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a b s t r a c t

Partial linear models have been adapted to deal with functional covariates to capture
both the advantages of a semi-linear modelling and those of nonparametric modelling for
functional data. It is easy to see that the estimation procedures for these models are highly
sensitive to the presence of even a small proportion of outliers in the data. To solve the
problem of atypical observations when the covariates of the nonparametric component
are functional, robust estimates for the regression parameter and regression operator are
introduced. Consistency results of the robust estimators and the asymptotic distribution of
the regression parameter estimator are studied. The reported numerical experiments show
that the resulting estimators have good robustness properties. The benefits of considering
robust estimators is also illustrated on a real data set where the robust fit reveals the
presence of influential outliers.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Nonparametric regression models make possible the definition of general regression estimates when no structural
assumptions are made on the relation between covariates and a scalar response variable. More precisely, these models
assume that the practitioner has independent observations (Yi, Xi), 1 ≤ i ≤ n, where Yi = m(Xi) + ϵi and the errors ϵi are
independent and independent of Xi with E(ϵi) = 0. Inmany applications, the covariates Xi can be seen as functions recorded
over a period of time instead of finite-dimensional vectors. For that reason, these variables can be viewed as realizations of
a stochastic process, often assumed to be in the L2(I)with I a bounded interval and are usually called functional variables
in the literature. In this general framework, statistical models adapted to infinite-dimensional data have been studied. We
refer to Ramsay and Silverman [43,44], Ferraty and Vieu [27], Ferraty and Romain [25] and Horváth and Kokoszka [36] for
a description of different procedures for functional data and their properties. For a summary of recent advances in infinite
dimensional statistics see Cuevas [20] and Goia and Vieu [31]. In particular, for functional covariates, kernel-type estimators
of the regression operator m have been considered by Ferraty and Vieu [27] and Ferraty et al. [23,22], among others. On
the other hand, in some situations the researcher has both a vector of finite dimension Z and a functional random element
X that may have effect on the responses. These data, usually called mixed or hybrid data, were described in Ramsay and
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Silverman [44]. Linear models for mixed data were introduced by Zhang et al. [55], while kernel methods in nonparametric
regression models in this setting are given in Shang [48].

Semiparametric models have been introduced to provide an intermediate approach between a fully nonparametric
model and a less flexible linear one. When the covariates are functional, a possible model is the functional single-index
model, introduced by Ferraty et al. [24] to avoid the curse of dimensionality, in which the regression operator is written
as an unknown function η of an unknown projection of the covariates, i.e., m(X) = η(⟨α, X⟩) where both η and α must
be estimated. Estimation methods combining spline basis or a least square approach and smoothing methods have been
proposed, among others, by Ait-Saïdi et al. [1] and Chen et al. [19]. Some extensions of this model have been considered by
Ferraty et al. [21] and Goia and Vieu [30]. Up to our knowledge, single-index models for hybrid covariates have not been
studied yet.

A different approach was studied in Aneiros-Pérez and Vieu [3] who proposed a semi-functional partial linear regression
model that relates the functional predictor with the response nonparametrically, while the finite-dimensional covariate is
included in the model through a linear regression. More precisely, under a semi-functional partial linear regression model,
the independent observations (Yi, Z⊤

i , Xi)
⊤, 1 ≤ i ≤ n, are such that Yi ∈ R, Zi ∈ Rp and Xi ∈ H are functional variables

satisfying the semi-linear model

Yi = β⊤Zi + g(Xi)+ ϵi, (1)

where the errors ϵi are independent and independent of (Z⊤

i , Xi)
⊤, β ∈ Rp, g : H → R is a smooth operator and (H, d)

is a semi-metric space. Note that the semi-functional partial linear model (1) combines the advantages of a functional
nonparametric component with the linear effect of some additional real-valued explanatory variables that may be available
to the practitioner. One of the differences between model (1) and the single-index model mentioned above is that the latter
assumes that the response dependence on the covariates is given, up to the link function η, through a linear projection, while
the nonparametric structure of the semi-functional partial linear model allows for more general structures. Furthermore,
under a single-index model the covariates lie in a Hilbert space, while model (1) is more flexible since in this setting H is
a semi-metric space and it also includes the effect of an additional finite-dimensional covariate. On the other hand, under
model (1) the rates of convergence for the estimators of the regression operator g will be slow as in nonparametric regression
models.

Several authors have studied proposals for estimating the unknown quantities under model (1) in the finite dimensional
setting, i.e., when Xi ∈ R. An extensive description of different results obtained in partial linear regression models for scalar
covariates can be found, for instance, in Härdle et al. [33]. For functional covariates Xi, Aneiros-Pérez and Vieu [3] combine
the ideas beyond functional nonparametric regression and those used in the finite-dimensional setting to provide estimators
of the unknown quantities β and g , when E(ϵ) = 0 and Eϵ2 < ∞. Besides, through the analysis of the spectrometric data set
described in Ferraty and Vieu [27], Aneiros-Pérez and Vieu [3] showed the advantage of the semi-functional partial linear
model (1) over the functional linear regression, functional nonparametric regression and additive semi-functional models.
Since then, the semi-functional partial linear model has been widely studied and we can mention among others Aneiros-
Pérez and Vieu [4–6], Shin [50], Shang [49] and Aneiros-Pérez et al. [2].

This work aims to contribute to the semi-functional partial linear regression model by introducing methods that will
not be distorted by the presence of some atypical observations. For that reason, throughout this paper we will not assume
any moment condition on the errors, instead we will assume that the errors have a symmetric distribution G(·/σ0), i.e., the
distribution G has scale 1 to identify the scale parameter σ0. In general, it is crucial for the practitioner to detect outliers in
the data to avoid misleading inferences. Furthermore, the detected atypical data may contain important information that
would redound in a deeper comprehension of the whole phenomenon under study and for that reason, it is important to
identify them. In the finite-dimensional setting, the literature on robust procedures or outlier detection methods is wide.
In particular, it is well known that, both in linear regression as in non-parametric regression, least squares estimators can
be seriously affected by anomalous data. The same conclusion is valid for partially linear models. In particular, large values
of the response variable Yi can cause a peak on the estimates of the smooth function g in the neighbourhood of Xi and
large values of the response variable Yi combined with high leverage points Zi produce, as in linear regression, breakdown
of the classical estimates of the regression parameter β. To overcome the lack of robustness of the classical least squares
approach, Bianco and Boente [9] considered a robust kernel-based three-step procedure under a finite-dimensional partially
linear model, i.e., when Xi ∈ R, while Henry and Rodriguez [35] extended these estimators to deal with the situation
in which Xi ∈ M, with M a Riemannian manifold. However, the study of robust estimators for functional data is rather
scarce. Robust proposals for nonparametric functional regression estimation have been considered by Azzedine et al. [7]
who studied nonparametric robust estimation methods based on the local M-estimators assuming that the scale is known.
Besides, Boente and Vahnovan [16] proposed robust equivariantM-regression estimators.

The benefits of the semi-functional partial linear model (1) for situations in which the response dependence can be
explained by a nonparametric structure and the linear effect of exogenous variables, together with the possible presence
of atypical data in the sample explain our interest in providing reliable estimation procedures in this particular framework.
Up to our knowledge, resistant procedures for the semi-functional partial linear model (1) have not been considered yet.
Hence, in this paper we aim to introduce a class of robust procedures under the semi-functional partial linear model (1)
combining robust regression estimators with the robust conditional location functional defined in Boente and Fraiman [12].
In this sense, our proposal extends to the functional setting the robust proposal in Bianco and Boente [9] using the robust
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nonparametric estimators introduced in Boente and Vahnovan [16]. As in Bianco and Boente [9], we will not require
moments of the errors andwewill replace the assumption that E(ϵ) = 0by the requirement that the errors have a symmetric
distribution. It is worth mentioning that the procedures introduced for functional single-indexmodel andmentioned above
are not competitors for the proposals given here, since they correspond to a different model setting and do not include
mixed covariates. Besides, these methods may also be sensitive to outliers since they are based on linear smoothers and
least squares methods. Further research on resistant procedures for single-index models with mixed covariates is needed,
but is beyond the scope of this paper. Instead, a primary focus of this paper is to provide a rigorous theoretical foundation
for the approach of robust estimation under semi-functional partial linear regression models. In particular, we establish the
strong consistency of the proposed estimators and the asymptotic distribution of the estimators of the regression parameter
β, under general conditions.

The paper is organized as follows. In Section 2 we review the classical approach and we introduce the robust estimators.
Consistency results are given in Section 3.1,while the asymptotic normality of the regression parameter estimators is studied
in Section 3.2. The results of a numerical experiments conducted to evaluate the performance of the classical and robust
procedures are described in Section 4, while the analysis of a real data set, which shows the advantage of using a robust
procedure, is presented in Section 5. All proofs are relegated to the Appendix.

2. The robust estimators

Let (H, d) be a semi-metric functional space, that is, d satisfies themetric properties but d(x, y) = 0 does not imply x = y.
Denote (Y , Z⊤, X)⊤ ∈ Rp+1

× H a random element with the same distribution as (Yi, Z⊤

i , Xi)
⊤, i.e., Y = β⊤Z + g(X) + ϵ,

with ϵ independent of (Z⊤, X)⊤. When E(ϵ) = 0 and E(ϵ2) < ∞, Aneiros-Pérez and Vieu [3] proposed a least squares
approach to estimate β, noting that Y − ρ0(X) = β⊤(Z − ρ(X)) + ϵ, with ρ0(x) = E(Y |X = x), ρj(x) = E(Zj|X = x)
and ρ(x) = (ρ1(x), . . . , ρp(x))⊤. To be more precise, Aneiros-Pérez and Vieu [3] inserted kernel estimators of ρ0(x) and
ρ(x),ρ0(x) andρ(x), prior to the estimation of the regression parameter. The functional Nadaraya–Watson kernel estimates
of ρ0(x) and ρj(x) are defined, respectively, asρ0(x) =

n
i=1wi(x, h)Yi andρj(x) =

n
i=1wi(x, h)Zij, where the weights

wi(x, h) are given by

wi(x, h) =

K


d(x,Xi)
h


n

i=1
K


d(x,Xi)
h

 , (2)

with K a kernel function, i.e., a nonnegative integrable function on R and h the bandwidth parameter. The least squares esti-
mator of β introduced in Aneiros-Pérez and Vieu [3] is defined as the minimizerβ of

n
i=1


Yi −ρ0(Xi)− b⊤(Zi −ρ(Xi))

2,
while the estimator of g equalsg(x) =ρ0(x)−β⊤ρ(x).

As in the purely parametric setting, the regression estimators of β are sensitive to the presence of outliers both in the
responses and in the covariates Z. This sensitivity is inherited by the nonparametric component estimator which is based
on a local average of the response variables. In particular, as mentioned in the Introduction, atypical responses located in
the neighbourhood of the point x will have a large influence. For that reason, resistant procedures are needed to provide
reliable inferences.

Let ψ : R → R be a continuous, odd and bounded score function. Furthermore, denote as F0(y|X = x) and Fj(z|X = x)
the conditional distributions of Y |X = x and Zj|X = x, respectively and as sj(x) the mad of Fj(z|X = x), 0 ≤ j ≤ p. Let φj(x),
0 ≤ j ≤ p be the robust conditional location functional introduced in Boente and Fraiman [12]. More precisely, for each
x ∈ H and 0 ≤ j ≤ p, let φj(x) be the solution of λj(x, φj(x), sj(x)) = 0 where

λ0(x, a, σ ) = E

ψ


Y − a
σ

 X = x


λj(x, a, σ ) = E

ψ


Zj − a
σ

 X = x

, 1 ≤ j ≤ p. (3)

Robust estimators of φj(x), 0 ≤ j ≤ p, can be obtained by plugging into (3) estimators of the conditional distribution of
Y |X = x and Zj|X = x. In particular, the empirical conditional distribution functions kernel estimatorsF0(y|X = x) andFj(z|X = x) are defined as

F0(y|X = x) =

n
i=1

wi(x, h)1(−∞,y](Yi), Fj(z|X = x) =

n
i=1

wi(x, h)1(−∞,z](Zij) 1 ≤ j ≤ p,

with wi(x, h) the kernel weights given in (2). Hence, the local M-estimators φj,m(x), 0 ≤ j ≤ p, which provide robust
estimators of φj(x), 0 ≤ j ≤ p, are given as the solution ofλj(x, a,sj(x)) = 0, wheresj(x) stands for a robust estimator of the
conditional scale such as the mad ofFj(·|X = x) and

λ0(x, a, σ ) =

n
i=1

wi(x, h)ψ

Yi − a
σ

 λj(x, a, σ ) =

n
i=1

wi(x, h)ψ

Zij − a
σ


, 1 ≤ j ≤ p. (4)
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In particular, whenψ(t) = sgn(t) the target is the conditional median which can be estimated as the median ofFj(·|X = x),
in which case no scale estimator is needed. Other possible choices for the score function ψ are the Huber or the bisquare
ψ-function. Consistency results and strong convergence rates for the localmedian and the localM-estimatorswere obtained
in Boente andVahnovan [16]. It isworth noting that, whenψ(t) = t and the expectation involved exists,φ0 = ρ0 andφ = ρ.

To define robust estimators of the regression parameter β under the semi-functional partial linear regression model (1)
we combine robust smoothers and robust regression estimators as follows:
Step 1: Estimate φ0(x) and φj(x) through a robust functional smoothing, as the local medians or localM-type estimates. Letφ0(x) andφj(x) stand for the obtained estimates andφ(x) = (φ1(x), . . . ,φp(x))⊤.
Step 2: Estimate the regression parameter by applying any robust regression estimate to the residualsri = Yi −φ0(Xi) andui = Zi −φ(Xi) (see [41] for a description on robust regression estimators). Denoteβ the obtained estimator.

