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Abstract. We prove that a connected simplicial complex is uniquely determined by its
complex of discrete Morse functions. This settles a question raised by Chari and Joswig.
In the 1-dimensional case, this implies that the complex of rooted forests of a connected
graph G completely determines G.

1. Introduction

The complex of discrete Morse functions M(K) of a finite simplicial complex K was in-
troduced by Chari and Joswig in [5] to study the topology of simplicial complexes in terms
of their sets of discrete deformations. M(K) is the complex of all possible discrete Morse
functions on K and, as remarked in [5], it can be regarded as a combinatorial analogue of
the space of vector fields on a differentiable manifold. Despite the potential utility of this
complex, very little was known about the relationship between K and M(K). Chari and
Joswig studied some properties of the complexes associated to graphs and simplices and
computed the homotopy type of the complex associated to the 2-simplex. Their work was
shortly followed by Ayala, Fernández, Quintero and Vilches, who described the structure
of the pure Morse complex of a graph G, i.e. the subcomplex of M(G) generated by the
simplices of maximal dimension [1]. As pointed out in [5], the construction of M(K) in the
context of graphs was already implicit in the work of Kozlov [10], who studied complexes
arising from directed sub-trees of a given (directed) graph. Kozlov proved shellability of
the complexes associated to complete graphs and computed the homotopy type of the
complexes associated to paths and cycles.

The aim of this article is to settle the connection between a simplicial complex and its
complex of discrete Morse functions. We show that K is completely determined by M(K).
Concretely, our main result is the following.

Theorem A. Let K,L be finite connected simplicial complexes. If M(K) is isomorphic
to M(L) then K is isomorphic to L.

For the 1-dimensional case, we prove that Theorem A also holds for multigraphs.

Theorem B. Let G,G′ be finite connected multigraphs. If M(G) is isomorphic to M(G′)
then G is isomorphic to G′.

We also exhibit an example which shows that the homotopy type of M(K) does not
determine the homotopy type of K.

The results in this article provide the complete answers to the foundational questions
about M(K) raised by Chari and Joswig in [5].
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2. The complex of discrete Morse functions

All simplicial complexes that we deal with are assumed to be finite. We write σ ≺ τ if
the simplex σ is an immediate face of τ (i.e. a proper maximal face) and we let VK denote
the set of vertices of a complex K. We denote by ∆n the standard complex consisting of
all the faces of an n-simplex, and by ∂∆n its boundary (i.e. the complex of all the proper
faces of the simplex).

A discrete vector field on an abstract simplicial complex K is a map W : K → K ∪ {0}
such that

(W1) if W (σ) 6= 0 then σ ≺W (σ),
(W2) if W (σ) = W (σ′) 6= 0 then σ = σ′, and
(W3) W 2 = 0.

The simplices in W−1(0) \W (K) are called critical. If W (σ) = τ for some σ ≺ τ then the
pair (σ, τ) is called a regular pair. One can easily see that every simplex in K is either
critical or belongs to a unique regular pair (see [7, 8] for more details). If (σ, τ) is a regular
pair, we call σ the source simplex of the pair, and write s(σ, τ) = σ, and we call τ the
target simplex of the pair, and write t(σ, τ) = τ . The index of a regular pair (σ, τ) is
the dimension of σ. A regular pair of index k will be sometimes denoted by (σk, τk+1).
Typically, a regular pair (σ, τ) is depicted graphically as an arrow from σ to τ (see Figure
1).

Figure 1. On the left: graphical representation of regular pairs. On the right: a cyclic vector

field of index 1.

Given two discrete vector fields W,W ′ over K we write W . W ′ if every regular pair
of W is also a regular pair of W ′. Note that if W . W ′ and W ′ . W then W = W ′. A
discrete vector field W over K is called cyclic of index k if (i) it has at least three regular
pairs; (ii) every regular pair has index k (0 ≤ k ≤ dim(K) − 1); and (iii) the source
simplices of its regular pairs can be arrange in a sequence of k-simplices σ0, . . . , σr ∈
W−1(K) such that σi 6= σj for i 6= j, σ0 ≺W (σr) and σi+1 ≺W (σi) for 0 ≤ i ≤ r− 1 (see
Figure 1).

A combinatorial Morse function over K is a map f : K → R satisfying for every σ ∈ K
(M1) |{η ≺ σ | f(η) ≥ f(σ)}| ≤ 1 and
(M2) |{τ � σ | f(τ) ≤ f(σ)}| ≤ 1.

Here |X| denotes the cardinality of the set X. The gradient vector field of a combinatorial
Morse function f is the discrete vector field Vf over K defined by

Vf (σ) =

{
τ if τ � σ and f(σ) ≥ f(τ)
0 otherwise.

