of the data related to the phoneme “dcl”and the
other phonemes, except for changes in their means and covariance operators. These
results suggest that in this case, the permutation test may not be an appropriate pro-
cedure. The bootstrap procedure introduced in this paper is more robust in the sense
that it does not require normality of the samples or the same underlying probability
measure, up to mean and covariance operator changes, among populations. It only
assumes E(‖Xi‖4) < ∞ to guarantee the asymptotic normality of the sample covari-
ance operators.
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8 Conclusions

In this paper, we have studied a procedure to test equality among several popula-
tions covariance operators. The test statistic is based on the Hilbert–Schmidt distance
between consistent estimators of Γ i and Γ 1, for 2 ≤ i ≤ k. The analysis of the
asymptotic distribution of the test statistic reveals that the testing procedure is con-
sistent against local alternatives converging to the null hypothesis at rate n−1/2 when
the sample covariance operators are used. These results also hold for the smoothed
covariance operators defined in Boente and Fraiman (2000), under mild conditions.
The asymptotic null behaviour obtained motivates the use of bootstrap methods, since
it depends on the eigenvalues of an unknown operator. For that reason, we also pro-
vide a general bootstrap calibration method whose validity is derived. Our numerical
studies have shown that the bootstrap calibration has a good practical behaviour and
is a good competitor for the permutation test defined in Pigoli et al. (2014) for two
populations and the considered alternatives. On the other hand, when k = 3 and for
proportional alternatives considered, the bootstrap test has shown a better detection
capability. Another advantage of the bootstrap test over the permutation test is its lower
computing time for the sample sizes considered.
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Appendix

Proof of Theorem 1. Denote as Fk = F × · · · × F the k−th dimensional product
space of identical copies of F and consider the process Vk,n = (√

n(Γ̃ 1 − Γ 1), . . . ,√
n(Γ̃ k − Γ k)

)t
. Using that

√
ni

(
Γ̃ i − Γ i

) D−→ Ui , the independence of the esti-

mated operators and the fact that ni/n → τi ∈ (0, 1), we get that Vk,n
D−→

V = (V1, . . . ,Vk)
t , where Vi = τ

−1/2
i Ui are independent random processes of

F with covariance operators τi
−1Υ i . Hence, Vk,n converges in distribution to a zero

mean Gaussian random element V = (V1, . . . ,Vk)
t ∈ Fk with covariance operator

Υ̃ = diag
(
τ1

−1Υ 1, . . . , τk
−1Υ k

)
.

Let A : Fk → Fk−1 be the linear operator defined as A(V1, . . . , Vk) = (V2 −
V1, . . . , Vk −V1) and denote as A∗ : Fk−1 → Fk its adjoint operator. The continuous

map theorem guarantees that AVk,n
D−→ W, where W = (W1, . . . ,Wk−1)

t = AV
is a zero mean Gaussian random element of Fk−1 with covariance operator Υ w =
AΥ̃ A∗. Moreover, we also obtain that n

∑k
j=2 ‖(Γ̃ j − Γ j ) − (Γ̃ 1 − Γ 1)‖2

F
D−→

∑k−1
j=1 ‖Wj‖2

F = ‖W‖2
F k−1 . Let υ� ∈ Fk−1 be the orthonormal eigenfunctions of

Υ w related to the eigenvalues θ� ordered in decreasing order. Since W is a zero mean
Gaussian random element of Fk−1 with covariance operator Υ w, W can be written as
∑

� ≥1 θ
1/2
� Z� υ� where Z� are i.i.d. random variables such that Z� ∼ N (0, 1). Hence,

‖W‖2
F k−1 = ∑

� ≥1 θ�Z2
� , which leads to the desired result.
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It only remains to show (7). Straightforward calculations allow to show that
the adjoint operator A∗ : Fk−1 → Fk is given by A∗(w1, . . . , wk−1) =
(−∑k−1

i=1 wi , w1, . . . , wk−1). Hence, as U1, . . . ,Uk are independent, we obtain that

Υ w(w1, . . . , wk−1) = (AΥ̃ A∗)(w1, . . . , wk−1)