To estimate the regression operator g , we may proceed as in Bianco and Boente [9] and define the regression operator
estimator asg(x) =φ0(x)−β⊤φ(x). Alternatively, as in Bianco et al. [11], one may robustly smooth the residuals Yi −β⊤

Zi.
More precisely, we can define an estimator of g(x),g(x), as the solution ofλ(x, a,s(x)) = 0, where

λ(x, a, σ ) =

n
i=1

K

d(x, Xi)h


ψ


Yi −β⊤

Zi − a
σ


, (5)

ands(x) is a robust scale estimate. A possible choice for the scales(x) is the MAD of the conditional residual empirical
distributionF(u|X = x) =

n
i=1wi(x,h)1(−∞,u]


Yi −β⊤

Zi


, whereh stands for the smoothing parameter. Indeed, as

the residuals Yi −β⊤

Zi have less variability than the original variables Yi, it may be preferred to use a different smoothing
parameterh than the one used in Step 1. The estimatorsg are those considered in the simulation study reported in Section 4.

As in the finite-dimensional setting, to ensure that the model is identifiable, we will assume that the vector 1n is not in
the space spanned by the column vectors of Z. Identifiability means that if β⊤

1 Zi + g1(Xi) = β⊤

2 Zi + g2(Xi) for 1 ≤ i ≤ n
then, β1 = β2 and g1 = g2. As mentioned by several authors, identifiability implies that only ‘‘slope’’ coefficients may be
estimated. Moreover, the assumptions to be stated below avoid any linear combination of the components of Z from being
a function of X (see Robinson [45]), since these models are more nonparametric than semiparametric.

3. Asymptotic results

From now on,
a.co.
−→,

a.s.
−→ and

p
−→ stand for almost complete convergence, almost sure convergence and convergence in

probability, respectively, while
D

−→ denotes convergence in distribution. On the other hand, for a given distribution function
H or probability measure P over Rq, z ∼ H and z ∼ P indicate that the vector z ∈ Rq has distribution H or that the related
probability measure is P , respectively.

As mentioned above, the observations to be considered are such that the covariates X belong to a semi-metric functional
space (H, d). In this space, the open and closed balls will be indicated as V(x, δ) = {y ∈ H : d(x, y) < δ} and
B(x, δ) = {y ∈ H : d(x, y) ≤ δ}, respectively. For the sake of completeness, we recall the definition of the Kolmogorov’s
entropy which is an important tool to obtain uniform convergence results. Given a subset SH ⊂ H and ϵ > 0, denote
Nϵ(SH ) theminimal number of open balls of radius ϵ needed to cover SH . Then, the quantityΨSH (ϵ) = ln(Nϵ(SH )) is called
the Kolmogorov’s ϵ-entropy of the set SH . As is well known, if H is complete, the set SH has finite entropy if and only if its
closure is compact.

Throughout this paper, when no confusion will be possible, we will denote by C and C ′ some strictly positive generic
constants.

3.1. Consistency

In this section, consistency results for the estimatorsβ andg defined in Section 2 are derived, under general conditions.
Asmentioned in Ferraty and Vieu [27], convergence results in nonparametric statistics for functional variables are closely

related to the concentration properties of the probability measure of the functional variable X given by the function φ
defined inH1, while to derive uniform consistency results, a uniform upper and lower bound is needed. Sufficient conditions
ensuring that the concentration property for the probability measure holds uniformly in SH , are given in Section 7.2 of
Ferraty et al. [22].

The following set of assumptions are needed to derive consistency results.

H1 There exists a function φ : R → R>0 such that limh→0 φ(h) = 0 and 0 < Cφ(h) ≤ Pr{X ∈ B(x, h)} ≤ C ′φ(h), for
all x ∈ SH .

H2 The kernelK is a bounded nonnegative functionwith support [0, 1] such that

K(u)du = 1 and satisfies a Lipschitz

condition of order one. Also,
(a) If K(1) = 0, K is differentiable with derivative K ′ and −∞ < infu∈R K ′(u) ≤ supu∈R K ′(u) = ∥K ′

∥∞ < 0.
(b) If K(1) > 0, there exist C, C ′ > 0 such that C 1[0,1](u) < K(u) < C ′1[0,1](u).
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H3 The functions φ and ΨSH are such that:

(a) φ : R → R>0 is differentiable with derivative φ′. Moreover, there exist Cφ > 0 and η0 > 0, such that for all
η < η0, φ′(η) < Cφ .

If K(1) = 0, the function φ has to fulfil the additional condition:

∃C > 0, ∃η0 > 0 tales que ∀0 < η < η0

 η

0
φ(u)du > Cηφ(η)

(b) for n large enough,

{ln(n)}2

nφ(h)
< ΨSH


ln(n)
n


<

nφ(h)
ln(n)

.

H4 ψ : R → R is an odd function, strictly increasing, bounded and continuous differentiable function.
H5 The sequence h = hn is such that hn → 0, nφ(hn) → ∞ and nφ(hn)/ ln(n) → ∞ when n → ∞.
H6 Fj(·|X = x) are symmetric around φj(x), respectively, for 0 ≤ j ≤ p.
H7 Let SH be a compact set of H such as

(i) for each fixed y ∈ R and z ∈ R, F0(y|X = x) and Fj(z|X = x) are continuous functions of x on SH , for 1 ≤ j ≤ p.
(ii) the following equicontinuity condition holds:

∀ ϵ > 0 ∃ δ > 0 : |u − v| < δ ⇒ supx∈SH
max0≤j≤p |Fj(u|X = x)− Fj(v|X = x)| < ϵ.

A general discussion on the above assumptions can be found in Boente and Vahnovan [16]. In particular, in Section 4.3
of that paper, examples of processes and compact sets satisfying H1, H3 and H5 are given.

Proposition 3.1 is a direct consequence of Theorems 4.1 and 4.3 in Boente and Vahnovan [16]. Togetherwith Theorem3.1,
they allows us to obtain consistency results for the estimators of the regression parameter β and the operator g , when the
kernel functional smoothing is based on local medians orM-local estimators.

Proposition 3.1. Let SH ⊂ H be a compact set. Assume that H1 to H3 and H5 hold for SH .

(a) Denote as φj(x) the unique solution of λj(x, a, σ ) = 0 for any σ > 0. Moreover, letsj(x) be robust scale estimators such
that, with probability 1, there exist real constants 0 < A < B and A < sj(x) < B for all x ∈ SH and n ≥ n0. Assume
that, in addition, H4 holds and either λj(·, a, σ ) : H → R are continuous functions on SH or H6 and H7 hold. Then,
supx∈SH

|φj,m(x)− φj(x)|
a.s.

−→ 0 for 0 ≤ j ≤ p.
(b) If, in addition, Fj(z|X = x) has a unique median at φj(x), for 0 ≤ j ≤ p, and H6 and H7 hold, we have that

supx∈SH
|φj,med(x)− φj(x)|

a.s.
−→ 0, 0 ≤ j ≤ p.

Lemma 3.1 and Theorem 3.1 are analogous to Lemma 1 and Theorem 1 of Bianco and Boente [9], respectively. Their
proof can be found in the Appendix. The separability and completeness assumption on the functional space H is needed to
guarantee that any probability measure on H will be tight.

Lemma 3.1. Let H be separable and complete space and let (ri,u⊤

i , xi)
⊤

∈ Rp+1
× H , 1 ≤ i ≤ n be i.i.d. random vectors over

(Ω,A, P) such that (ri,u⊤

i )
⊤ have common distribution P. Letη0(x) andη(x) = (η1(x), . . . ,ηp(x))⊤ be random functions such

that, for any compact set SH ⊂ H ,

sup
x∈SH

|ηj(x)| a.s.
−→ 0, 0 ≤ j ≤ p. (6)

Denote as Pn and Qn the empirical measures of {(ri,u⊤

i )
⊤
}
n
i=1 and {(ri +η0(xi),u⊤

i +η(xi)⊤)⊤}
n
i=1, respectively. Then,

(a) for any bounded and continuous function f : Rp+1
→ R, we have that |EQn(f )− EPn(f )|

a.s.
−→ 0.

(b) π(Qn, P)
a.s.

−→ 0, where π stands for the Prohorov distance.

Theorem 3.1. Let H be separable and complete space and (Yi, Z⊤

i , Xi)
⊤, 1 ≤ i ≤ n, independent random vectors satisfying (1).

Denote P the distribution of (ri,u⊤

i )
⊤

= (Yi − φ0(Xi), Z⊤

i − φ(Xi)
⊤)⊤, where φ0(x) = β⊤φ(x)+ g(x). Let φj(x), 0 ≤ j ≤ p be

estimators of φj(x) such that for any compact set SH ⊂ H

sup
x∈SH

|φj(x)− φj(x)|
a.s.

−→ 0, 0 ≤ j ≤ p. (7)

Furthermore, for a given probability measure Q over Rp+1, denote β(Q ) a regression functional for the model w = β⊤v + ϵ,
where ϵ ∈ R and v ∈ Rp are independent and (w, v⊤)⊤ ∼ Q . Assume that β(Q ) is Fisher-consistent and continuous at P. LetPn(A) = (1/n)

n
i=1 1A(ri,ui) be the empirical distribution function of {(ri,ui)}

n
i=1 withri = Yi −φ0(Xi) andui = Zi −φ(Xi),

whereφ(x) = (φ1(x), . . . ,φp(x))⊤. Then, if βr = β(Pn), we have thatβr
a.s.

−→ β.
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The uniform consistency of g over compact sets follows immediately from Theorem 3.1. On the other hand, similar
arguments to those considered in the proof of Theorem 4.1 of Boente and Vahnovan [16] allow to show that g is also
uniformly consistent. These results are stated below.

Corollary 3.1. Let (Yi, Z⊤

i , Xi)
⊤, 1 ≤ i ≤ n be independent random vectors satisfying (1).

(a) Assume that φj(x), 1 ≤ j ≤ p are estimates of φj(x) such that for any compact set SH ⊂ H supx∈SH
|φj(x)− φj(x)|

a.s.
−→ 0,

0 ≤ j ≤ p. Letg(x) =φ0(x)−β⊤

r
φ(x). Then, under the assumptions of Theorem 3.1, we have that supx∈SH

|g(x)−g(x)|
a.s.

−→

0.
(b) Assume that H1 to H5 hold for SH and either λj(·, a, σ ) : H → R are continuous functions on SH or H6 and H7 hold.

Moreover, letsj(x) be robust scale estimators such that, with probability 1, for some real constants 0 < A < B, we have
A <sj(x) < B for all x ∈ SH and n ≥ n0. Letg(x) be the solution of λ(x, a,s(x)) = 0, whereλ(x, a, σ ) is given in (5), then,
we have that supx∈SH

|g(x)− g(x)|
a.s.

−→ 0.

3.2. Asymptotic distribution

In this section, we will derive the asymptotic distribution of the regression parameter estimators, when they solve an
M-estimating equation. As in Aneiros-Pérez and Vieu [3], we will require that the covariates Xi lie in a compact set SH ⊂ H .
This is a usual condition to derive asymptotic properties of the regression parameter under a partially linear model too.

Letφ0(x) andφ(x) be consistent estimates ofφ0(x) andφ(x), respectively,whereφ0(x) satisfiesφ0(x) = β⊤φ(x)+g(x). As
in Section 3.1, denote ri = Yi−φ0(Xi) andui = Zi−φ(Xi) the nonparametric residuals andri = Yi−φ0(Xi),ui = Zi−φ(Xi) the
residual predictors. Furthermore, let ψ1 and w2 be a score and a weight function, respectively and denoteβ any consistent
solution of

n
i=1

ψ1

ri −β⊤uiσ

w2(∥ui∥)ui = 0, (8)

withσ an estimate of the errors scale σ0. Note that (8) corresponds to the differentiating equation that defines most robust
regression estimators.

It isworth noting that the proof of the asymptotic distribution of the estimators ofβ given in Bianco and Boente [9] cannot
be generalized to thepresent setting. One of the keypoints of their proofwas to use that the coveringnumberN


ϵ,F , L2(Q)


of the class of functions F = {f ∈ C1

[0, 1] : ∥f ∥∞ ≤ 1 ∥f ′
∥∞ ≤ 1} is such that lnN


ν,F , L2(Q)


≤ Kν−1. In fact, a bound

for the covering number of Lipschitz functions in the functional setting can also be obtained. More precisely, let Nν(SH )
stand for the minimal number of balls of radius ν with respect to the metric d needed cover SH and denote

F = {g : SH ⊂ H → R continuous : ∥g∥∞ ≤ M and |g(y)− g(x)| ≤ M d(x, y) ∀x ∈ SH ∀y ∈ SH }.

In Vahnovan [53], it is shown that

lnN(ν,F , L2(Q)) ≤
2M
ν

+ C N(ν/M)(SH ),

with C a constant that does not depend on Q or SH . Thus, to use the maximum inequality for covering numbers as in
Bianco and Boente [9] it is needed that

 δ
0

√
1 + Nν(SH )dν < ∞. Note that, when H = Rd, Nν(SH ) ≃ K ν−d, so

the required condition holds only for d = 1. Thus, some additional requirements will be needed. In particular, as in
Speckman [51], Linton [40], He et al. [34] and González Manteiga and Aneiros Pérez [32], we will assume that the covariates
Zi are nonparametrically related with Xi satisfying Zij = φj(Xi) + uij, 1 ≤ i ≤ n, 1 ≤ j ≤ p, where the errors uij are
independent and independent of Xi.

Thus, the model that will be considered in this section may be written as
Yi = β⊤Zi + g(Xi)+ ϵi 1 ≤ i ≤ n,
Zij = φj(Xi)+ uij 1 ≤ i ≤ n, 1 ≤ j ≤ p, (9)

where the errors ϵi are independent and independent of (Z⊤

i , Xi)
⊤ and the errors uij are independent and independent of Xi.

Note that ri − u⊤

i β = ϵi.
Fromnowon,we denote asGj(·/sj) the distribution of u1j, for 1 ≤ j ≤ p, andG0(·/s0) that of r1, that is, for 0 ≤ j ≤ p,Gj has

scale 1 so as to identify the residuals scale sj. Furthermore, let νj(σ ) = Eψ ′(u1j/σ), for 1 ≤ j ≤ p, and ν0(σ ) = Eψ ′(r1/σ).
It is worth noting that under model (9), if Gj is symmetric around 0, φj(x) is such that λj(x, φj(x), σ ) = 0 for any σ > 0

and for any odd score function, that is, it corresponds to the targetM-conditional location functional discussed in Section 2.
Furthermore, we have that φ0(x) = β⊤φ(x)+ g(x), as required in Theorem 3.1, and ri = Yi − φ0(Xi) = β⊤ui + ϵi. Note also
that, in this situation, if the errors ϵi and uij have finite expectation, the regression operator φj represents the conditional
expectation ρj(x) = E(Zj|X = x) as defined in Section 2, while φ0(x) equals ρ0(x) = E(Y |X = x).