A simplex σ is critical for f if σ is critical for Vf . Given σ ≺ τ , it is easy to see that (σ, τ)
is a regular pair of Vf if and only if f(σ) ≥ f(τ). By [7, Theorem 9.3], a vector field is the
gradient of a combinatorial Morse function if and only if it does not contain cyclic vector
fields.
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A discrete vector field with exactly one regular pair is called a primitive vector field.
Note that primitive vector fields are gradient fields. We will often identify a primitive
vector field with its sole regular pair. A collection W0, . . . ,Wr of primitive vector fields
is said to be compatible if there exists a gradient vector field V on K with Wi . V for
every i = 0, . . . , r. The complex of discrete Morse functions of K is the simplicial complex
M(K) whose vertices are the primitive vector fields on K and whose r-simplices are the
discrete gradient fields with r+ 1 regular pairs. We identify in this way a gradient vector
field V with the set {W0, . . . ,Wr} of all primitive vector fields satisfying Wi . V (i.e. the
set of its regular pairs). M(K) is also called the discrete Morse complex of K. Figure 2
shows some low-dimensional examples of discrete Morse complexes.
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Figure 2. Examples of complexes of discrete Morse functions.

There is an alternative approach to discrete Morse theory due to Chari [4] where the
deformations are encoded in terms of acyclic matchings in the Hasse diagram of the face
poset of the simplicial complex. It is not hard to see that the pairing of simplices which
form regular pairs of a discrete Morse function determines a matching in the Hasse diagram
HK of K. If the arrows in this matching are reversed, it can be easily shown that the
resulting directed graph is acyclic. On the other hand, from an acyclic matching on the
Hasse diagram of a simplicial complex one can build a discrete Morse function f on K
where the regular pairs of f are precisely the edges of the matching. From this viewpoint,
M(K) is the simplicial complex on the edges of the Hasse diagram of K whose simplices
are the subsets of edges which form acyclic matchings.

3. The complexes associated to graphs

The complex of discrete Morse functions has been studied almost exclusively for graphs,
as the construction of M(K) for a general K is rather complicated (see for example [1, 5]).
We focus first on this case and settle the main result for 1-dimensional regular CW-
complexes (Theorem B).

Recall that a multigraph G is a triple (VG, EG, fG) where VG is a (finite) set of vertices,
EG is a set of edges and fG : EG → {{u, v} : u, v ∈ VG and u 6= v} is a map which
assigns to each edge its boundary vertices. If fG(e) = fG(e′) for e, e′ ∈ EG, we say that
e, e′ are parallel edges. For v, v′ ∈ VG, EG(v, v′) will stand for the set of parallel edges
between v and v′. Note that, by definition, a multigraph has no loops. Simple graphs
correspond to multigraphs G where fG is injective. In this case we shall identify an edge
with its boundary vertices and write e = vw if fG(e) = {v, w}. Note that simple graphs
are precisely the 1-dimensional simplicial complexes and multigraphs are precisely the
1-dimensional regular CW-complexes (see [11] for the necessary definitions).

The complex of discrete Morse functions of a graph was first studied by Kozlov [10]
under a different context. Given a directed graph G, Kozlov defined the simplicial complex
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∆(G) whose vertices are the edges of G and whose faces are all directed forests which
are subgraphs of G. In [10] he studied the shellability of the complete double-directed
graph on n vertices (a graph having exactly one edge in each direction between any pair
of vertices) and computed the homotopy type of the double-directed n-cycle and the
double-directed n-path. It is not hard to see that for any (undirected) graph G, the
identity M(G) = ∆(d(G)) holds, where d(G) is the directed graph on the vertices of
G with one edge in each direction between adjacent vertices of G. The aforementioned
examples studied by Kozlov correspond respectively to the complex of Morse functions of
the complete graph, the n-cycle and the n-path. Complexes of directed graphs have been
widely studied (see for example [3, 6, 9, 10]) and some results of this theory were used in
Babson and Kozlov’s proof of the Lovász conjecture (see [2]).

In this section we prove Theorem B, which is the special case of Theorem A for regular
1-dimensional CW-complexes. The definition of the complex of Morse functions for regular
CW-complexes is identical to the simplicial case. In particular, for a multigraph G, M(G)
can be viewed as the simplicial complex with one vertex for each directed edge in G and
whose simplices are the collections of directed edges which do not form directed cycles.

We first establish the result for simple graphs (i.e. the 1-dimensional case of Theorem
A) and then extend it to general multigraphs. We begin by collecting some basic facts
about the discrete Morse complex of simple graphs.