=
(

1

τ2
Υ 2(w1) + 1

τ1
Υ 1

(
k−1∑

i=1

wi

)

, . . . ,
1

τk
Υ k(wk−1)

+ 1

τ1
Υ 1

(
k−1∑

i=1

wi

))

,

concluding the proof. ��
Proof of Corollary 1. Consider the process Ui,ni = √

ni (Γ̂ i − Γ i ). The indepen-
dence of the samples and among populations together with the results stated in Dauxois
et al. (1982), allow to show that Ui,ni are independent and converge in distribution to
independent zero mean Gaussian random elements Ui of F with covariance operator
Υ i defined in (1). The result follows now from Theorem 1. ��

Proof of Theorem 2. Using that ni/n → τi , we get immediately that√
n

(
Γ̃ i − Γ 1

) D−→ Δi + (1/
√

τi )Ui where Ui is a zero mean Gaussian ran-
dom element with covariance operator Υ i and for i = 1, Δ1 = O is the null
operator. The fact that the estimators are independent implies that Ui can be cho-
sen to be independent so, as in the proof of Theorem 1, we have that Vk,n =
(√

n(Γ̃ 1 − Γ 1), . . . ,
√
n(Γ̃ k − Γ 1)

)t D−→ V = (V1, . . . ,Vk)
t , where Vi = Δi +

(1/
√

τi )Ui are independent random processes of F with mean Δi and covariance
operators τi

−1Υ i . Hence, Vk,n converges in distribution to a Gaussian random ele-
ment V = (V1, . . . ,Vk)

t ∈ Fk with mean Δ = (Δ1, . . . ,Δk)
t and covariance

operator Υ̃ = diag
(
τ1

−1Υ 1, . . . , τk
−1Υ k

)
.

As in the proof of Theorem 1, define A : Fk → Fk−1 as the linear oper-

ator A(V1, . . . , Vk) = (V2 − V1, . . . , Vk − V1). Then, AVk,n
D−→ W, where

W = (W1, . . . ,Wk−1)
t = AV is a Gaussian random element of Fk−1 with mean

AΔ and covariance operator AΥ̃ A∗. Using that Δ1 is the null operator, we obtain
that AΔ = (Δ2, . . . ,Δk) = Δ(k−1). Moreover, from the proof of Theorem 1 we
get that AΥ̃ A∗ = Υ w. Let υ� ∈ Fk−1 be the orthonormal eigenfunctions of Υ w

related to the eigenvalues θ� ordered in decreasing order. Since W − Δ(k−1) is a zero
mean Gaussian random element of Fk−1 with covariance operator Υ w, W − Δ(k−1)

can be written as
∑

� ≥1 θ
1/2
� Z� υ� where Z� are i.i.d. random variables such that

Z� ∼ N (0, 1). On the other hand, we have the expansion Δ(k−1) = ∑
� ≥1 η� υ�,

so that W = ∑
� ≥1

(
η� + θ

1/2
� Z�

)
υ� and ‖W‖2

F k−1 = ∑
� ≥1

(
η� + θ

1/2
� Z�

)2 =
∑

�≥1 θ�

(
η� θ

−1/2
� + Z�

)2
, which concludes the proof since Tk,n = n

∑k
j=2 ‖(Γ̂ j −

Γ 1) − (Γ̂ 1 − Γ 1)‖2
F

D−→ ∑k−1
j=1 ‖Wj‖2

F = ‖W‖2
F k−1 . ��

Proof of Proposition 1. The results in Dauxois et al. (1982) entail that√
n1

(
Γ̂ 1 − Γ 1

) D−→ U1, where U1 a zero mean Gaussian random element with
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covariance operator Υ 1 so, we only have to prove the result for i ≥ 2. We have the
following decomposition for