Taking into account the homoscedastic structure in (9), when defining the estimators of φj, we will consider the solutionφj(x) ofλj(x, a,sj) = 0, wheresj stands for a robust estimator of sj. A possible choice forsj, when 1 ≤ j ≤ p, is to consider
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themad of the residuals Zij −φj,med(x), whereφj,med(x) stands for the median ofFj(·|X = x). Similarly,s0 may be defined as
the mad of the residuals Yi −φ0,med(x), withφ0,med(x) the median ofF0(·|X = x).

We will need the following set of assumptions:

N1 ψ1 is an odd, bounded and twice differentiable function with bounded derivatives ψ ′

1 and ψ ′′

1 , such that ϕ1(t) =

tψ ′

1(t) and ζ1(t) = tψ ′′

1 (t) are bounded.
N2 w2(t) = ψ2(t)t−1 > 0 is a bounded function such that ψ2 is an odd, bounded and continuously differentiable

function with bounded derivative ψ ′

2. Moreover, w2(t) = ϕ2(t2) where ϕ2 is a twice continuously differentiable
function with bounded derivative ϕ′

2 such that ζ2(t) = tϕ′

2(t) is bounded.
N3 E(w2(∥u1∥)∥u1∥

2) < ∞ and the matrix

A = E

ψ ′

1


r1 − u⊤

1 β

σ0


w2(∥u1∥)u1u⊤

1


= E


ψ ′

1


ϵ1

σ0


E{w2(∥u1∥)u1u⊤

1 }

is nonsingular.
N4 The functions φj(x), 0 ≤ j ≤ p, are continuous on SH . Moreover, φj are Lipschitz of order η on SH , i.e., there exists

C > 0 such that, for any x, y ∈ SH , |φj(x)− φj(y)| ≤ Cd(x, y)η .
N5 ψ : R → R is an odd function, strictly increasing, bounded and twice continuous differentiable function

with bounded derivatives ψ ′ and ψ ′ ′ such that ϕ(t) = tψ ′(t) and ζ (t) = tψ ′ ′(t) are bounded. Furthermore,
νj = νj(sj) > 0, for 0 ≤ j ≤ p.

N6 The sequence h = hn is such that hn → 0, nφ(hn) → ∞ and nφ(hn)/ ln(n) → ∞ when n → ∞. Furthermore,
conditions (10) or (11) below hold

h
 n
ln n

1−η
≤ Cη for all n ≥ 1 (10)

φ(h)
 n
ln n

1−η
≤ Cη for all n ≥ 1, (11)

where η is given in N4.
N7 The Kolmogorov ϵ-entropy of SH satisfies


∞

n=1 n exp

(1 − β)ψSH (ln(n)/n)


< ∞ for some β > 1.

N8 For 0 ≤ j ≤ p, Gj are symmetric around 0. Furthermore, the vector u1 is such that 3u1
D
∼ u1, for any diagonal

matrix 3 with elements equal to 1 or −1, where u
D
∼ vmeans that the vectors u and v have the same distribution.

Remark 3.1. It is worth noting that Aneiros-Pérez and Vieu [3] assumed that the compact set SH where the covariates lie
is such that Nν(SH ) ≤ Cν−γ . To avoid this assumption we state the assumptions in terms of the Kolmogorov entropy of
SH . Examples in which assumptions N7 and N8 on the entropy and the measure concentration are fulfilled are discussed in
Ferraty and Vieu [27], Ferraty et al. [23,22] and Boente and Vahnovan [16].

Note that N2 and N8 entail that E{w2(∥u1∥)u1} = 0 and also E{w2(∥u1∥)u1jψ
′(u1j)} = 0. Moreover, N2 is fulfilled

when considering the bisquare weight function w2(t) =

1 − (t/c)2

2 1[−c,c](t) since ϕ2(t) =

1 − t/c2

2 1[0,c2](t). As
mentioned in Bianco and Boente [9], N3 prevent any element of Z from being almost surely perfectly predictable by X . This
condition was also a requirement in Aneiros-Pérez and Vieu [3] who considered as weight function w2 ≡ 1. On the other
hand, under H1 to H3, N4 to N8, from Boente and Vahnovan [16], we have that, for 0 ≤ j ≤ p,

sup
x∈SH

|φj(x)− φj(x)| = Oa.co. (hη + θn) , (12)

where θ2n = ΨSH (ln(n)/n)/(nφ(h)).
Recall that Gj(·/sj) and G(·/σ0) stand for the distribution functions of u1j and ϵ1, respectively.

Proposition 3.2. Let (Yi, Z⊤

i , Xi)
⊤, 1 ≤ i ≤ n be independent vectors satisfying (9). Assume that G and Gj, 1 ≤ j ≤ p, are

symmetric around 0 and that the random elements Xi satisfy Pr(Xi ∈ SH ) = 1 with SH a compact set. Let φj(x), 0 ≤ j ≤ p be
estimators of φj(x) defined as the solution of λj(x, a,sj) = 0, wheresj stands for a robust consistent scale estimator and denote
θ2n = ΨSH (ln(n)/n)/(nφ(h)). Then, under H1 to H3, N4 to N8, we have that

sup
x∈SH

φj(x)− φj(x)− νj(sj)−1sj n
i=1

Ki(x)
nEK1(x)

ψ


Zij − φj(x)sj

 = Oa.s.(h2η
+ θ2n ), 1 ≤ j ≤ p,

sup
x∈SH

φ0(x)− φ0(x)− ν0(s0)−1s0 n
i=1

Ki(x)
nEK1(x)

ψ


Yi − φ0(x)s0

 = Oa.s.(h2η
+ θ2n )

where Ki(x) = K (d(x, Xi)/h).



66 G. Boente, A. Vahnovan / Journal of Multivariate Analysis 154 (2017) 59–84

Lemma 3.2 follows using analogous arguments to those considered in Bianco and Boente [9]. Details of its proof can be
found in Vahnovan [53].

Lemma 3.2. Let (Yi, Z⊤

i , Xi)
⊤, 1 ≤ i ≤ n be independent vectors satisfying (1) where the errors distribution G is symmetric

around 0 and the random elements Xi are such that Pr(Xi ∈ SH ) = 1 with SH a compact set. Let φj(x), 0 ≤ j ≤ p, be estimators
of φj(x) such that supx∈SH

|φj(x) − φj(x)|
p

−→ 0, 1 ≤ j ≤ p. Givenβ andσ weakly consistent estimators of β and σ0, denote
as An =A(β,σ) with

A(b, s) =
1
n

n
i=1

ψ ′

1

ri −u⊤

i b
s


w2 (∥ui∥)ui u⊤

i . (13)

Then, if N1 to N3 hold, we have that An
p

−→ A where A is given in N3.

Theorem 3.2. Let (Yi, Z⊤

i , Xi)
⊤, 1 ≤ i ≤ n be independent vectors satisfying (9). Assume that G and Gj, 1 ≤ j ≤ p, are symmetric

around 0 and that the covariates Xi satisfy Pr(X1 ∈ SH ) = 1 with SH a compact set. Furthermore, assume that H1 to H3 and
N1 to N8 hold and that n h4 η

→ 0 and n1/2θ2n → 0. Let φj(x), 0 ≤ j ≤ p, be estimators of φj(x) defined as the solution ofλj(x, a,sj) = 0, wheresj stand for robust consistent scale estimators. Then, if n1/4(σ − σ0) = OP(1) and n1/4(sj − sj) = OP(1),

for 0 ≤ j ≤ p, we have that n1/2(β − β)
D

−→ N (0,A−16(A−1)⊤), where A is defined in N3 and

6 = σ 2
0 E

ψ2

1


r1 − u⊤

1 β

σ0


w2

2(∥u1∥)u1u⊤

1


= σ 2

0 E

ψ2

1


ϵ1

σ0


E{w2

2(∥u1∥)u1u⊤

1 }.

Remark 3.2. In order to make inferences on the regression parameter, usually the practitioner needs, besides the estimatorβ, an estimator of its asymptotic covariance matrix B = A−16(A−1)⊤. It is worth noting that an estimator of B can
be defined plugging-in the unknown quantities by their estimates and replacing the expectations by averages. More
precisely, recall thatφ0(x) andφ(x) stand for consistent estimates of φ0(x) and φ(x), respectively, whileri = Yi −φ0(Xi),ui = Zi − φ(Xi) are the residual predictors. Hence, an estimator of the asymptotic variance of β can be defined asB =A(β,σ)−16(β,σ)A(β,σ)−1, whereA(b, s) is the symmetric matrix defined in (13) and

6(b, s) = σ 2 1
n

n
i=1

ψ2
1

ri −u⊤

i b
s


w2

2 (∥ui∥)uiu⊤

i .

Lemma 3.2 entails thatA(β,σ) p
−→ A, while similar arguments to those considered in the proof of Lemma 3.2 allow to

show that6(β,σ) p
−→ 6, so thatB provides a weakly consistent estimator of B.

Remark 3.3. Note that, under the assumptions of Theorem 3.2, the robust estimatorsφj(x) satisfy

n1/4 sup
x∈SH

|φj(x)− φj(x)|
p

−→ 0, 0 ≤ j ≤ p. (14)

Effectively, Theorem 4.4 in Boente and Vahnovan [16] entails that supx∈SH |φj(x)− φj(x)| = Oa.co. (hη + θn)which together
with the fact that n h4 η

→ 0 and n1/2θ2n → 0 leads to (14). The condition n h4 η
→ 0 was also a requirement in Aneiros-

Pérez and Vieu [3] to deal with the bias term. On the other hand, when H = Rd, the requirement n1/2θ2n → 0 reduces to
the condition

√
n h2d/ ln n → ∞, which corresponds to assumption A9 in Boente and Pardo-Fernández [14] for d = 1. Note

that when h = n−τ ,
√
n h2d/ ln n → ∞ is satisfied if τ < 1/(2 d), while n h4 η

→ 0 requires τ > 1/(4η). Hence, more
regularity is needed as the dimension increases to avoid the bias effect.

In the infinite-dimensional setting, the choice of the semi-metric plays an important role since it may increase the
concentration of φ(h) around 0, to avoid that the rate of convergence ofφj deteriorates with the dimension. For instance, the
projection semi-metric may be a useful tool. More precisely, let H be a separable Hilbert space with inner product ⟨·, ·⟩ and
orthonormal basis {ej : j ≥ 1}. For a fixed integer k > 0, define the semi-metric d(k)(x1, x2) = (

k
j=1⟨x1 − x2, ej⟩2)1/2. Let X

be a random element in (H, d(k)) and denote as χ : H → Rk the operator χ(x) = (⟨x, e1⟩, . . . , ⟨x, ek⟩). Then, as shown in
Ferraty et al. [22], for any compact set SH of (H, d(k)), we have that χ(SH ) is a compact subset of Rk, so the ϵ-entropy of SH

has order ln(1/ϵ). On the other hand, Lemma 13.6 in Ferraty and Vieu [27] implies that we can take φ(h) = hk in H1which
means that the process is fractal of order k with respect to the semi-metric dk and the same comments as in the Euclidean
setting may be given.

The requirement n1/4(σ − σ0) = OP(1) and n1/4(sj − sj) = OP(1) in Theorem 3.2 is a weak requirement, since
M-scale estimators usually have a root −n order of convergence. Effectively, in homoscedastic nonparametric regression
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with fixed real carriers, Ghement et al. [29] define a robust M-scale estimator based on differences and derive their
asymptotic distribution under mild assumptions. In the present setting, a similar order of convergence may be obtained
when using as estimators of sj themad or more generally anM-scale estimator based on the residuals Zij −φj,med(x) or Yi −φ0,med(x). On the other hand, a possible choice for the estimateσ of the errors scale σ0 is the scale related to an S-regression
estimator, that will lead to consistent estimators and will have the order of convergence required in our assumptions.

4. Monte Carlo study

In this section, we numerically explore the finite sample behaviour of different regression parameter and regression
operator estimators. More precisely, we report the results of a Monte Carlo study comparing the classical estimators,
i.e., those related to ψ(t) = ψ1(t) = t and w2(t) = 1 with the robust estimators defined in Section 2, under different
types of contaminations, when p = 2.

4.1. General description

We performed NR = 1000 replications generating independent samples of size n = 100. The clean data sets were
generated according to the model used by Aneiros-Pérez and Vieu [5], that is, Yi = Z⊤

i β + g(Xi) + ϵi, for 1 ≤ i ≤ n,
where β = (−1, 3)⊤, Zij and ϵi are independent random variables such that Zij ∼ N (0, 1) and ϵi ∼ N (0, σ 2

ϵ ) with
σϵ = 0.1{maxx∈H g(x)− minx∈H g(x)}. The functional data were defined as Xi(t) = ai(t − 0.5)2 + bi, 0 ≤ t ≤ 1, where ai
and bi are i.i.d., ai ∼ U(0, 1) and bi ∼ U(−0.5, 0.5).

The regression operator g equals g(Xi) = exp(−8f (Xi))− exp(−12f (Xi)), with

f (Xi) = sign(X ′

i (1)− X ′

i (0))

3
 1

0
{X ′

i (z)}
2dz
1/2

,

where X ′

i (t) stands for the first derivative of Xi(t).
Due to the smoothness of Xi, we may consider semi-metrics based on the L2 norm of some derivative of the curves. As in

Aneiros-Pérez and Vieu [5], we used the semi-metric

dm(X, X∗) =

 1

0
{X (m)(t)− X∗(m)(t)}2dt

1/2
,

where X (m) stands for the m-derivative of X . We considered several orders m = 0, 1 and 2 for the derivative, but we report
here only the results for m = 1. In particular, for the selected process, the order m = 2 is equivalent to m = 1. Note
also that, for this process, the choice m = 1 leads, up to a constant, to the same semi-metric as that defined through the
projection semi-metric d(1)(x1, x2) =


⟨x1 − x2, e1⟩2

1/2, taking {ej, j ≥ 1} as the Legendre polynomials basis, where we
have reordered the first two basis elements as e1(t) = 12(t − 0.5) and e2(t) ≡ 1.