Given two simplicial complexes K,L, we write K ≡ L if they are isomorphic.

Lemma 3.1. Let G be a connected simple graph. Then,

(1) |VM(G)| = 2|EG|.
(2) dim(M(G)) = |VG| − 2.

Proof. Each edge e = vw gives rise to two primitive vector fields: (v, e) and (w, e). This
settles (1). We next prove (2). If G is a tree then it is collapsible and there exists a
discrete Morse function f : G → R for which all the edges of G are regular (see [7,
Lemma 4.3]). Hence, dim(M(G)) = |EG| − 1 = |VG| − 2. For the general case, proceed
by induction on n = |EG|. If G is not a tree, let V ∈ M(G) be of maximal dimension
and let e0, . . . , er be a cycle in G. There must be an edge ei which is critical for V (see
[7, Theorem 9.3]). Let G′ = G − {ei}. G′ is still connected because ei is in a cycle,
|EG′ | = |EG| − 1 and, by induction, dim(M(G′)) = |VG′ | − 2 = |VG| − 2. Since V ∈M(G′)
and dim(M(G′)) ≤ dim(M(G)) = dim(V ), then dim(M(G)) = |VG| − 2. �

Corollary 3.2. If G,G′ are connected simple graphs such that M(G) ≡ M(G′) then
|VG| = |VG′ | and |EG| = |EG′ |. In particular their fundamental groups π1(G) and π1(G′)
are isomorphic.

Remark 3.3. It is easy to check that a vertex v ∈ G is a leaf if and only if the vertex
(v, e) ∈ VM(G) is compatible with every other (u, e′) ∈ VM(G) with the unique exception of
(w, e), where w is the other vertex of the edge e. This happens if and only if deg(v, e) =

2|EG| − 2, where deg(v, e) is the degree of the vertex (v, e) in the 1-skeleton M(G)(1) (i.e.
the subcomplex of M(G) consisting of the simplices of dimension ≤ 1). In particular, if
M(G) ≡M(G′) then G and G′ have the same number of leaves.

Let Cn denote the simple cycle with n vertices.

Corollary 3.4. Let G,G′ be two connected simple graphs. If M(G) ≡M(G′) and G = Cn
then G′ = Cn.

Proof. By Corollary 3.2, |VG| = |VG′ | and |EG| = |EG′ |. Since G = Cn then |VG| = |EG|
and therefore |VG′ | = |EG′ |. Also, since G has no leaves then G′ has no leaves. Therefore,
G′ = Cn. �
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In order to prove the main results of this paper we will analyze compatibility of regular
pairs, similarly to what we did in Remark 3.3. From now on, we write (σ, τ) ∼ (η, ρ)
if (σ, τ) and (η, ρ) are compatible, viewed as primitive vector fields (i.e. if they form a
simplex in M(K)), and (σ, τ) � (η, ρ) whenever they are not.

Theorem 3.5. Let G,G′ 6= Cn be connected simple graphs and let F : M(G) → M(G′)
be a simplicial isomorphism. Define a map f : G → G′ by f(v) = s(F (v, e)), where e is
any edge incident to v and s(F (v, e)) denotes the source simplex of F (v, e). Then f is a
well-defined simplicial isomorphism.

Proof. The key part of the proof is to see that f is well-defined, i.e. that f(v) does not
depend on the choice of the incident edge e. Suppose otherwise and let (v, e0), (v, e1) ∈
VM(K) be such that F (v, e0) = (w, a) and F (v, e1) = (w′, b) with w 6= w′. Since (v, e0) �
(v, e1) then (w, a) � (w′, b) and hence a = b (see Figure 3).

v e0e1 w w´F a   b=

Figure 3

We claim that under this situation we can choose such a vertex v ofG with degree greater
than or equal to 3. This will lead to a contradiction since an edge containing v different
from e0 and e1 provides a primitive vector field onG which is incompatible with both (v, e0)
and (v, e1), while the simplicity of G′ implies that there is no possible primitive vector
field on G′ incompatible with both (w, a) and (w′, a). To prove this claim, let e1 = vv′

and consider the primitive vector field (v′, e1). Since (w′, a) = F (v, e1) � F (v′, e1) and F
is an isomorphism then there exists an edge c = w′w′′ ∈ G′ such that F (v′, e1) = (w′, c).
Consider now (w′′, c) ∈M(G′). Using a similar argument for F−1 and (w′′, c) one can find
an edge e2 6= e0, e1 such that F−1(w′′, c) = (v′, e2) (see Figure 4).