√
ni (Γ̂ i − Γ 1),

√
ni (Γ̂ i − Γ 1)= √

ni

⎛

⎝ 1

ni

ni∑

j=1

(Xi, j − Xi ) ⊗ (Xi, j − Xi ) − Γ 1

⎞

⎠

= √
ni (Γ̃ i−Γ 1)+n−1/4√ni Γ̂ i,WR+n−1/4√ni Γ̂ i,RW +n−1/2√ni Δ̂i

where

Γ̃ i = 1

ni

ni∑

j=1

(Wi, j − Wi ) ⊗ (Wi, j − Wi ), Δ̂i = 1

ni

ni∑

j=1

(Ri, j −Ri ) ⊗ (Ri, j − Ri ) ,

Γ̂ i,WR = 1

ni

ni∑

j=1

(Wi, j − Wi ) ⊗ (Ri, j − Ri ) and

Γ̂ i,RW = 1

ni

ni∑

j=1

(Ri, j − Ri ) ⊗ (Wi, j − Wi ) .

Using that Wi, j ∼ Wi and that the covariance operator of Wi is Γ 1, from the results

in Dauxois et al. (1982) we get that
√
ni

(
Γ̃ i − Γ 1

) D−→ Ui , where Ui a zero mean
Gaussian random element with covariance operator Υ i given in (11).

It is worth noticing that Γ̂ i,WR and Γ̂ i,RW are estimators of the cross covariance
operators Γ i,WR = E {(Wi − EWi )⊗ (Ri − ERi )} and Γ i,RW = E {(Ri − ERi )⊗
(Wi − EWi )}, respectively. The independence between Wi and Ri entails that Γ i,WR

is the null operator, which implies that
√
ni Γ̂ i,WR is bounded in probability, so that

n−1/4√ni Γ̂ i,WR
p−→ 0. Similarly, we obtain that n−1/4√ni Γ̂ i,RW

p−→ 0.
Finally, using the law of large numbers we have that Δ̂i , the empirical covari-

ance operator of Ri , converges in probability to Δi , so n−1/2√ni Δ̂i
p−→ τ

1/2
i Δi ,

concluding the proof of a). ��
Proof of Proposition 2. As in the proof of Proposition 1, we only have to prove

the result for i ≥ 2. Using the Karhunen–Loéve representation, we can write

X1, j = μ1 +
∞∑

�=1

λ
1
2
� f1�j φ�, 1 ≤ j ≤ n1

Xi, j = μi +
∞∑

�=1

λ
1
2
�

(

1 + �i,�√
n

) 1
2

fi�j φ� , 1 ≤ j ≤ ni , 2 ≤ i ≤ k,

where fi�j ∼ fi� in (12). For 1 ≤ j ≤ ni , let Zi, j = μi + ∑∞
�=1 λ

1
2
� fi�j φ� =

μi + Z0,i, j . Denote as

Vi, j = Xi, j − Zi, j =
∞∑

�=1

λ
1
2
�

[(

1 + �i,�√
n

) 1
2 − 1

]

fi�j φ� .
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Define the following operators that will be used in the sequel Γ̃ i = (1/ni )
∑ni

j=1(
Xi, j − μi

)⊗(
Xi, j − μi

)
, Γ̂ Z0 = (1/ni )

∑ni
j=1 Z0,i, j ⊗ Z0,i, j , Γ̂ V = (1/ni )

∑ni
j=1

Vi, j ⊗ Vi, j and finally, Ã = (1/ni )
∑ni

j=1(Z0,i, j ⊗ Vi, j + Vi, j ⊗ Z0,i, j ), where we
avoid the index i for the sake of simplicity. Using that Xi, j − μi = Z0,i, j + Vi, j , we
obtain the following expansion Γ̃ i = Γ̂ Z0 + Γ̂ V + Ã.

The proof will be carried out in several steps, by showing that

√
ni (Γ̂ i − Γ̃ i ) = oP(1) (15)√

ni Γ̂ V = oP(1) (16)
√
ni Ã

p−→ τ
1
2
i Δi (17)

√
ni (Γ̂ Z0 − Γ 1)

D−→ Ui , (18)

where Ui is a zero mean Gaussian random element with covariance operator Υ i .
Using that, for all 2 ≤ i ≤ k, the covariance operator of Z0,i, j is Γ 1, (18) follows
from Dauxois et al. (1982).