In the smoothing procedure, we have used the kernel K(u) = (35/16)(1−u2)31[0,1](u). We also performed a simulation
with the Epanechnikov kernel that leads to similar conclusions.

To compute the robust estimators, we used in Step 1 a local M-estimator with bisquare score function ψc,t(t) =

t

1 − (t/c)2

2 1[−c,c](t) with tuning constant c = 4.685. We report the results obtained using, as robust estimate of the
regression operator g , the local M-estimateg(x) defined in Section 2 computed also with the bisquare score function. In
Step 2, we used different estimators for β. More precisely, we report the results obtained using as regression estimators

• M-estimators with bisquare score function with tuning constant c = 4.685,
• GM-estimators with Huber function ψ1(t) = ψc1,h(t) = min (c1,max(−c1, t))with c1 = 1.6 on the residuals and with

bisquare weight functionw2(t) = ψc2,t(t)/t with constant c2 = χ2
2,0.95 where Pr(χ2

2 ≥ χ2
2,1−α) = α,

• LMS-estimators introduced by Rousseeuw [46],
• LTS-estimators with 33% trimmed observations.

The residuals calibration constants chosen for the estimators are those considered in Bianco and Boente [9] in the finite
dimensional case.With these constants, theM-estimates and the LTS-estimate have an asymptotic efficiency of 95% and 80%
respectively. Moreover, the efficiency of GM-estimate for the chosen model is 60%, while the LMS-estimate has efficiency 0
since converges at a lower rate.

In all the tables LS denotes the least squares estimate of Aneiros-Pérez and Vieu [3], mt the M-estimates obtained with
the Tukey function, gm the GM-estimates, while lts and lms denote the estimates obtained using the ‘‘least trimmed of
squares’’ and the ‘‘least median of squares’’, respectively.

The results for clean data sets, i.e., for normal errors, are indicated by C0, while C1, C2 and C3 denote the following
contaminations

• C1: ϵ1, . . . , ϵn are i.i.d. 0.9N (0, σ 2
ϵ ) + 0.1N (0, 25 σ 2

ϵ ). This contamination corresponds to inflating the error and thus,
will affect the variability of the regression estimators.
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• C2: ϵ1, . . . , ϵn are i.i.d. 0.9N (0, σ 2
ϵ )+ 0.1N (0, 25σ 2

ϵ ) and 10 observations were artificially modified in Z, but not in the
responses Y , as Z = (−20, 20)⊤. This case corresponds to introduce high leverage points besides inflating the errors.
The aim of this contamination is to study how it affects the bias of the regression estimators and also the data-driven
bandwidths.

• C3: ϵ1, . . . , ϵn are i.i.d. 0.9N (0, σ 2
ϵ )+0.1N (5, 25 σ 2

ϵ ). This contamination corresponds to an asymmetric contamination
with large responses and will affect the regression operator.

We have also considered a contamination in which the errors are i.i.d. with distribution 0.9N (0, σ 2
ϵ )+ 0.1N (10, σ 2

ϵ /25)
that leads to similar conclusions to those given below under C3. For that reason, the obtained results are not reported here.

The behaviour of an estimator of β was measured through ∥β − β∥
2, while that of an estimatorg of g was measured by

using the mean squared error

MSE =
1
n

n
i=1

{g(Xi)− g(Xi)}
2 .

To evaluate the performance under contamination, we considered the following two measures which describes the
behaviour of the estimators both for contaminated data and for clean data

MSPEclean =
1

n −

n
i=1
γi

n
j=1
(1 − γj)(Yj −Yj)

2

mad2(Y )

MSPEout =
1

n
i=1
γi

n
j=1
γj(Yj −Yj)

2

mad2(Y )

where γi = 1 if (Yi, Zi, Xi) corresponds to a contaminated datum and γi = 0 otherwise. A good estimator will produce good
predictions for clean data so that one expects small values ofMSPEclean and large values of MSPEout.

4.2. Bandwidth selection

The problem of bandwidth selection in nonparametric and partially linearmodels has been extensively studied, specially
when the covariates of the nonparametric component are real. It is well known that the estimation of the nonparametric
regression function/operator heavily depends on the choice of the smoothing parameter h that must be chosen to provide
a trade-off between bias and variance. For functional nonparametric regression models, leave-one-out cross validation was
considered in Ferraty and Vieu [26], while its asymptotic properties were studied in Rachdi and Vieu [42]. Some other
proposals based on local leave-one-out cross validation, Bayesian strategies and a functional adaptation of the minimax
techniques, were introduced in Benhenni et al. [8], Shang [47,48] and Chagny and Roche [18], respectively. Under a semi-
functional partial linear model, Aneiros-Pérez and Vieu [5] discussed an approach based on the cross-validation criterion
including the choice of a local adaptive bandwidth, while Shang [49] proposed a Bayesian approach related to that given in
Shang [47].

Under a fully nonparametric regression model with finite-dimensional covariates, the need of a robust criterion for
selecting smoothing parameters even when considering robust estimators, has been discussed among others by Leung
et al. [39], Wang and Scott [54], Boente et al. [13], Cantoni and Ronchetti [17] and Leung [38]. The ideas of robust cross-
validation have been adapted to partially linear models in the finite-dimensional setting by Bianco and Boente [10] and
Boente and Rodriguez [15] who also considered a plug-in approach.

When considering robust estimators as those defined in Section 2, a fully automatic robust procedure is needed to
select the smoothing parameters involved in the computation of the regression estimatorβ and the regression operator
estimatorsg andg . In this simulation study, we use a K -fold cross-validation procedure related to that described in Bianco
and Boente [10] but adapted to our functional setting.

To define the criterion, we first randomly partition the data set into K disjoint subsets of approximately equal sizes, with
indices Ij, 1 ≤ j ≤ K , so that

K
j=1 Ij = {1, . . . , n}. Let Hn ⊂ R be the set of bandwidths to be considered and denoteβ(−j)

h andg(−j)
h the robust estimators of the regression parameter and the nonparametric operator computed without the

observations with indices in Ij and using as smoothing parameter h ∈ Hn. For each 1 ≤ i ≤ n, taking into account that for

some 1 ≤ j ≤ K we have that i ∈ Ij, we can define the prediction residualsϵi asϵi = Yi − Z⊤

i
β(−j)

h −g(−j)
h (Xi). Noting that

the cross-validation criterion defined in Aneiros-Pérez and Vieu [5] can be decomposed into the sum of the squared bias and
the variance, when the weights given to each observation are equal to 1, it seems sensible to use robust measures of bias
and dispersion instead. Denote as µn(V1, . . . , Vn) and σn(V1, . . . , Vn) robust estimators of location and dispersion based on
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the sample {V1, . . . , Vn}, such as the sample median and the mad (median of the absolute deviations with respect to the
median). The robust K th fold cross-validation smoothing parameter is defined ash = argminh∈HnRCV (h)where

RCV (h) = µ2
n (ϵ1, . . . ,ϵn)+ σ 2

n (ϵ1, . . . ,ϵn) . (15)

As in Boente and Rodriguez [15] and similar to Aneiros-Pérez and Vieu [5], a local bandwidth can be defined using a local
criterion that weights each residual according to a function Wx(Xi) when computing µn and σn. When µn is the mean and
σn is the standard deviation, the expression given in (15) reduces to the classical criterion defined as

CCV (h) =
1
n

n
i=1

ϵ2i . (16)

It is worth noticing that the leave-one-out cross-validation method is a particular case of the K -fold method and is obtained
taking K = n and Ij = {j}, 1 ≤ j ≤ n. Note also that when K = n, µn is the mean and σn is the standard deviation,
CCV (h) differs from the cross-validation criterion considered in Aneiros-Pérez and Vieu [5]. Effectively, in our procedure
the observation j is removed to compute the regression parameter and the regression operatorg(j)h , while in the criterion
defined in Aneiros-Pérez and Vieu [5], the regression parameter is estimated with all the sample and after its estimation,
the ith observation (Yi, Z⊤

i , Xi)
⊤ is removed from the sample to compute the leave-one-out estimator of g .

Once the data driven-bandwidth h is obtained, the regression estimator denoted βh can be computed using this
bandwidth. To provide an estimator of the regression operator, a second K -fold step can be used. More precisely, denote asVi = Yi − Z⊤

i
βh and recall thatgh stands for the robustM-smoother ofVi defined as the solution of (5) when the bandwidth

h is used. As above, to select the bandwidth of the M-smoother divide the data set into K disjoint subsets of approximately
equal sizes, with indices Ij, 1 ≤ j ≤ K and let Hn ⊂ R be the set of possible bandwidths. Denote asg(−j)

h the regression
estimator obtained computedwith the observations {(Vi, Xi) : i ∉ Ij} and bandwidth h. Hence, onemay selecth as the valueh = argminh∈HnRCV 2(h), where RCV 2(h) is defined as in (15) using as residualsϵ i = Vi −g(−j)

h (Xi) instead ofϵ1.
In our simulation study, to select the bandwidths of the classical estimator we used the standard K -fold cross-validation

procedure (16) while for the robust estimates, we used the robust K -fold method (15) with µn the median and σn the mad.
In all these cases, we choose K = 5. The set Hn of possible values of h was set as an equidistant grid of length 21 between
0.04 and 0.40. When the minimum of the objective function is attained at 0.04, a new search was performed between 0.008
and 0.04 with a step of 0.008. On the other hand, while if the minimum is attained at 0.40, the grid was enlarge to include
the values {0.45, 0.50, 0.55, 0.60}. Once the data-driven bandwidthh is obtained, two robust estimators of the regression
operator g are computed. The first one solves (5) withβ =βh and weights K


d(x, Xi)/h, while the second one selects the

bandwidth using the K -fold cross-validation criterion RCV2(h). To distinguish both estimators we denote them asgh andgh,
respectively. It is worth noticing that then considering the least squares estimatorsgh(x) =gh(x).
4.3. Results and comments

Tables 1–5 summarize the results of the simulations. The simulation confirms the expected inadequate behaviour of the
least-squares estimates in the presence of outliers in the carriers.With respect to the estimation of the regression parameter
β, from the results in Table 1, we notice that the classical method presents some advantage over the robust method, under
C0. The M-estimators give the better results among the robust alternatives under C0, since they are the most efficient. On
the contrary, under C2, the estimates based on least median and least trimmed estimates and specially those based on
GM-estimators show amuch better performance than the least squares or theM-estimator. Under C0 andwhen considering
the GM-estimator, the mean over replications of ∥β −β∥

2 is about 5 times larger than that of the LS-estimator, while under
C2 the situation is reversed, since the average over replications of the LS-estimator is 175 times larger than that of the
GM-estimator. Moreover, the ratio between the mean of ∥β − β∥

2 under C2 and under C0 is smaller than 2 when using a
GM-estimator, while for the least median and least trimmed estimators this ratio is larger than 2. Furthermore, when
considering the least squares or the M-estimators the ratio equals 1277 and 574, respectively. This shows the lack of
robustness of the classical estimators as well as that of the M-estimators that take extreme values under the presence of
high leverage points. Finally, all methods appear to be mainly unaffected by C1, which corresponds to the presence of errors
with larger variances. As shown in Table 2, contamination C1 only increases the variability of the least squares regression
estimators but do not affect its bias, while, as is other regression settings, contaminating with high leverage points has a
high impact on the bias leading to large values of ∥βh − β∥

2. It is worth noticing that, even if the variability of the least
squares estimator under C1 is almost twice that obtained for clean data, the mad of the robust estimators is at most 10%
larger under C1 than under C0. This improvement of the robust procedures over the classical one under C1 is also reflected
on the values reported in Table 1. With respect to C3, this asymmetric contamination is more harmful to the GM-estimators
than to the M-estimators, both in bias and dispersion. However, the robust estimators show a better performance than the
classical ones under this contamination which is more harmful to the nonparametric regression component.

With respect to the estimation of the regression operator, Tables 3 and 4 show that, under C2, the least squares and
M-estimators estimate inadequately the regression operator and provide bad predictions. Furthermore, smoothing the
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Table 1
Mean over replications of ∥βh − β∥

2 .

ls mt gm lms lts

C0 0.0022 0.0064 0.0102 0.0249 0.0241
C1 0.0038 0.0068 0.0105 0.0261 0.0239
C2 2.8112 2.8149 0.0157 0.0586 0.0571
C3 0.1923 0.0317 0.0868 0.1474 0.1458

Table 2
Median and mad over replications ofβ1,h − β1 andβ2,h − β2 .β1,h − β1 β2,h − β2

ls mt gm lms lts ls mt gm lms lts

median

C0 0.0000 0.0015 0.0011 0.0022 0.0031 0.0000 −0.0005 −0.0006 −0.0005 −0.0011
C1 0.0000 0.0017 0.0013 0.0023 0.0032 −0.0001 −0.0005 −0.0005 −0.0011 −0.0016
C2 1.9680 1.9642 0.0008 0.0019 0.0010 −1.9839 −1.9855 0.0015 0.0015 0.0027
C3 0.0060 0.0011 0.0035 0.0094 0.0087 −0.0116 −0.0037 −0.0045 −0.0056 −0.0121

mad

C0 0.0017 0.0046 0.0074 0.0157 0.0150 0.0017 0.0045 0.0072 0.0147 0.0140
C1 0.0029 0.0051 0.0078 0.0159 0.0146 0.0028 0.0046 0.0072 0.0153 0.0135
C2 0.2105 0.2162 0.0108 0.0347 0.0375 0.2049 0.2124 0.0109 0.0356 0.0350
C3 0.1525 0.0192 0.0575 0.0910 0.0921 0.1517 0.0185 0.0555 0.0884 0.0929

residualsVi leads only to a small improvement on the predictedmean square errors specially for the least squares estimators,
under C0 and C1. On the other hand, the estimates based on the robust procedures show a much better performance after
residuals smoothing, i.e., when usinggh. Note that both under C0 and C1 similar values are obtained for the mean and
median over replications of 1000 × MSE(g). However, under C2 and C3, large values of the mean are observed for the
robust procedures while themedians over replications of themean square errors of the estimatesg based on GM-, LMS- and
LTS-estimators is considerably reduced. This is related to the fact that in some replications, small values of the bandwidths
are obtained leading to the sensitivity of the procedure, since a large amount of atypical data arise in the neighbourhood
of each datum Xi. For that reason, we also report in Table 3, the upper trimmed means of 1000 × MSE(g) with trimming
1% and 5%, i.e., we have eliminated the largest 1% and 5% values obtained over replications (which in fact are the harmful
ones) before computing the mean. The obtained trimmed means show that the amount of replications with large values of
the mean square error is less than 1%. They also illustrate the stability of all the robust estimators except the M-estimators
which are very sensitive to C2.