v e0e1 w w´F a   b=v´ c w´́e2

Figure 4

Note that the primitive vector fields (v′, e1), (v′, e2) satisfy the same hypotheses as
(v, e0), (v, e1) (but replacing (w, a), (w′, a) with (w′, c), (w′′, c) respectively). Repeating this
argument we obtain a path e1, e2, e3, . . . where, for any vertex v ∈ ei∩ei+1, (v, ei), (v, ei+1)
are mapped to primitive vector fields on G′ of the form (u, d), (u′, d) with u 6= u′. By
finiteness, this path must form a cycle C = {ej , ej+1, . . . , ej+k−1, ej+k = ej} for some j, k.
If j = 0, since G is not the graph Cn, by connectedness there is an edge e /∈ C intersecting
C. In this case, x = e∩C is the desired vertex (see Figure 5 (a)). If j > 0 then the vertex
y = ej−1 ∩ ej is the desired vertex (see Figure 5 (b)). This proves that f is well-defined.

We show now that f is a simplicial morphism. Consider an edge e = vv′ ∈ G. We
must see that f(v)f(v′) ∈ G′. Since (v, e) � (v′, e) then F (v, e) � F (v′, e). Therefore,
either s(F (v, e)) = s(F (v′, e)) or t(F (v, e)) = t(F (v′, e)). In the first case, the same
reasoning as above applied to h = s ◦ F−1 : G′ → G gives a contradiction (replace v, e0

and e1 with s(F (v, e)) = s(F (v′, e)), t(F (v, e)) and t(F (v′, e)) respectively). Therefore,
t(F (v, e)) = t(F (v′, e)) and, in particular, f(v)f(v′) ∈ t(F (v, e)) is an edge in G′.

Finally, it is easy to see that f−1 = s ◦ F−1 is the inverse of f . �

Corollary 3.6. Let G,G′ be connected simple graphs. If M(G) ≡M(G′) then G ≡ G′.

Proof. Follows from Corollary 3.4 and Theorem 3.5. �
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We now extend the result to multigraphs. Two primitive vector fields (v, e), (v′, e′) ∈
M(G) are said to be parallel if v = v′ and e is parallel to e′ in G. Recall that the link of
a simplex σ ∈ K is the subcomplex lk(σ,K) = {τ ∈ K : τ ∩ σ = ∅, τ ∪ σ ∈ K}.
Lemma 3.7. Let G be a connected multigraph with more than two vertices. Then two
primitive vector fields (v, e), (v′, e′) are parallel in M(G) if and only if (v, e) � (v′, e′) and
lk((v, e),M(G)) = lk((v′, e′),M(G)).

Proof. Suppose first that (v, e) � (v′, e′) and lk((v, e),M(G)) = lk((v′, e′),M(G)). If (v, e)
and (v′, e′) are not parallel in M(G), then there are only three possibilities for the edges
e and e′ in G which are shown in Figure 6.

a(  ) b(  ) c(  )
v

ve

e

v v=

e
e

v
v

e e=

Figure 6

Since |VG| ≥ 3 and G is connected, in each of the three cases, G locally looks as in
Figure 7.

a(  ) b(  ) c(  )
v
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v
v
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w
e

w
e

Figure 7

This contradicts the fact that lk((v, e),M(G)) = lk((v′, e′),M(G)). The other implica-
tion is trivial. �

Given a simplicial complex K, we define an equivalence relation R on VK as follows:

vRw ⇔ v = w or {v, w} /∈ K and lk(v,K) = lk(w,K).

Let K̃ be the simplicial complex whose vertices are the equivalence classes of vertices of K
and whose simplices are the sets {ṽ0, . . . , ṽr} such that {v0, . . . , vr} ∈ K. Here ṽ denotes

the equivalence class of the vertex v. Note that K̃ is well-defined since, if viRv′i then
{v0, . . . , vi, . . . , vr} ∈ K if and only if {v0, . . . , v

′
i, . . . , vr} ∈ K.

Proposition 3.8. Let K,L be simplicial complexes and let K̃ and L̃ be as above. If

f : K → L is a simplicial isomorphism then the map f̃ : K̃ → L̃ given by f̃(ṽ) = f̃(v) is
a simplicial isomorphism.
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Proof. We prove first that f̃ is well-defined. Suppose vRv′ with v 6= v′. Since {v, v′} /∈ K
and f is an isomorphism then {f(v), f(v′)} /∈ L. Also, if {f(v)}∪σ ∈ L then {v}∪f−1(σ) ∈
K, which implies that {v′} ∪ f−1(σ) ∈ K. Therefore {f(v′)} ∪ σ ∈ L.

Finally, f̃ is an isomorphism since f̃−1 = f̃−1. �

Definition. For a multigraph G we define the simplification of G, denoted by sG, as the
simple graph obtained from G by identifying parallel edges.