We will derive (15). Noticing that Γ̂ i − Γ̃ i = − (
Xi − μi

) ⊗ (
Xi − μi

)
, it will

be enough to prove that
√
ni

(
Xi − μi

) = √
ni

(
Z0,i + V i

) = OP(1), with Z0,i =
(1/ni )

∑ni
j=1 Z0,i, j and V i = (1/ni )

∑ni
j=1 Vi, j .

By the central limit theorem in Hilbert spaces, we get that
√
ni Z0,i converges in

distribution, which entails that the process is tight, i.e.,
√
ni Z0,i = OP(1).

We have that

(

1 + �i,�√
n

) 1
2 − 1 = 1√

n

�i,�
(

1 + �i,�√
n

) 1
2 + 1

= ai,�,n
�i,�√

n
(19)

where 0 ≤ ai,�,n ≤ 1.
To derive that

√
ni V i = OP(1), we will further show that

√
ni V i = oP(1). To

do so, notice that E ‖V i‖2 = (1/ni )
∑∞

�=1 λ�

[
(
1 + (�i,�/

√
n)

) 1
2 − 1

]2

. Using (19),

we get that E(‖√ni V i‖2) ≤ (1/n)
∑∞

�=1 λ��
2
i,�, concluding the proof of (15).

To obtain (16), notice that (19) entails thatVi, j⊗Vi, j = (1/n)
∑

�,s λ
1
2
� λ

1
2
s ai,�,nai,s,n

�i,s�i,� fi�j fis jφ� ⊗ φs ,
so if we denote as U�s = (1/ni )

∑ni
j=1 fi�j fis j , we get that

Γ̂ V = 1

n

∑

�,s

λ
1
2
� λ

1
2
s ai,�,n ai,s,n�i,s�i,� U�s φ� ⊗ φs .
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Recall that fi�j ∼ fi� and E( fi� fis) = δ�s , where δ�s = 1 if � = s and 0 otherwise.
Hence, we have that E(U�s) = δ�s which implies that

E(U 2
�s) = Var(U�s) + E

2(U�s) = 1

ni
V ar( fi� fis) + δ�s

≤ 1

ni
E( f 2

i� f
2
is) + δ�s ≤ 1

ni
σ4,i,�σ4,i,s + δ�s, (20)

where the last bound follows from the Cauchy–Schwartz inequality and the fact that
σ 2

4,i,s = E( f 4
is). Hence, using (20) and the fact that 0 ≤ ai,�,n ≤ 1, we obtain the

bound

E(ni‖Γ̂ V ‖2
F ) ≤ ni

n2

∑

�,s

λ�λs�
2
i,s�

2
i,� E(U 2

�s)

≤ ni
n2

∑

�,s

λ�λs �2
i,��

2
i,s

(
1

ni
σ4,i,�σ4,i,s + δ�s

)

= 1

n2

(
∑

�

λ� �2
i,�σ4,i,�

)2

+ 1

n

∑

�

λ2
� �4

i,� .

Therefore, from the fact that
∑

� λ2
� �4

i,� ≤
(∑

� λ� �2
i,�

)2
< ∞ we get that

E(ni‖Γ̂ V ‖2
F ) → 0, concluding the proof of (16).

Finally, to derive (17) we perform the decomposition

Ã = 1√
n

∑

�,s

λ
1
2
� λ

1
2
s ai,s,n�i,s U�s (φ� ⊗ φs + φs ⊗ φ�) = Ã1 + Ã2

whereU�s = (1/ni )
∑ni

j=1 fi�j fis j , as before. We will show that
√
ni

(
Ã j − E(Ã j )

)

p−→ 0, for j = 1, 2 which entails that
√
ni

(
Ã − E(Ã)

) p−→ 0. We will only prove

that
√
ni

(
Ã1 − E(Ã1)

) p−→ 0, since the other one follows similarly. From (20), we
get that Var(U�s) ≤ (1/ni )σ4,i,�σ4,i,s which together with the fact that 0 ≤ ai,�,n ≤ 1
leads to