Note that, under C2, the estimators computed smoothing the residuals Vi based on GM-estimators provide trimmed
means and median values of 1000 × MSE(gh) similar to those obtained under C0, which are only around 2.5 times those
obtained for the least squares estimator for clean data. Besides, under C0, the procedures based on the least median of
squares and the least trimmed regression estimators lead to larger values of the mean square errors than those obtained
with the GM-estimator, showing the loss of efficiency of these procedures. Indeed, under C0, for these two estimators the
mean square error ofgh is almost 4 times that of the least squares estimators. It is worth noticing that contamination C3
seems to affect more the estimates computed using a GM-regression estimator than theM-estimator, since the median and
the 5% trimmed means are smaller for the latter. In this case, the advantage of the estimatorsgh overgh is not so large for
M and GM-estimators while it is more evident with the LMS-estimators.

Table 4 also highlights the lack of robustness of least squares under contamination. Effectively, the classical procedure
based on least squares tries to compromise between outlying and non-outlying observations and this is reflected on
the values of MSPEclean and MSPEout. Note that, under C2, the GM-estimators combined with residual smoothing lead to
the smaller MSPEclean showing its good prediction capability. Besides, when contaminating with leverage points, similar
large values of MSPEout are obtained for the GM , LMS and LTS-estimators showing their ability to detect these atypical
observations.

Even though a careful analysis of the bandwidth behaviour is beyond the scope of the paper, to study the performance
of the selectors under the considered contaminations, Table 5 reports the median over replications of the data-driven
bandwidths obtained for all the estimators, while Fig. 1 plots the density estimators of the smoothing parameters obtained
for the classical and the GM-estimators. The solid black lines correspond to densities of the bandwidths obtained for clean
data, while the solid and dashed grey lines to those obtained under C1 and C2, respectively. Finally, the dashed–dotted
light grey lines correspond to C3. As expected, the lack of robustness of classical cross-validation under contaminations
with leverage points or with large responses is observed in the plots. Indeed, under C2 and C3 the classical data-driven
bandwidth leads to over-smoothing. Its is worth noticing that the data-driven bandwidthsh obtained minimizing RCV (h)
are larger than those obtainedminimizing RCV 2(h) since, as expected, the residualsVi = Yi−β⊤h Zi have lower variability that
the original responses. In fact, when using GM-regression estimators, the bandwidthh is slightly affected by C2, while the
selector based on RCV 2(h) leads to similar data-driven bandwidths for clean and for contaminated data. Only under C3 the
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Table 3
Mean, upper trimmed means and median over replications of 1000 × MSE(g).

ls mt gm lms lts ls mt gm lms lts

Mean Median

gh
C0 0.0605 0.2533 0.2852 0.3673 0.3166 0.0568 0.2373 0.2596 0.3256 0.2850
C1 0.1325 0.2652 0.2990 0.3917 0.3316 0.1189 0.2475 0.2677 0.3387 0.2996
C2 261.1257 380.8371 0.3820 306.7654 46.9271 150.3031 233.9465 0.3549 0.4945 0.4578
C3 320.8180 2.0200 12.7878 47.1658 7.2635 278.4263 0.3488 0.5433 1.1713 0.9157

gh
C0 0.0600 0.1477 0.1632 0.2576 0.2386 0.0549 0.1140 0.1299 0.1971 0.1839
C1 0.1382 0.1655 0.1831 0.2789 0.2683 0.1208 0.1395 0.1575 0.2158 0.2118
C2 272.2864 363.4600 288.1509 112.6632 198.1059 176.1610 216.7916 0.2004 0.3781 0.3887
C3 326.7110 7.3351 4.8904 8.5787 3.9349 288.4221 0.2227 0.4859 0.7220 0.7867

Trimmed Mean 1% Trimmed Mean 5%

gh
C0 0.0596 0.2488 0.2781 0.3499 0.3025 0.0572 0.2358 0.2620 0.3276 0.2838
C1 0.1284 0.2598 0.2900 0.3722 0.3199 0.1214 0.2464 0.2725 0.3479 0.3009
C2 237.9214 347.5331 0.3732 0.6193 0.5659 201.8992 290.1651 0.3524 0.5267 0.4947
C3 311.7964 0.3980 3.5321 33.5273 2.7940 291.6824 0.3649 0.6880 8.4066 1.8664

gh
C0 0.0590 0.1436 0.1578 0.2435 0.2268 0.0565 0.1326 0.1464 0.2186 0.2052
C1 0.1338 0.1612 0.1774 0.2603 0.2467 0.1258 0.1504 0.1661 0.2358 0.2263
C2 253.2630 334.6200 0.2266 0.5317 0.5344 219.2911 283.1691 0.2104 0.4413 0.4464
C3 317.1967 1.1774 0.8311 2.3398 1.8756 296.6149 0.2573 0.6425 1.3196 1.2869

Table 4
Mean over replications of 1000 × MSPEclean and MSPEout when using as regression estimatorsgh andgh .

1000 × MSPEclean MSPEout

ls mt gm lms lts ls mt gm lms lts

gh
C0 0.0633 0.0516 0.0653 0.1610 0.1553
C1 0.0904 0.0531 0.0666 0.1777 0.1496 0.0017 0.0014 0.0014 0.0018 0.0016
C2 2369.9763 764.7225 0.0883 3.6060 0.5611 2.8483 1.0402 481.0621 481.0944 481.9191
C3 105.2175 0.2771 1.5532 4.4791 3.2752 7.8885 7.0835 6.3120 6.9194 6.9867

gh
C0 0.0201 0.0369 0.0484 0.1458 0.1417
C1 0.0295 0.0393 0.0507 0.1625 0.1347 0.0011 0.0014 0.0014 0.0018 0.0015
C2 771.8536 766.3227 4.3219 2.5493 0.5426 1.0522 1.0424 480.9444 481.5092 481.7513
C3 34.8178 0.4153 1.3217 3.8085 3.3067 4.8365 7.0601 6.3289 6.9977 6.9937

Table 5
Median over replications of the data-driven bandwidths.

ls mt gm lms lts

gh
C0 0.040 0.148 0.166 0.184 0.148
C1 0.058 0.148 0.166 0.184 0.166
C2 0.346 0.220 0.220 0.238 0.238
C3 0.346 0.202 0.202 0.076 0.094

gh
C0 0.040 0.076 0.076 0.094 0.094
C1 0.058 0.076 0.094 0.094 0.094
C2 0.292 0.220 0.094 0.148 0.130
C3 0.310 0.094 0.148 0.166 0.166

density estimators show that some large values of the bandwidthmay be obtained for the GM-estimator. A small sensitivity
of the robust data-driven procedure given by RCV (h) is also observed under C3, where the density ofh has two modes
indicating that the procedure can lead to some small or large values of the data-driven smoothing parameter. However,
the procedure is much more stable than the classical one. Note also that as shown in Table 5, these conclusions are also
valid for the least median and least trimmed estimators, while the bandwidthsh obtained with theM-regression estimator
are sensitive to C2 due to the effect of leverage points on the regression parameter estimator β. This fact also explains
the behaviour of the mean square errors and predicted errors reported in Tables 3 and 4, respectively. In summary, Fig. 1
and Tables 3–5 show that the data-driven bandwidthh based on the robust criterion RCV 2(h) related to the M-smoothers
computed over the residuals of the GM-estimator is much more stable and a preferable choice.

Based on the obtained results, we recommend using a GM-estimator combined with anM-smoother of the residuals and
the robust cross-validation criterion RCV 2(h).

5. A real data set

In this section, we present the analysis of a real data, the spectrometric data set, described and analysed in Ferraty and
Vieu [27], Aneiros-Pérez and Vieu [3] and Shang [49]. In particular, these last authors show that the semi-functional partial
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Fig. 1. Density estimators of the obtained bandwidths. Upper plots correspond to the bandwidthh, while lower ones toh. The densities corresponding to
C0 to C3 are given in solid black lines, solid and dashed grey lines and dashed–dotted light grey lines, respectively.

linear regressionmodel gives more accurate forecasts than the functional nonparametric regression, since it uses additional
information about protein and moisture contents. The data set was obtained from http://lib.stat.cmu.edu/datasets/tecator.
Each food sample contains finely chopped pure meat with different percentages of the fat, protein and moisture contents.
For each sample,we observe one spectrometric curve, denotedXi, which corresponds to the absorbancemeasured at a grid of
100 wavelengths ranging from 850 nm to 1050 nm in the step. The fat, protein andmoisture contents, measured in percent,
are determined by analytic chemistry. More details on the data can be found in Ferraty and Vieu [27]. The aim of this analysis
is not to achieve a full case study but to show how our method can be used to detect outliers for this real data set.

The considered model is a semi-functional partial linear model Y = Z1β1 + Z2β2 + g(X)+ ϵ, where Y is the percentage
of fat content, Z1 and Z2 the corresponding percentages of protein content and moisture content, respectively, and X is
the spectrometric curve. The data set consists on n = 215 independent observations (Yi, Zi1, Zi2, Xi), i = 1, . . . , n, of
{(Y , Z1, Z2, X)}. As in Aneiros-Pérez and Vieu [3], the sample was divided into two subsets: a training subset I used to
select some parameters of the estimates and the testing one J to verify the quality of prediction.

We considered as proximity measure the semi-metric

dm(X, X∗) =

 1

0
{X (m)(t)− X∗(m)(t)}2dt

1/2
,

where X (m) stands for them-derivative of X . In the results to be reportedwe choosem = 1,which corresponds to the optimal
choice of m as reported also in Aneiros-Pérez and Vieu [3] and which highlights ranges of wavelengths with different large
variations.

Before choosing the training and testing set, we looked for the performance of the trajectories, to detect possible isolated
trajectories. We performed two studies. We used the functional boxplot (Sun and Genton [52]) and also, as in Gervini [28],
the boxplot of the distances given by the semi-metric dm. More precisely, we computed κi = d(Xi, Xi,[αn]), where Xi,[αn] is the
αth neighbour to Xi with α = 0.5 and due to the asymmetry of κi, we performed an skewed-adjusted boxplot [37]. Figs. 2
and 3 plot the trajectories Xi and the first derivative of Xi. The left panel of Fig. 2 shows the functional boxplot with the five
detected outliers in dotted lines with circles. On the other hand, the right panel of Fig. 2 depicts all the trajectories together
with the outliers detected either by the functional boxplot or using the adjusted boxplot of κi. To distinguish the different
types of atypical observations, the five outliers detected by the functional boxplot are given in dotted lineswith circles, while
the ten trajectories detected using the adjusted boxplot over κi are given solid black lines. These curves, corresponding to
the observations labelled 34, 35, 43, 44, 45, 129, 140, 172, 186 and 215, are also shown in black lines in Fig. 3. Taking into
account that the local kernel M-estimators are robust with respect to outliers in the responses but they cannot deal with

http://lib.stat.cmu.edu/datasets/tecator
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Fig. 2. In the left panel the functional boxplot of the spectrometric curves Xi is given with the detected outliers detected in dotted lines with circles. In
the right panel, all the trajectories are plotted in light grey, we have highlighted in solid black lines the outliers detected by the adjusted boxplot of κi and
with circles those detected by the functional boxplot. The observations labelled as 186 an 215 have identical trajectories.

Fig. 3. First derivatives of spectrometric curves with the outliers detected by the adjusted boxplot of κi , in solid black lines.

atypical data on Xi, we removed the nine observations which appear to be isolated with respect to the semi-metric used.
From the remaining 205 observations, the training set correspond to the first 155 observations, while the training set to the
50 remaining ones.

The estimators considered are the classical least squares kernel estimator introduced in Aneiros-Pérez and Vieu [3]
and the robust GM-estimator computed using as score function on the residuals the Huber function with tuning constant
c1 = 1.6 and as weight function the bisquare weight function with constant c2 = χ2

2,0.95. The weights w2 which

control the leverage of ui were computed over the robust Mahalanobis distances {(ui − µ)⊤6−1
(ui − µ)}1/2, whereµ and 6 are S-estimators of ui. The kernel used in the smoothing step was the same as in our simulation study, i.e.,

K(u) = (35/16)(1−u2)3I[0,1](u). The data-driven bandwidths were computed through a K -fold cross-validation procedure,
with K = 5, as described in Section 4.2. As in the simulation study, for the GM-estimators, we use the robust K -fold method
(15)withµn themedian and σn themad, while for the classical estimatorswe use the least squares K -fold procedure defined
in (16).

We summarize the obtained results using the mean and median square prediction error over the testing subset defined
as follows

MSPE =
1
#J


j∈J

(Yj −Yj)
2

mad2
J(Y )

MedPE =
medianJ(Yj −Yj)

2

mad2
J(Y )

,
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Table 6
Analysis of the spectrometric data set.β1 β2 MSPE MedPE

LS −0.7777 −0.6764 0.0034 0.0018
GM −1.0189 −0.8560 0.0078 0.0007

Table 7
Analysis of the spectrometric data set after identifying the outliers.β1 β2 MSPE MSPEclean MedPE

LS −0.7777 −0.6764 0.0034 0.0022 0.0018
LS−out

−1.0534 −0.8320 0.0091 0.0013 0.0006
GM −1.0189 −0.8560 0.0078 0.0012 0.0007

Fig. 4. Residuals boxplot on the testing set.

where #J stands for the number of elements of the testing set J. After detecting suspicious observations on the testing set,
we also computed

MSPEclean =
1

#J −

i∈J

γi


j∈J

(1 − γj)(Yj −Yj)
2

mad2
J(Y )

,

where γi = 1 if (Yi, Z⊤

i , Xi)
⊤ corresponds to a detected atypical data and γi = 0 elsewhere, to evaluate the ability of the

procedure to predict the non-outlying observations. Table 6 reports the obtained values for the parameter estimates as well
as the mean and median square prediction errors obtained with the least squares and GM-estimators.