Remark 3.9. By Lemma 3.7 one can check that the map f : M̃(G)→M(sG) defined by

f((̃v, e)) = (v, e) is a well-defined isomorphism. Here e is the image of the edge e in sG.

Proof of Theorem B. Let F : M(G)→M(G′) be an isomorphism. By Proposition 3.8 and
Remark 3.9, F induces an isomorphism M(sG) → M(sG′) which we also denote by F .
By Theorem 3.5 there is an isomorphism f : sG → sG′ sending a vertex v to s(F (v, e))
for any edge e incident to v. Then, in order to see that G and G′ are isomorphic, we only
need to check that |EG(v, w)| = |EG′(f(v), f(w))| for any pair of vertices v, w of G.

We can suppose that |EG(v, w)| 6= 0 and choose some e ∈ EG(v, w). Then (v, e) ∈M(G)
and let e′ = t(F (v, e)) ∈ EG′(f(v), f(w)). Note that the set EG(v, w) is in bijection with
the set {(v, a) ∈ M(G), (v, a) � (w, e)}. Similarly, EG′(f(v), f(w)) is in bijection with
{(f(v), a′) ∈ M(G′), (f(v), a′) � (f(w), e′)}. By the isomorphism F , both sets have the
same cardinality. �

Chari and Joswig asked in [5] whether there is any connection between the homotopy
types of K and M(K). They implicitly showed that the homotopy type of K does not
determine the homotopy type of M(K). For instance, by [5, Proposition 5.1] the complex
of Morse functions associated to the 1-simplex is homotopy equivalent to S0 and the one
associated to the 2-simplex is homotopy equivalent to S1 ∨ S1 ∨ S1 ∨ S1. The following
example shows that the homotopy type of M(K) does not determine the homotopy type
of K either.

Example 3.10. Consider the following simple graphs. G has three vertices u, v, w and
two edges uv, uw. The graph G′ has four vertices a, b, c, d and four edges ab, bc, ac, ad.
Note that they are not homotopy equivalent while their associated complexes of Morse
functions are both contractible.

4. Proof of the main result

We now extend the result of Corollary 3.6 to simplicial complexes of any dimension.
The idea behind the proof is that, in “almost all” cases, a simplicial isomorphism F :
M(K)→M(L) restricts to an isomorphism F |M(K(1)) : M(K(1))→M(L(1)) between the

complexes of discrete Morse functions of the 1-skeleta and by Theorem 3.5 the 1-skeleta
of K and L are isomorphic. Then an inductive argument shows that an isomorphism
M(K) ≡M(L) forces all skeletons of K and L to be isomorphic.

Recall that a cyclic vector field contains at least three regular pairs. One with exactly
three regular pairs is said to be minimal and two minimal cyclic vector fields sharing
exactly one regular pair are said to be adjacent. Note that a cyclic vector field of index k
is equivalent to having an incompatible collection P = {(σ0, τ0), . . . , (σr, τr)} of primitive
vector fields of index k ≥ 0 such that every proper subset of P is compatible. Equivalently,
the full subcomplex of M(K) spanned by the vertices (σ0, τ0), . . . , (σr, τr) is the boundary
∂∆r of an r-simplex.

Remarks 4.1.
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(i) For any pair of complexes K,L, a simplicial isomorphism F : M(K)→M(L) sends
cyclic vector fields to cyclic vector fields. This follows from the correspondence
between cyclic vector fields over a complex T and full subcomplexes of M(T )
isomorphic to ∂∆r (for some r).

(ii) Note that a simple cycle e0, . . . , er in the 1-skeleton of a complex K gives rise to
two possible cyclic vector fields of index 0 in K: choosing a vertex v0 for e0, one
of them is {(v0, e0), (v1, e1), . . . , (vr, er)} where vi 6= vi+1 for all i = 0, . . . , r − 1.
The other cyclic vector field arises from selecting the other vertex of e0 to be the
source of the primitive vector field.

(iii) It is easy to see that if {(σ1, τ1), (σ2, τ2), (σ3, τ3)} is a minimal cyclic vector field
of index k − 1 then {τ1, τ2, τ3} spans a complex isomorphic to ∆k−2 ∗ ∂∆2 (here ∗
stands for the join of the complexes). In particular, 〈τ1, τ2, τ3〉 is a complex with
k + 2 vertices and a complete 1-skeleton.

The following result deals with the cases in which an isomorphism M(K)→M(L) does

not restrict to an isomorphism M(K(1))→M(L(1)).

Proposition 4.2. Let K,L be connected simplicial complexes and let F : M(K)→M(L)
be a simplicial isomorphism. If there exists a primitive vector field (v, e) ∈ VM(K) of index

0 such that F (v, e) = (σn−1, τn) with n ≥ 2, then K = L = ∂∆m for some m ≥ 2.