E(ni‖Ã1 − E(Ã1)‖2
F ) = ni

n

∑

�,s

λ�λsa
2
i,s,n�

2
i,sV ar(U�s)

≤ 1

n

∑

�,s

λ�λs�
2
i,sσ4,i,�σ4,i,s

= 1√
n

(
∑

�

λ�σ4,i,�

)(
∑

�

λ�σ4,i,��
2
i,�

)

123



G. Boente et. al

so that
√
ni

(
Ã1 − E(Ã1)

) p−→ 0, as desired. Besides, using that E(U�s) = δ�s , we
get that

E(
√
ni Ã) = 2

√
ni√
n

∑

�

λ� ai,�,n�i,� φ� ⊗ φ� → τ
1
2
i

∞∑

�=1

λ��i,�φ� ⊗ φ� = τ
1
2
i Δi

where we have used that ai,�,n → 1/2, as n → ∞ and
∑∞

�=1 λ�|�i,�| < ∞. This
concludes the proof of (17). The proof of Proposition 2a) follows now combining (15)
to (18). ��

Proof of Theorem 3. Recall that X̃n = (X1,1, . . . , X1,n1 , . . . , Xk,1, . . . , Xk,nk ).
Let Z̃n = (Z1, . . . , Zqn ) and Z̃ = {Z�}� ≥1 with Zi ∼ N (0, 1) independent. Define
Ûn(X̃n, Z̃n) = ∑qn

�=1 θ̂�Z2
� , Un(Z̃n) = ∑qn

�=1 θ�Z2
� and U(Z̃) = ∑∞

�=1 θ�Z2
� . It is

worth noticing that Ûn has the same distribution as U∗
n .

First notice that, for any �, |θ̂� − θ�| ≤ ‖Υ̂ w − Υ w‖Gk−1 (see, for instance, Kato
(1966)), which implies that

qn∑

�=1

|θ̂� − θ�| ≤ qn√
n

√
n‖Υ̂ w − Υ w‖Gk−1 . (21)

On the other hand, we have

E
[|Ûn − U ||X̃n

] = E

[
|Ûn − Un + Un − U | |X̃n

]
≤

qn∑

�=1

|θ̂� − θ�| +
∑

�>qn

θ�

which together with (21), the fact that
√
n‖Υ̂ w − Υ w‖ = OP(1), qn/

√
n → 0 and∑

� ≥1 θ� < ∞ implies that

E
[|Ûn − U | |X̃n

] p−→ 0 . (22)

We also have the following inequalities

P(Ûn ≤ t |X̃n) = P(Ûn ≤ t ∩ |Ûn − U | < ε |X̃n) + P(Ûn ≤ t ∩ |Ûn − U | > ε |X̃n)

≤ P(U ≤ t + ε) + P(|Ûn − U | > ε |X̃n)

≤ FU (t+ε)+ 1

ε
E(|Ûn−U | |X̃n)≤FU (t)+�ε(t)+ 1

ε
E(|Ûn−U | |X̃n),

where �ε(t) = sup|δ|≤ε |FU (t + δ) − FU (t)|. Besides,

P(Ûn ≤ t |X̃n) = P(Ûn ≤ t ∩ |Ûn − U | < ε |X̃n) + P(Ûn ≤ t ∩ |Ûn − U | > ε |X̃n)

≥ P(U ≤ t − ε ∩ |Ûn − U | < ε |X̃n)

≥ FU (t−ε) − 1

ε
E(|Ûn−U ||X̃n)≥FU (t)−�ε(t)− 1

ε
E(|Ûn−U ||X̃n) .
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Therefore,

|P(Ûn ≤ t |X̃n) − FU (t)| ≤ �ε(t) + 1

ε
E(|Ûn − U | |X̃n) .

As we mentioned in Remark 1, FU is a continuous distribution function on R and
so uniformly continuous; hence, limε→0 supt∈R �ε(t) = 0, which together with (22)

implies that ρk(FU∗
n |X̃n

, FU ) = supt |P(Ûn ≤ t |X̃n) − FU (t)| p−→ 0. ��
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