The observed differences between the mean and median square prediction error suggest the presence of some possible
atypical observations in the training and/or testing sets. This also explains the better fit obtained by the GM-estimator
when measuring the error with the median square prediction error. To detect the atypical observations on both subsets we
performed a residual analysis, where the residuals were computed using the GM-estimators. As an illustration, Fig. 4 gives
the boxplot of the residuals on the testing set, where 6 residuals have large negative values. The MSPEclean was computed
taking into account these observations and is reported in Table 7 together with the results obtained when the least squares
method is applied to the training set without the identified atypical observations. We denote this last procedure as LS−out in
Table 7. The obtained results show that, as iswell known, the least squares procedure tends to compromise between outlying
and non-outlying data leading to larger values of the MSPEclean. After removing the suspicious atypical observations, the
classical procedure leads to results similar to those obtained with the robust method. This confirms the usefulness of robust
estimators both to provide reliable inference methods and to identify potential outliers.
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Appendix

Proof of Lemma 3.1. As in Bianco and Boente [9] it is enough to prove (a). Using that H is a separable and complete space,
we get that for any ϵ > 0, there exist compact sets K1 ⊂ Rp+1 and SH ⊂ H such that, if K = K1 × SH , then
Pr(K) > 1 − (ϵ/8∥f ∥∞). Note that |EQn(f )− EPn(f )| ≤ A1n + A2n, where

A1n =
1
n

n
i=1

|f (ri +η0(Xi),ui +η(Xi))− f (ri,ui)| 1K(ri,ui, Xi),

A2n = 2∥f ∥∞

1
n

n
i=1

1Kc (ri,ui, Xi).

From (6) and the Strong Law of Large Numbers, we have that there exists a set N ⊂ Ω such that Pr(N ) = 0 and such that
for any ω ∉ N

sup
x∈SH

|η0(x)| + sup
x∈SH

∥η(x)∥ → 0 and
1
n

n
i=1

1Kc (ri,ui, xi) → Pr(Kc). (A.1)

Hence, for n large enough A2n ≤ ϵ/2 for ω ∉ N .
Denote byC1 the closure of a neighbourhood of radius 1 ofK1. The uniform continuity of f onC1 implies that there exists

δ such that max1≤j≤p+1 |uj − vj| < δ, u, v ∈ C1 entails |f (u)− f (v)| < ϵ/2. Hence, from (A.1) we have that, for ω ∉ N and
n large enough, max0≤j≤p supx∈SH

|ηj(x)| < δ. Therefore, for 1 ≤ i ≤ n, we have that

|f (ri +η0(Xi),ui +η(Xi))− f (ri,ui)| 1K(ri,ui, Xi) <
ϵ

2
,

implying A1n < ϵ/2. Hence, |EQn(f )− EPn(f )| < ϵ for n large enough and ω ∉ N , concluding the proof. �

Proof of Theorem 3.1. Let Pn(A) = (1/n)
n

i=1 1A(ri,ui). From (7) and Lemma 3.1, we have that |EPn(f ) − EPn(f )|
a.s.

−→ 0,

additionally, as π(Pn, P)
a.s.

−→ 0 we get that π(Pn, P) a.s.
−→ 0.

Using that β(H) is continuous at P , we obtain that β(Pn) a.s.
−→ β(P). The result follows now from the fact thatβr = β(Pn)

and β(P) = β since ri = β⊤ui + ϵi. �

The proof of Proposition 3.2 uses arguments similar to those considered in [14]. We include its proof for completeness.

Proof of Proposition 3.2. For notation simplicity, denote Zi0 = Yi, ui0 = ri and Wi(x) = Ki(x)/{nEK1(x)}. Then, using thatφj(x) satisfiesλj(x, a,sj) = 0, we get that, for 0 ≤ j ≤ p,

n
i=1

Wi(x)ψ

Zij − φj(x)sj


=

φj(x)− φj(x)sj
 n

i=1

Wi(x)ψ ′


Zij − φj(x)sj



−
1
2

n
i=1

Wi(x)ψ ′′


Zij −ξj(x)sj

φj(x)− φj(x)sj

,

whereξj(x) is an intermediate point betweenφj(x) and φj(x). Hence,

φj(x)− φ(x) =sj 1Aj(x)

n
i=1

Wi(x)ψ

Zij − φj(x)sj


, (A.2)

where

Aj(x) =

n
i=1

Wi(x)ψ ′


Zij − φj(x)sj


−

1
2

n
i=1

Wi(x)ψ ′′


Zij −ξj(x)sj

φj(x)− φ(x)sj

.

Denote asR0(x) =
n

i=1 Ki(x)/{n EK1(x)} =
n

i=1 Wi(x). Then, ER0(x) = 1 which together with the fact that nφ(h)/ ln n →

∞ entails that supx∈SH |R0(x) − ER0(x)|
a.co.
−→ 0, so supx∈SH

|R0(x)| ≤ 2 almost surely. Hence, using that the kernel is non-
negative and (12), we obtain the bound

sup
x∈SH

12
n

i=1

Wi(x)ψ ′′


Zij −ξj(x)sj


{φj(x)− φj(x)}

 ≤ ∥ψ ′′
∥∞ sup

x∈SH

|φj(x)− φj(x)| = Oa.co.(hη + θn),
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hence,

sup
x∈SH

Aj(x)−

n
i=1

Wi(x)ψ ′


Zij − φj(x)sj

 = Oa.co.(hη + θn).

Note that, since uij = Zij − φj(Xi) is independent of Xi and has a symmetric distribution around 0, E

ψ ′

uij/σ


|Xi = x


=

νj(σ ) and E

ψ

uij/σ


|Xi = x


= Eψ


uij/σ


= 0. Moreover, using that Zij − φj(x) = uij + φj(Xi)− φj(x) for any σ , H2, N4,

N5 and similar arguments to those considered in the proof of Theorem 4.1 in Boente and Vahnovan [16] (see also Ferraty
et al. [22]), we obtain that for 0 < a < b

sup
x∈SH

sup
σ∈[a,b]

 n
i=1

Wi(x)ψ ′


Zij − φj(x)

σ


− νj(σ )

 = Oa.co.(hη + θn),

sup
x∈SH

sup
σ∈[a,b]

 n
i=1

Wi(x)ψ

Zij − φj(x)

σ

 = Oa.co.(hη + θn).

Using thatsj a.s.
−→ sj, we get that supx∈SH

|Aj(x) − νj(sj)| = Oa.s.(hη + θn). It is worth noting that the fact that νj(sj) ≠ 0
together with the strong consistency ofsj entails that νj(sj) ≠ 0 almost surely, for n large enough. Thus, if we denote asBj(x) =Aj(x)−1

− νj(sj)−1, we have that

sup
x∈SH

|Bj(x)| = Oa.s.(hη + θn), (A.3)

sup
x∈SH

 n
i=1

Wi(x)ψ

Zij − φj(x)sj

 = Oa.co.(hη + θn). (A.4)

Note that (A.2) entails that

φj(x)− φ(x) =
sj
νj(sj)

n
i=1

Wi(x)ψ

Zij − φj(x)sj


+Bj(x)sj n

i=1

Wi(x)ψ

Zij − φj(x)sj


,

which together with (A.3) and (A.4) leads to

sup
x∈SH

φj(x)− φj(x)−
sj
νj(sj)

n
i=1

Wi(x)ψ

Zij − φj(x)sj

 = Oa.s.(h2η
+ θ2n ),

concluding the proof. �

The following lemmas will be used in the proof of Theorem 3.2. Even if their proofs follow the same steps as that of
Lemma A.1 in [14], we include them due to the differences appearing in the functional setting.

Lemma A.1. Assume that (9) and H1 to H3, H5, N1, N2, N4 and N5 and N8 hold. Moreover, assume that Pr(X ∈ SH ) = 1 with
SH a compact set and that the sequence h = hn is such that nh4η

→ 0 as n → ∞. Letsℓ andσ be consistent estimators of sℓ
and σ0, respectively. Denote as Wi(x) = Ki(x)/{nEK1(x)} with Ki(x) = K (d(x, Xi)/h) and ui0 = ri. For any fixed 0 ≤ ℓ ≤ p,
1 ≤ j ≤ p, letR(σ , s) = (1/n)


1≤i,m≤n Him(σ , s) where

Him(σ , s) = Wm(Xi)ψ
′

1

ϵi
σ


w2(∥ui∥) uijψ

′

umℓ

s


{φℓ(Xm)− φℓ(Xi)}.

Denote I = [σ0/2, 2 σ0] and Iℓ = [sℓ/2, 2 sℓ], then, we have that

(a) there exists a constant C > 0 not depending on n such that for all n ≥ n0

sup
σ∈I,s∈Ij

Pr{
√
n |R(σ , s)| > ϵ} ≤ Ch2η,

(b) supσ∈I,s∈Iℓ

√
n
R(σ , s) = oP(1),

(c)
√
nR(σ ,sℓ) p

−→ 0.

Proof. (a) Distinguishing the situation ℓ = 0 and ℓ ≠ 0, it is easy to see that EHim(σ , s) = 0 since ui satisfy N8, the errors
ϵi have a symmetric distribution, ψ ′ and ψ ′

1 are even function and (ϵi,ui) is independent of Xi. Then, ER(σ , s) = 0 for all
σ , s > 0, so Markov’s inequality entails that

sup
σ∈I,s∈Iℓ

Pr{
√
n|R(σ , s)| > ϵ}≤

n
ϵ2

sup
σ∈I,s∈Iℓ

var
R(σ , s) .
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Then, (a) follows if we show that for some constant C1 > 0 and n large enough

sup
σ∈I,s∈Iℓ

var
R(σ , s) ≤ C1

h2η

n
. (A.5)

Denote λ1 = E

ψ ′

1(ϵ1/σ)
2

E

w2

2(∥u1∥) u2
1j


max


Eψ ′(u2ℓ/s)

2
, E

ψ ′(u2ℓ/s)2


and note that, for i ≠ i′, i = m or

i′ = m′, cov{Him(σ , s),Hi′m′(σ , s)} = 0. Then, using the fact that φℓ is Lipschitz of order η and the kernel is non-negative
with bounded support, we get that

cov{Him(σ , s),Him′(σ , s)} ≤ λ1 h2η E {Wm(Xi)Wm′(Xi)} .

Recall that since E
n

m=1 Wm(x) = 1 and nφ(h)/ ln n → ∞, we have that supx∈SH |
n

m=1 Wm(x) − 1|
a.co.
−→ 0, so that

supx∈SH
|
n

m=1 Wm(x)| ≤ 2 almost surely. Then, we get the bound

var{R(σ , s)}=
1
n2

n
i=1

n
m=1

n
m′=1

cov{Him(σ , s),Him′(σ , s)} ≤
λ1 h2η

n2

n
i=1

E


n

m=1

Wm(Xi)

n
m′=1

Wm′(Xi)



≤
λ1 h2η

n2

n
i=1

E

 n
m=1

Wm(Xi)

2
 ≤

λ1 h2η

n
E

 sup
x∈SH


n

m=1

Wm(x)

2
 ≤ 4 λ1

h2η

n
,

concluding the proof of (A.5).
(b) For any fixed ρ, denote as Nℓ,ρ the minimum number of intervals Iℓ,k = [a(ℓ)k − ρ, a(ℓ)k + ρ] needed to cover Iℓ with

a(ℓ)k ∈ Iℓ. Similarly, let Nρ be the minimum number of intervals Ik = [ak − ρ, ak + ρ] needed to cover I with ak ∈ I. Then,
we have that Iℓ ⊂

Nℓ,ρ
k=1 Iℓ,k and I ⊂

Nρ
k=1 Ik. As it is well known, Nℓ,ρ ≤ A/ρ and Nρ ≤ A/ρ, where the constant A does

not depend on ρ. Then,

sup
σ∈I,s∈Iℓ

|R(σ , s)| ≤ max
1≤k≤Nρ

1≤kℓ≤Nℓ,ρ

|R(ak, a(ℓ)kℓ
)| + max

1≤k≤Nρ
1≤kℓ≤Nj,ρ

sup
σ∈I∩Ik

s∈Iℓ∩Iℓ,kℓ

R(σ , s)−R(ak, a(ℓ)kℓ
)

 . (A.6)

Let us begin boundingR(σ , s)−R(ak, a(ℓ)kℓ
). Denote as Vim = Wm(Xi)w2(∥ui∥) uij{φℓ(Xm)− φℓ(Xi)}, then we have that

Him(σ , s)− Him(ak, a
(ℓ)
kℓ
)=Vim


ψ ′

1

ϵi
σ


ψ ′

umℓ

s


− ψ ′

1


ϵi

ak


ψ ′


umℓ

a(ℓ)kℓ



=Vim


ψ ′

1

ϵi
σ


ψ ′

umℓ

s


− ψ ′


umℓ

a(ℓ)kℓ


+ ψ ′


umℓ

a(ℓ)kℓ


ψ ′

1

ϵi
σ


− ψ ′

1


ϵi

ak


.

Using that for σ ∈ I ∩ Ik and s ∈ Iℓ ∩ Iℓ,kℓ , we have thatψ ′

1

ϵi
σ


− ψ ′

1


ϵi

ak

 ≤ ∥ζ1∥∞

2
σ0

|σ − ak| ≤ ρ ∥ζ1∥∞

2
σ0
,ψ ′

umℓ

s


− ψ ′


umℓ

a(ℓ)kℓ

 ≤ ∥ζ∥∞

2
sℓ

|s − a(ℓ)kℓ
| ≤ ρ ∥ζ∥∞

2
sℓ
.

Hence, the boundedness of ψ ′, ψ ′

1 and ψ2 and the fact that φℓ is Lipschitz of order η and the kernel is non-negative with
bounded support, leads toHim(σ , s)− Him(ak, a

(ℓ)
kℓ
)

 ≤ Wm(Xi)hηρ∥ψ2∥∞


∥ψ ′

1∥∞∥ζ∥∞

2
sℓ

+ ∥ψ ′
∥∞∥ζ∥∞

2
σ0


= B hηρWm(Xi),

which together with the fact that supx∈SH
|
n

m=1 Wm(x)| ≤ 2 almost surely, entailsR(σ , s)−R(ak, a(ℓ)kℓ
)

 ≤
1
n


1≤i,m≤n

Him(σ , s)− Him(ak, a
(ℓ)
kℓ
)

 ≤ B hηρ
1
n


1≤i≤n

n
m=1

Wm(Xi) ≤ 2B hηρ.