Proof. We may assume that n is maximal with the property that there exists (v, e) ∈ VM(K)

of index 0 whose image is (σn−1, τn) for some n ≥ 2. With this assumption, we shall
prove that K = ∂∆n+1. Let w be the other end of e. Note that F (v, e) and F (w, e) are
incompatible, since (v, e) and (w, e) are incompatible. We conclude that either s(F (v, e)) =
s(F (w, e)), s(F (v, e)) = t(F (w, e)), t(F (v, e)) = s(F (w, e)) or t(F (v, e)) = t(F (w, e)). In
any case, since dim(s(F (v, e))) > 0, one can find a third primitive vector field over L which
is incompatible with both F (v, e) and F (w, e). Since F is an isomorphism, this gives a
primitive vector field overK which is incompatible with both (v, e) and (w, e). This forces e
to have a proper coface and then e must be a face of a 2-simplex {v, w, u} ∈ K. Let e′ = wu
and e′′ = uv and consider the minimal cyclic vector field {(v, e), (w, e′), (u, e′′)} in K. By
Remark 4.1 (i), {F (v, e), F (w, e′), F (u, e′′)} is a minimal cyclic vector field of index n− 1
in L. Let F (v, e) = (σ, τ), F (w, e′) = (σ′, τ ′) and F (u, e′′) = (σ′′, τ ′′). By Remark 4.1 (iii),
either σ′ ≺ τ or σ′ ≺ τ ′′. We will show that σ′ ≺ τ cannot happen. If this was the case,
F (w, e) = (σ′, τ) (being the only regular pair incompatible with both (σ, τ) and (σ′, τ ′)).
This forces F (u, e′) = (σ′′, τ ′) and F (v, e′′) = (σ, τ ′′) (see Figure 8). Let σ′′′ ≺ τ be different
from σ, σ′. Consider a minimal cyclic vector field of index n− 2 {(ρ, σ), (ρ′, σ′), (ρ′′′, σ′′′)}
in the boundary of τ . Now, the source of F−1(ρ, σ) must be the vertex v since this is the
only way F−1(ρ, σ) is incompatible with both F−1(σ, τ) = (v, e) and F−1(σ, τ ′′) = (v, e′′).
A similar reasoning shows that s(F−1(ρ′, σ′)) = w and s(F−1(ρ′′′, σ′′′)) = u. Therefore,
the preimage by F of the cyclic vector field {(ρ, σ), (ρ′, σ′), (ρ′′′, σ′′′)} does not constitute a
cyclic vector field in K (see Figure 8), which contradicts the fact that F is an isomorphism.

v

w
u

ee

e

s

t

F

s

s

tt

F(v,e  )

F(w,e)

F(u,e )

r
d

F (   ,   )-1

s

r

r

rs

F (    ,    )-1
rsF (      ,      )-1

rs

Figure 8. The image of (v, e′′), (u, e′) and (w, e) in the case σ′ ≺ τ . The minimal cyclic vector

field of index n− 2 {(ρ, σ), (ρ′, σ′), (ρ′′′, σ′′′)} appears in white arrows.
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Therefore, we must have σ′ ≺ τ ′′ and a similar reasoning as before shows that the situation
must be as in Figure 9. Let Q be the subcomplex of L generated by the n-simplices
τ, τ ′, τ ′′ and note that Q has n + 2 ≥ 4 vertices and a complete 1-skeleton (see Remark
4.1 (iii)). Let S denote the collection of all primitive vector fields in Q of index 0 and let
G(x, a) = t(F−1(x, a)) ∈ K for each (x, a) ∈ S. We will prove that K = ∂∆n+1 in various
steps.

s

t

F

s

s

tt F(v,e  )

F(w,e)

F(u,e )v

wu

ee

e

Figure 9

Step 1. We show first that G(S) is a collection of k-simplices for a fixed k ≤ n.
Consider a sequence τ = ηn � σ = ηn−1 � ηn−2 � · · · � η1 � η0 = y of faces of
consecutive decreasing dimension of the n-simplex τ ending in a vertex y of τ . Each
pair (ηi−1, ηi) is incompatible with the previous and the next pair. Since incompatibility
between two regular pairs arises if they share the same source, the same target or the
source of one is the target of the other, then the biggest difference in dimension between
F−1(η0, η1) = F−1(y, η1) and F−1(ηn−1, ηn) = F−1(σ, τ) occurs if the target of (ηi−1, ηi)
is the source of (ηi, ηi+1) for all i = 0, . . . , n−1. We conclude that F−1(y, η1) = (ψk−1, ρk)
for some k ≤ n. Now, since Q has a complete 1-skeleton then any edge a ∈ Q is part
of a cycle also containing η1. Therefore, any (x, a) ∈ S is part of a cyclic vector field of
index 0 containing either (y, η1) or (z, η1), where z is the other end of η1 (see Remark
4.1 (ii)). Since F maps cyclic vector fields to cyclic vector fields, it suffices to show that
t(F−1(z, η1)) is also a k-simplex. But since |VQ| ≥ 4, we can form a cyclic vector field of
index 0 containing (y, η1) and a new pair (p, ψ), and another one containing (z, η1) and
(p, ψ) as shown in Figure 10.