Let B1 = ϵ/(4B) and choose ρ = B1n−1/4 then using that nh4η
→ 0 we have that for n large enough nh4η

≤ 1, so

√
n
R(σ , s)−R(ak, a(ℓ)kℓ

)

 ≤ 2B n1/2 hηρ ≤
ϵ

2
n1/4 hη ≤

ϵ

2
, (A.7)
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almost surely. Hence, from (A.6) and (A.7) and the fact that Nρ ≤ An1/4 and Nℓ,ρ ≤ An1/4, for some constant A, we obtain

Pr

√
n sup
σ∈I,s∈Iℓ

|R(σ , s)| > ϵ


≤Pr

√
n max

1≤k≤Nρ
1≤kℓ≤Nℓ,ρ

|R(ak, a(ℓ)kℓ
)| >

ϵ

2


≤Nρ Nℓ,ρ sup

σ∈I,s∈Iℓ

Pr{
√
n|R(σ , s)| > ϵ} ≤ A2Cn1/2h2η

= A2C

nh4η1/2 ,

concluding the proof of (b) since nh4η
→ 0.

(c) follows immediately from (b) using the consistency ofσ andsℓ. �

Lemma A.2. Let χ : R → R and υ : R → R be bounded and differentiable functions with bounded derivatives such that
χ is an even function, υ is an odd function and χ1(t) = tχ ′(t) and υ1(t) = tυ ′(t) are bounded. Assume that model (9),
H1 to H3, H5, N2 and N8 hold and that n1/2φ(h) → 0. Moreover, assume that Pr(X ∈ SH ) = 1 with SH a compact set.
Denote ui0 = ri and Wi(x) = Ki(x)/{nEK1(x)} with Ki(x) = K (d(x, Xi)/h). For any fixed 0 ≤ ℓ ≤ p, 1 ≤ j ≤ p, letR(σ , s) = (1/n)


1≤i,m≤n Him(σ , s) where

Him(σ , s) = Wm(Xi)χ
ϵi
σ


w2(∥ui∥) uij υ

umℓ

s


.

Let I = [σ0/2, 2 σ0] and Iℓ = [sℓ/2, 2 sℓ], then,

(a) For ℓ = j or ℓ = 0, supσ∈I sups∈Iℓ
n1/2

|ER(σ , s)| → 0, while, for ℓ ≠ j, ℓ ≠ 0 ER(σ , s) = 0. In particular, for ℓ = 0,
supσ∈I sups∈Iℓ

n1/2
|ER(σ , s)| → 0, for any 1 ≤ j ≤ p.

(b) There exists a constant C > 0 not depending on n such that, for all n ≥ n0,

sup
σ∈I,s∈Ij

Pr{nτ |R(σ , s)− ER(σ , s)| > ϵ} ≤


C

n2τ

n2φ(h)
for ℓ ≠ 0

C
n2τ

n2φ2(h)
for ℓ = 0.

(c) For any fixed (σ , s), n1/2R(σ , s) p
−→ 0.

(d) supσ∈I,s∈Iℓ
n1/4

R(σ , s) = oP(1). Hence, if sℓ and σ are consistent estimators of sℓ and σ0, respectively, we have that

n1/4R(σ ,sℓ) p
−→ 0.

Proof. (a) Note that EHim(σ , s) = 0 when m ≠ i, for any ℓ, j. Besides, if m = i and ℓ ≠ j, ℓ ≠ 0 we also have that
EHim(σ , s) = 0 from N8 and the oddness of υ , so that ER(σ , s) = 0 for ℓ ≠ j, ℓ ≠ 0.

When ℓ = j or ℓ = 0, using that EHim(σ , s) = 0 whenm ≠ i, we get that

ER(σ , s) =
1
n

n
i=1

EHii(σ , s) = EH22(σ , s) = EW2(X2)E

χ
ϵ2
σ


w2(∥u2∥) u2jυ

u2ℓ

s


,

where W2(X2) = K(0)/ {nEK1(X2)} and u2ℓ = β⊤u2 + ϵ2 if ℓ = 0. Recall that Lemma 4.3 and 4.4 in Ferraty and Vieu [27],
H1 and H2 imply that there are constants 0 < C < C ′ < ∞ such that

Cφ(h) < EK1(x) < C ′φ(h) for any x ∈ SH . (A.8)

Therefore, when ℓ = j or ℓ = 0, using that χ , ψ2 and υ are bounded, we get the following bound for EH22(σ , s)

|EH22(σ , s)| =

K(0)n
E


1
EK1(X2)


E

χ
ϵ1
σ


w2(∥u1∥) u1jυ

u1j

s

 ≤
C

nφ(h)
,

which entails that

sup
σ∈I

sup
s∈Iℓ

n1/2
|ER(σ , s)| ≤

C

n
1
2 φ(h)

→ 0,

since n1/2φ(h) → ∞.
(b) As in Lemma A.1, Markov’s inequality implies that

sup
σ∈I,s∈Iℓ

Pr

nτ |R(σ , s)− ER(σ , s)| > ϵ


≤

n2τ

ϵ2
sup

σ∈I,s∈Iℓ

var
R(σ , s) .
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Then, (b) follows if we show that for some constant C1 > 0 and n large enough

sup
σ∈I,s∈Iℓ

var
R(σ , s)≤


C1

1
n2φ(h)

for ℓ ≠ 0

C1
1

n2φ2(h)
for ℓ = 0.

(A.9)

Let us consider the situation, ℓ = 0. In this case, we have that cov{Him(σ , s),Hi′m′(σ , s)} ≠ 0 only in the following three
situations, i = i′ and m = m′ or i = m and i′ = m′ or i = m′ and m = i′. Then, if we denote as λ1 = ∥ψ2

2∥∞∥χ2
∥∞∥υ2

∥∞

using that the kernel is non-negative with bounded support, EHim(σ , s) = 0, for m ≠ i and that Wi(Xi) = K(0)/{nEK1(x)}
together with (A.8), we get that

var{Him(σ , s)} ≤ EH2
im(σ , s) ≤ λ1 E


W 2

m(Xi)

,

|cov{Hii(σ , s),Hi′ i′(σ , s)}| ≤ [var {Hii(σ , s)} var {Hi′ i′(σ , s)}]1/2 ≤ λ1
C−1 K 2(0)
n2φ2(h)

,

|cov{Him(σ , s),Hmi(σ , s)}| ≤ [var {Him(σ , s)} var {Hmi(σ , s)}]1/2 ≤ λ1 E

W 2

m(Xi)

.

Recall that since E
n

m=1 Wm(x) = 1 and nφ(h)/ ln n → ∞, we have that supx∈SH
|
n

m=1 Wm(x)| ≤ 2 almost surely. Then,
using again thatWm(x) ≤ C−1

∥K∥∞/{nφ(h)}, we get the bound

var{R(σ , s)}=
1
n2

n
i=1

n
m=1

var{Him(σ , s)} +
1
n2

n
i=1

n
m=1,m≠i

cov{Him(σ , s),Hmi(σ , s)}

+
1
n2

n
i=1

n
i′=1,i′≠i

cov{Hii(σ , s),Hi′ i′(σ , s)}

≤ 2
λ1

n2

n
i=1

E


n

m=1

W 2
m(Xi)


+ λ1

C−1 K 2(0)
n2φ2(h)

≤ 2 C−1 ∥K∥∞ λ1

n3φ(h)

n
i=1

E


n

m=1

Wm(Xi)


+

C−1 K 2(0) λ1
n2φ2(h)

≤
4 C−1

∥K∥∞ λ1

n2φ(h)
+

C−1 K 2(0) λ1
n2φ2(h)

≤
C−1 λ1{4 ∥K∥∞ + K 2(0)}

n2φ2(h)
,

since φ(h) < 1, concluding the proof of (A.9), when ℓ = 0.
When ℓ ≠ 0, we distinguish the cases ℓ = j and ℓ ≠ j.
For ℓ ≠ j, EHim(σ , s) = 0, so cov{Him(σ , s),Hi′m′(σ , s)} = E {Him(σ , s)Hi′m′(σ , s)}. In this case, it is easy to see that

cov{Him(σ , s),Hi′m′(σ , s)} ≠ 0 only when i = i′ and m = m′, in which case we have that

cov{Him(σ , s),Hi′m′(σ , s)} =


λ1E


W 2

m(Xi)


for i = i′,m = m′ and m ≠ i,

λ1E

W 2

m(Xi)


for i = i′ = m = m′,
0 otherwise.

Hence, as above we have that

var{R(σ , s)} =
1
n2

n
i=1

n
m=1

var{Him(σ , s)} ≤ λ1
1
n2

n
i=1

E


n

m=1

W 2
m(Xi)


≤ λ1

2 ∥K∥∞

n2φ(h)
C−1,

as desired.
When ℓ = j, cov{Him(σ , s),Hi′m′(σ , s)} = E {Him(σ , s)Hi′m′(σ , s)}, for m ≠ i and m′

≠ i′. Straightforward calculations
allow to see that cov{Him(σ , s),Hi′m′(σ , s)} ≠ 0 only when (i,m) = (i′,m′) or (i,m) = (m′, i′), in which case, it
can be bounded as var{Him(σ , s)} ≤ λ1E


W 2

m(Xi)

and cov{Him(σ , s),Hmi(σ , s)} = λ2E


W 2

m(Xi)

, for i ≠ m, with

λ2 = {Eχ(ϵ1/σ)}2

Eυ(u1j/s)w2(∥u1∥) u1j

2. Therefore,
var{R(σ , s)}=

1
n2

n
i=1

n
m=1

var{Him(σ , s)} +
1
n2

n
i=1

n
m=1

cov{Him(σ , s),Hmi(σ , s)}

≤ (λ1 + λ2)
1
n2

n
i=1

E


n

m=1

W 2
m(Xi)


≤ (λ1 + λ2)

2 ∥K∥∞

n2φ(h)
,

concluding the proof of (b).



80 G. Boente, A. Vahnovan / Journal of Multivariate Analysis 154 (2017) 59–84

(c) Follows immediately from (a) and (b)
(d) As in Lemma A.1, for any fixed ρ, denote as Nℓ,ρ the minimum number of intervals Iℓ,k = [a(ℓ)k − ρ, a(ℓ)k + ρ] needed

to cover Iℓ with a(ℓ)k ∈ Iℓ. Similarly, let Nρ be the minimum number of intervals Ik = [ak − ρ, ak + ρ] needed to cover I

with ak ∈ I. Then, we have that Iℓ ⊂
Nℓ,ρ

k=1 Iℓ,k and I ⊂
Nρ

k=1 Ik and as it is well known Nℓ,ρ ≤ A/ρ and Nρ ≤ A/ρ, where
the constant A does not depend on ρ. Then,

sup
σ∈I, s∈Iℓ

|R(σ , s)− ER(σ , s)|≤ max
1≤k≤Nρ

1≤kℓ≤Nℓ,ρ

|R(ak, a(ℓ)kℓ
)− ER(ak, a(ℓ)kℓ

)| + max
1≤k≤Nρ

1≤kℓ≤Nj,ρ

sup
σ∈I∩Ik

s∈Iℓ∩Iℓ,kℓ

R(σ , s)−R(ak, a(ℓ)kℓ
)


+ max

1≤k≤Nρ
1≤kℓ≤Nj,ρ

sup
σ∈I∩Ik

s∈Iℓ∩Iℓ,kℓ

E R(σ , s)−R(ak, a(ℓ)kℓ
)
 . (A.10)

Let us begin boundingR(σ , s)−R(ak, a(ℓ)kℓ
). Denote Vim = Wm(Xi)w2(∥ui∥) uij, then we have that

Him(σ , s)− Him(ak, a
(ℓ)
kℓ
)=Vim


χ
ϵi
σ


υ
umℓ

s


− χ


ϵi

ak


υ


umℓ

a(ℓ)kℓ



=Vim


χ
ϵi
σ


υ
umℓ

s


− υ


umℓ

a(ℓ)kℓ


+ υ


umℓ

a(ℓ)kℓ


χ
ϵi
σ


− χ


ϵi

ak


.

Note that for σ ∈ I ∩ Ik and s ∈ Iℓ ∩ Iℓ,kℓ , we have thatχ ϵiσ − χ


ϵi

ak

 ≤ ∥χ1∥∞

2
σ0

|σ − ak| ≤ ρ ∥χ1∥∞

2
σ0
,υ umℓ

s


− υ


umℓ

a(ℓ)kℓ

 ≤ ∥υ1∥∞

2
sℓ

|s − a(ℓ)kℓ
| ≤ ρ ∥υ1∥∞

2
sℓ
.

Hence, using the boundedness of χ , υ andψ2 and the fact that the kernel is non-negative with bounded support, we obtain
that Him(σ , s)− Him(ak, a

(ℓ)
kℓ
)

 ≤ Wm(Xi) ρ ∥ψ2∥∞


∥χ∥∞∥υ1∥∞

2
sℓ

+ ∥υ∥∞∥χ1∥∞

2
σ0


= B ρWm(Xi)

which together with the fact that supx∈SH
|
n

m=1 Wm(x)| ≤ 2 almost surely, entailsR(σ , s)−R(ak, a(ℓ)kℓ
)

 ≤
1
n


1≤i,m≤n

Him(σ , s)− Him(ak, a
(ℓ)
kℓ
)

 ≤ B ρ
1
n


1≤i≤n

n
m=1

Wm(Xi) ≤ 2B ρ.