(y,   )

(p,   ) (p,   )(z,   )y

h1

h1 y

y y

z zp p

Figure 10

Step 2. We show that k = n and that G(S) spans ∂∆n+1. Fix a minimal cyclic
vector field C1 = {(v1, v1v2), (v2, v2v3), (v3, v1v3)} in Q and let T be the subcomplex of
K generated by the three k-simplices in G(C1). Note that |VT | = k + 2 by Remark 4.1
(iii). We claim that all k-simplices in G(S) have their vertices in VT . To see this, let
(x, a) ∈ S and let y be the other end of a. All possible situations for (x, a) with respect
to C1 are considered in Figure 11 where one can verify that it is always possible to find a
sequence of adjacent minimal cyclic vector fields between C1 and a minimal cyclic vector
field containing (x, a). By an inductive argument it suffices to show that the image by
G of a regular pair in a minimal cyclic vector field adjacent to C1 has its vertices in
VT . Let C2 = {(v2, v2v3), (v3, v3v4), (v4, v2v4)} be one such cyclic vector field. Since the
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v2

v1

v3

x

y(x,a)

v2

v1

v3 x

y

=
(x,a)

v2

v1

v3 y

x

=

(x,a)
v2

v3

x = (x,a)

v1y =

1

2

3

6

7

8

5

9 4

a(  )

b(  )

c(  )

d(  )

Figure 11. All possible configurations of the relation between (x, a) and C1 are obtained by

permutation of {v1, v2, v3}. Note that the sequence of adjacent minimal cyclic vector fields in
situation (d) is given by C1 = {1, 2, 3}, {1, 4, 5}, {5, 6, 7} and {6, 8, 9 = (x, a)}.

k-simplex G(v2, v2v3) ∈ G(C1) ∩ G(C2), by Remark 4.1 (iii) it suffices to show that the
only vertex q ∈ VT \ VG(v2,v2v3) is also in G(C2). But since (v3, v3v4) � (v3, v1v3) then

either s(F−1(v3, v3v4)) = s(F−1(v3, v1v3)) or t(F−1(v3, v3v4)) = t(F−1(v3, v1v3)). Since
the configuration must be as shown in Figure 9 then the only two possible cases are shown
in Figure 12. This proves that q ∈ G(C2).

G(   ,     )v2 v2v3

F  (   ,     )v2 v2v3
-1

s(F  (   ,     ))=v3 v3v4
-1 s(F  (   ,     ))v3 v1v3

-1

F  (   ,     )v3 v1v3
-1 F  (   ,     )v1 v1v3

-1

q

F  (   ,     )v2 v2v3
-1

t(F  (   ,     ))=v3 v3v4
-1 t(F  (   ,     ))v3 v1v3

-1

F  (   ,     )v1 v1v2
-1

q

F  (   ,     )v3 v1v3
-1

F  (   ,     )v1 v1v2
-1

F  (   ,     )v3 v3v4
-1F  (   ,     )v3 v3v4

-1

G(   ,     )v2 v2v3

F  (   ,     )v1 v1v3
-1

Figure 12. Here F−1(v3, v3v4) is drawn with a dashed arrow. On the left: the case

s(F−1(v3, v3v4)) = s(F−1(v3, v1v3)) cannot happen because the subcomplex of G(C2) spanned

by the two k-simplices G(v2, v2v3) and t(F−1(v3, v3v4)) has more than k+2 vertices, which con-
tradicts Remark 4.1 (iii) for C2. On the right: in the case t(F−1(v3, v3v4)) = t(F−1(v3, v1v3))

we readily see that q ∈ G(C2).

Now, since Q has a complete 1-skeleton then we can form a cycle in Q(1) containing
all the vertices of Q. The corresponding cyclic vector field of index 0 has as a preimage
by F a cyclic vector field of index k − 1 with n + 2 regular pairs. By definition of cyclic
vector field, the target of all these pairs are distinct k-simplices. Therefore, we conclude
that k = n and that G(S) spans ∂∆n+1.