Let B1 = ϵ/(8B) and choose ρ = B1n−1/4. Then, we have that, for n large enough,

n1/4
R(σ , s)−R(ak, a(ℓ)kℓ

)

 ≤ 2B n1/4ρ ≤
ϵ

4
, (A.11)

almost surely. Hence, using (A.10) and (A.11) and the fact that Nρ ≤ An1/4 and Nℓ,ρ ≤ An1/4, for some constant A, together
with (b) we obtain

Pr

n1/4 sup

σ∈I,s∈Iℓ

|R(σ , s)− ER(σ , s)| > ϵ


≤Pr

n1/4 max
1≤k≤Nρ

1≤kℓ≤Nℓ,ρ

|R(ak, a(ℓ)kℓ
)− ER(ak, a(ℓ)kℓ

)| >
ϵ

2


≤Nρ Nℓ,ρ sup

σ∈I,s∈Iℓ

Pr{n1/4
|R(σ , s)− ER(σ , s)| > ϵ}

≤


A2Cn1/2 n1/2

n2φ(h)
= A2C

1
nφ(h)

for ℓ ≠ 0

A2Cn1/2 n1/2

n2φ2(h)
= A2C

1
nφ2(h)

for ℓ = 0,

concluding the proof of (c) since n1/2φ(h) → ∞. �
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Proof of Theorem 3.2. As in Bianco and Boente [9], write

Ln(σ , b) =
σ

n

n
i=1

ψ1


ri − u⊤

i b
σ


w2(∥ui∥)ui,

Ln(σ , b) =
σ

n

n
i=1

ψ1

ri −u⊤

i b
σ


w2(∥ui∥)ui.

Using a first order Taylor expansion aroundβ, we get

Ln(σ ,β) =Ln(σ ,β)+
1
n

n
i=1

ψ ′

1

ri −u⊤

i
β

σ


w2(∥ui∥)uiu⊤

i (
β − β),

withβ an intermediate point betweenβ and β. FromLn(σ ,β) = 0 we get that (β − β) = A−1
n
Ln(σ ,β)where

An =
1
n

n
i=1

ψ ′

1

ri −u⊤

i
βσ

w2(∥ui∥)uiu⊤

i .

Lemma 3.2 together with the consistency ofβ imply that An
p

−→ A and therefore, asLn(σ ,β) = {Ln(σ ,β)− Ln(σ ,β)} + {Ln(σ ,β)− Ln(σ0,β)} + Ln(σ0,β),

from N3 it will be enough to show that

(a) n1/2Ln(σ0,β)
D

−→ N (0,6),
(b) n1/2

{Ln(σ ,β)− Ln(σ ,β)} p
−→ 0,

(c) n1/2
{Ln(σ ,β)− Ln(σ0,β)}

p
−→ 0.

(a) Follows immediately from the Central Limit Theorem, since ri − u⊤

i β = ϵi. To derive (c), write ψ1,s(t) = sψ1(t/s).
Then, the fact that ri − u⊤

i β = ϵi allows to write

n1/2
{Ln(σ ,β)− Ln(σ0,β)} = n−1/2

n
i=1


ψ1,σ (ϵi)− ψ1,σ0(ϵi)


w2(∥ui∥)ui.

Using the boundedness of ψ2, the maximal inequality for covering numbers together with the bound

|ψ1,s1(r)− ψ1,s2(r)| ≤ (∥ψ1∥∞ + ∥ϕ1∥∞) |s1 − s2|,

we easily obtain (c).
It remains to prove (b). Denote ξi intermediate points between ri − u⊤

i
β andri −u⊤

i
β andη(x) = (η1(x), . . . ,ηp(x))⊤

withηj(x) =φj(x)−φj(x) for 0 ≤ j ≤ p. Using a second order Taylor expansion, we have thatLn(σ ,β) = Ln(σ ,β)+Ln,1 +Ln,2 +Ln,3 +Ln,4 +Ln,5, where

Ln,1 =
1
n

n
i=1

ψ ′

1


ri − u⊤

i βσ


β⊤η(Xi)−η0(Xi)

w2(∥ui∥)ui

=
1
n

n
i=1

ψ ′

1

ϵiσ  β⊤η(Xi)−η0(Xi)

w2(∥ui∥)ui,

Ln,2 =
σ
n

n
i=1

ψ1


ri − u⊤

i βσ


{w2(∥ui∥)ui − w2(∥ui∥)ui} =
σ
n

n
i=1

ψ1

ϵiσ  {w2(∥ui∥)ui − w2(∥ui∥)ui} ,

Ln,3 =
σ
n

n
i=1


ψ1

ri −u⊤

i βσ


− ψ1


ri − u⊤

i βσ


w2(∥ui∥)(ui − ui),

Ln,4 =
1

2σ n

n
i=1

ψ ′′

1


ξiσ


β⊤η(Xi)−η0(Xi)
2
w2(∥ui∥)ui,

Ln,5 =
1
n

n
i=1

ψ ′

1


ri − u⊤

i βσ


β⊤η(Xi)−η0(Xi)

{w2(∥ui∥)− w2(∥ui∥)}ui.

Note that

w2(∥ui∥)− w2(∥ui∥) = {ψ2(∥ui∥)− ψ2(∥ui∥)}
1

∥ui∥
−
w2(∥ui∥)

∥ui∥
{∥ui∥ − ∥ui∥} ,
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so N2 entails |w2(∥ui∥) − w2(∥ui∥)| ≤ C∥η(Xi)∥/∥ui∥, where C = ∥w2∥∞ + ∥ψ ′

2∥∞. Using this bound together with the
fact that ri −ri =η0(Xi) and uij −uij =ηj(Xi), we get, as in Bianco and Boente [9], that

n1/2
∥Ln,3∥ ≤ p ∥w2∥∞∥ψ ′

1∥∞ n1/2

max
0≤j≤p

sup
x∈SH

|ηj(x)|2

(1 + p ∥β∥),

n1/2
∥Ln,4∥ ≤

1
2σ ∥ψ ′′

1 ∥∞n1/2

max
0≤j≤p

sup
x∈SH

|ηj(x)|2

(1 + p ∥β∥)2

∥ψ2∥∞ + p ∥w2∥∞ max

0≤j≤p
sup
x∈SH

|ηj(x)| ,
n1/2

∥Ln,5∥ ≤ p C∥ψ ′

1∥∞(1 + p∥β∥)n1/2

max
0≤j≤p

sup
x∈SH

|ηj(x)|2

.

Hence, (14) and the consistency ofσ , entails that n1/2
∥Ln,j∥ p

−→ 0, for 3 ≤ j ≤ 5.

It remains to show that n1/2Ln,j p
−→ 0 for j = 1, 2. First note that since ui − ui = −η(Xi), w2(t) = ϕ2(t2) and

∥ui∥
2
− ∥ui∥

2
= ∥η(Xi)∥

2
+ 2u⊤

i η(Xi), we have that

w2(∥ui∥)ui − w2(∥ui∥)ui ={w2(∥ui∥)− w2(∥ui∥)}ui + {w2(∥ui∥)− w2(∥ui∥)} (ui − ui)+ w2(∥ui∥) (ui − ui)

=

ϕ2(∥ui∥

2)− ϕ2(∥ui∥
2)

ui −η(Xi)


ϕ2(∥ui∥

2)− ϕ2(∥ui∥
2)


−η(Xi)w2(∥ui∥)

=ϕ′

2(∥ui∥
2)

∥ui∥

2
− ∥ui∥

2ui + ϕ′

2(ξi)

∥ui∥

2
− ∥ui∥

22 ui

−η(Xi)

ϕ2(∥ui∥

2)− ϕ2(∥ui∥
2)


−η(Xi)w2(∥ui∥)

=ϕ′

2(∥ui∥
2)

∥η(Xi)∥

2
+ 2u⊤

i η(Xi)

ui + ϕ′

2(ξ
2
i )

∥η(Xi)∥

2
+ 2u⊤

i η(Xi)
2 ui

−η(Xi)

ϕ2(∥ui∥

2)− ϕ2(∥ui∥
2)


−η(Xi)w2(∥ui∥),

with ξ 2i an intermediate point between ∥ui∥
2 and ∥ui∥

2. Hence,Ln,2 = 2Ln,2,1 −Ln,2,2 +Ln,3 −Ln,2,4 where

Ln,2,1 =
σ
n

n
i=1

ψ1

ϵiσ ϕ′

2(∥ui∥
2)ui u⊤

i η(Xi),

Ln,2,2 =
σ
n

n
i=1

ψ1

ϵiσ w2(∥ui∥)η(Xi),

Ln,2,3 =
σ
n

n
i=1

ψ1

ϵiσ  ϕ′

2(∥ui∥
2)∥η(Xi)∥

2
+ ϕ′

2(ξ
2
i )

∥η(Xi)∥

2
+ 2u⊤

i η(Xi)
2ui,

Ln,2,4 =
σ
n

n
i=1

ψ1

ϵiσ η(Xi)

ϕ2(∥ui∥

2)− ϕ2(∥ui∥
2)

.

Using that ϕ′

2 and ζ2(t) = tϕ′

2(t) are bounded, analogous arguments to those considered above, allow to show that
n1/2Ln,2,j p

−→ 0 for j = 3, 4.

Therefore, we only have to show that n1/2Ln,1 p
−→ 0 and n1/2Ln,2,j p

−→ 0 for j = 1, 2. We will show that, for any
0 ≤ ℓ ≤ p and 1 ≤ j ≤ p,

Ln,1,j,ℓ = n1/2σ
n

n
i=1

ψ ′

1

ϵiσ w2(∥ui∥)uij ηℓ(Xi)
p

−→ 0, (A.12)

Ln,2,1,j,ℓ = n1/2σ
n

n
i=1

ψ1

ϵiσ ϕ′

2(∥ui∥
2) uij uiℓ ηℓ(Xi)

p
−→ 0, (A.13)

Ln,2,2,j = n1/2σ
n

n
i=1

ψ1

ϵiσ w2(∥ui∥)ηℓ(Xi)
p

−→ 0. (A.14)

We will only prove (A.12), since the proofs of (A.13) and (A.14) can be obtained similarly using the fact that Eψ1 (ϵi/σ) = 0
for all σ > 0 and that ϕ′

2(∥ui∥
2) uij uiℓ is bounded.

Recall thatWi(x) = Ki(x)/{nEK1(x)} with Ki(x) = K (d(x, Xi)/h) and denote as

Ln,1,j,ℓ = n1/2σ
n

n
i=1

ψ ′

1

ϵiσ w2(∥ui∥)uij

n
m=1

Wm(Xi) ψ


Zmℓ − φℓ(Xi)sℓ


.
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Proposition 3.2 entails that

sup
x∈SH

ηℓ(x)− νℓ(sℓ)−1sℓ n
m=1

Wm(x) ψ

Zmℓ − φℓ(x)sℓ

 = Oa.s.(h2η
+ θ2n ),

so, using that ψ ′

1 and ψ2 are bounded we get that

Ln,1,j,ℓ = νℓ(sℓ)−1sℓLn,1,j,ℓ + νℓ(sℓ)−1sℓ n1/2Oa.s.(h2η
+ θ2n ) = νℓ(sℓ)−1sℓLn,1 + oP(1),

since nh4η
→ 0 and n1/2θ2n → 0. Note that sincesj a.s.

−→ sj, (A.12) follows if we show thatLn,1,j,ℓ p
−→ 0. A Taylor’s expansion

of order two, lead toLn,1,j,ℓ = σ n1/2
R1n +s−1

ℓ
R2n +s−2

ℓ
R3n

, where

R1n =
1
n

n
i=1

ψ ′

1

ϵiσ w2(∥ui∥) uij

n
m=1

Wm(Xi)ψ


umℓsℓ


,

R2n =
1
n

n
i=1

ψ ′

1

ϵiσ w2(∥ui∥) uij

n
m=1

Wm(Xi)ψ
′


umℓsℓ


{φℓ(Xm)− φℓ(Xi)} ,

R3n =
1
n

n
i=1

ψ ′

1

ϵiσ w2(∥ui∥) uij

n
m=1

Wm(Xi)ψ
′′


umℓ + ξimsℓ


{φℓ(Xm)− φℓ(Xi)}

2 ,

with ξim an intermediate point between 0 and φℓ(Xm)− φℓ(Xi).
Using that n h4η

→ 0, φℓ is Lipschitz of order η,sℓ p
−→ sℓ > 0 and supx∈SH

n
i=1 Wi(x)

 ≤ 2 almost surely, we obtain
that

n1/2
|R3n| ≤ ∥ψ ′∥∞∥ψ2∥∞∥ψ ′′

∥∞ sup
x∈SH

 n
i=1

Wi(x)

 n h4η1/2 a.s.
−→ 0.

On the other hand, Lemma A.1 implies that n1/2R2n
p

−→ 0, sinceσ → σ0. To show that n1/2R1n
p

−→ 0, define

H1,im(σ , s) = Wm(Xi)ψ
′

1

ϵi
σ


w2(∥ui∥) uijψ

umℓ

s


and denoteR1n(σ , s) = (1/n)

n
i=1
n

m=1 H1,im(σ , s). Then,R1n =R1n(σ ,sℓ).
Since n1/4(σ −σ) = OP(1), we have thatR1n =R1n(σ0,sℓ)− (σ −σ0) {ξ/(σ σ0)}R12n(ξ ,sℓ), where ξ is an intermediate

point between σ0 andσ and

R12n(σ , s) =
1
n

n
i=1

n
m=1

Wm(Xi)ψ
′ ′

1

ϵi
σ

 ϵi
σ
w2(∥ui∥) uijψ

umℓ

s


.

Taking υ(t) = ψ(t) and χ(t) = tψ ′ ′

1 (t) in Lemma A.2, from the consistency ofσ andsℓ we get that n1/4R12n(ξ ,sℓ) p
−→ 0

which entails that n1/2
R1n −R1n(σ0,sℓ) = oP(1), since n1/4(σ − σ) = OP(1).

On the other hand,R1n(σ0,sℓ) =R1n(σ0, sℓ)−(sℓ−sℓ) {ξℓ/(sℓ sℓ)}R13n(σ0, ξℓ), where ξℓ is an intermediate point between
sℓ andsℓ and

R13n(σ , s) =
1
n

n
i=1

n
m=1

Wm(Xi)ψ
′

1

ϵi
σ


w2(∥ui∥) uijψ

′

umℓ

s

 umℓ

s
.

Lemma A.2 with υ(t) = tψ ′(t) and χ(t) = ψ ′

1(t) implies that n1/4R13n(σ , ξℓ)
p

−→ 0 which, together with the fact that
n1/4(sℓ − sℓ) = OP(1), entails that n1/2

R1n(σ0,sℓ)−R1n(σ0, sℓ)
 p

−→ 0. Using again Lemma A.2 with υ(t) = ψ ′(t) and

χ(t) = ψ1(t), we get that n1/2R1n(σ0, sℓ) = oP(1) leading to n1/2R1n
p

−→ 0 and concluding the proof. �
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