Step 3. We show that K is spanned by G(S). Let 〈G(S)〉 denote the subcomplex of
K spanned by G(S). First, note that two primitive vector fields (x, a), (x, b) of index 0
over 〈G(S)〉 sharing the same source vertex x are mapped by F to primitive vector fields
with the same target n-simplex. This follows from the reasoning made at the beginning
of the proof (see Figure 9, setting v = x, e = a and e′′ = b). Since F is an isomorphism
we conclude that, for an n-simplex ρ in the image of 〈G(S)〉, the n + 1 primitive vector
fields with target ρ are precisely the image of the n + 1 primitive vector fields of index 0
over 〈G(S)〉 = ∂∆n+1 sharing a same source vertex.
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Suppose that K−〈G(S)〉 6= ∅. By connectivity, there is an edge ẽ ∈ K−〈G(S)〉 such that
ẽ ∩ 〈G(S)〉 contains a vertex z. Let ẽ′, ẽ′′ ∈ 〈G(S)〉 = ∂∆n+1 with ẽ′ 6= ẽ′′ and consider
the primitive vector fields (z, ẽ), (z, ẽ′), (z, ẽ′′). Since (z, ẽ) � (z, ẽ′) and (z, ẽ) � (z, ẽ′′)
then F (z, ẽ) � F (z, ẽ′) and F (z, ẽ) � F (z, ẽ′′). Since n was taken to be maximal with the
property that there exists (v, e) ∈ VM(K) of index 0 whose image is (σn−1, τn), we conclude
that t(F (z, ẽ)) must be equal to t(F (z, ẽ′)) = t(F (z, ẽ′′)) for the above incompatibilities
to hold. By the previous remarks, this is a contradiction since all n + 1 primitive vector
fields whose target is this n-simplex are in the image of the n + 1 primitive vector fields
in S with source z. This concludes the proof. �

Similarly as we did with the edges of simple graphs, for simplicity of notation, an
n-simplex σ = {v0, . . . , vn} ∈ K will be denoted by σ = v0 · · · vn.

Proof of Theorem A. Let F : M(K) → M(L) be an isomorphism. By Proposition 4.2
we may assume that every primitive vector field of index 0 in M(K) (resp. in M(L)) is
mapped by F (resp. by F−1) to a primitive vector field of index 0. This gives a well-

defined isomorphism F |M(K(1)) : M(K(1)) → M(L(1)). By Theorem 3.5 there exists an

isomorphism f : K(1) → L(1) with f(v) = s(F (v, e)) for any e � v. Note that for every
edge xy ∈ K we have F (x, xy) = (f(x), f(x)f(y)). We will show by induction that for
any (n+ 1)-simplex v0 · · · vn+1,

F (v0 · · · vn, v0 · · · vnvn+1) = (f(v0) · · · f(vn), f(v0) · · · f(vn)f(vn+1)).

Given τ = v0 · · · vn+1 ∈ K, consider the following two families of primitive vector fields:

• I = {(v0 · · · v̂i · · · vn, v0 · · · vn) , 0 ≤ i ≤ n}
• J = {(v1 · · · v̂j · · · vn+1, v1 · · · vn+1) , 1 ≤ j ≤ n+ 1},

where the hat over a vertex means that that vertex is to be omitted. By induction,

• F (v0 · · · v̂i · · · vn, v0 · · · vn) = (f(v0) · · · f̂(vi) · · · f(vn), f(v0) · · · f(vn)) and

• F (v1 · · · v̂j · · · vn+1, v1 · · · vn+1) = (f(v1) · · · f̂(vj) · · · f(vn+1), f(v1) · · · f(vn+1)).

Since (v0 · · · vn, v0 · · · vn+1) ∈M(K) is incompatible with every element of I then the only
possibility is that the source of F (v0 · · · vn, v0 · · · vn+1) is f(v0) · · · f(vn); that is,

F (v0 · · · vn, v0 · · · vn+1) = (f(v0) · · · f(vn), f(v0) · · · f(vn)w)

for some vertex w ∈ L. Analogously, since (v1 · · · vn+1, v0 · · · vn+1) ∈M(K) is incompatible
with every element of J then

F (v1 · · · vn+1, v0 · · · vn+1) = (f(v1) · · · f(vn+1), f(v1) · · · f(vn+1)u)

for some vertex u ∈ L. But (v0 · · · vn, v0 · · · vn+1) � (v1 · · · vn+1, v0 · · · vn+1), so we must
have f(v0) · · · f(vn)w = f(v1) · · · f(vn+1)u, and therefore w = f(vn+1) and u = f(v0). �
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