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ABSTRACT
For multivariate regressors, the Nadaraya–Watson regression estimator
suffers from the well-known curse of dimensionality. Additive models
overcome this drawback. To estimate the additive components, it is usu-
ally assumed thatwe observe all the data. However, inmany applied sta-
tistical analysis missing data occur. In this paper, we study the effect of
missing responses on the additive components estimation. The estima-
tors are based onmarginal integration adapted to themissing situation.
The proposed estimators turn out to be consistent under mild assump-
tions. A simulation study allows to compare the behavior of our proce-
dures, under different scenarios.

1. Introduction

Most commonly usedmodels in statistics are parametric and the assumption is that the obser-
vations in the sample belong to a known parametric family. In these cases, the problem con-
sists in estimating or making inference on the unknown parameters. However, in many situa-
tions, this assumption may be relatively strong since the assumed parametric model may not
be the correct one if there is some. On the other hand, as is well known, statistical methods
developed for a particular parametric model can lead to wrong conclusions when they are
applied to a slightly disturbed model. Due to these problems, non parametric and semipara-
metric methods have been developed for data analysis. In particular, non parametric regres-
sion models have gained importance when studying natural phenomenons with non linear
complexity behavior. The non parametric regression model assumes that we have indepen-
dent observations (yi, xti ), 1 � i � n, yi ∈ R, xi ∈ R

d such that

yi = m(xi) + σ (xi)εi, 1 ≤ i ≤ n, (1)

where the errors ϵi are independent and independent of xi with E(εi) = 0 and Var(εi) < ∞.
The estimation of m under model (1) needs multivariate smoothing techniques. Hence, it
suffers from the well-known curse of the dimensionality which is associated to the fact that as
dimension increases, neighborhoods of a point x become more sparse. This phenomenon is
inherited by the convergence rate of the kernel regression estimators which is (nhdn)

1
2 , where

hn stands for the bandwidth or smoothing parameter used in the computation of the estimator.
In order to solve this problem, Hastie and Tibshirani (1990) introduced the so-called additive
models which also provide the interpretation of univariate smoothers, since each component
estimate can be plotted separately. In this sense, additive models combine the flexibility of
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414 G. BOENTE AND A. M. MARTÍNEZ

the non parametric models with the easy interpretation of the standard linear model. To be
more precise, additivemodels assume thatm(x) = μ + ∑d

j=1 g j(x j)where the parameterμ ∈
R and the smooth functions g j : R → R are the quantities to be estimated. Estimators for
additive models have been extensively studied and we refer to Hastie and Tibshirani (1990)
or more recently, to Härdle et al. (2004).

Estimators for additivemodels are designed for complete data sets and problems arisewhen
missing observations are present. In several situations, there might be a part of the design
points on which the responses are missing. A fundamental issue of interest is to study the
impact of the missing observations on the performance of the estimators that have been used.
Even if there are many situations in which both the response and the explanatory variables
are missing, we will focus our attention on those cases where missing data occur only in the
responses. This situation arises in many biological experiments where the explanatory vari-
ables can be controlled. This pattern is common, for example, in the scheme of double sam-
pling proposed by Neyman (1938), where first a complete sample is obtained and then some
additional covariate values are computed since perhaps this is less expensive than to obtain
more response values. Throughout this paper, we will assume that missing data occur only on
the response variables.

In many situations, the incomplete observations are imputed via a preliminary estima-
tor and then, one carries out the estimation of the conditional or unconditional mean of the
response variable with the complete sample. Themethods considered include kernel smooth-
ing (Cheng, 1994; Chu andCheng, 1995) nearest neighbor imputation (Chen and Shao, 2000),
semiparametric estimation (Wang et al., 2004), non parametric multiple imputation (Aerts
et al., 2002), empirical likelihood over the imputed values (Wang and Rao, 2002), among oth-
ers. For a non parametric regression model, González–Manteiga and Pérez–Gonzalez (2004)
considered an approach based on local polynomials to estimate the regression function when
the response variable y ismissing but the covariate x is totally observed.Wang et al. (2004) con-
sidered inference on the mean of y under regression imputation of missing responses based
on a semiparametric regression model. In this paper, we will assume that the data are miss-
ing at random (mar). Assuming mar requires the existence of a random mechanism, such
that the occurrence of a missing response is independent of the response given the covariates.
On the other hand, the assumption of missing completely at random (mcar) is more restric-
tive since it requires the missing happen stance is independent of both the response and the
covariates. In practice, the assumption of mar might be justified by the nature of the exper-
iment when it is legitimate to assume that the missingness of the responses mainly depends
on the covariates.

The aim of this paper is to describe methods of estimation under an additive model when
responses aremissing. The paper is organized as follows. In Sec. 2, the proposed estimators are
introduced, besides, the problems arising when considering estimators using only the obser-
vations with no missing responses are described. Consistency for these estimators will be
derived in Sec. 3 while the results of a simulation study are summarized in Sec. 4. Proofs
are relegated to the Appendix.

2. The estimators

We will consider inference with an incomplete data set (yi, xti , δi), 1 � i � n where δi = 1
if yi is observed and δi = 0 if yi is missing and (yi, xti ) satisfy model (1) where the errors ϵi
are independent of xi, E(εi) = 0 and m : R

d → R is a regression function additive on each
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COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 415

component of x, i.e.,

m(x) = μ +
d∑

α=1

gα(xα ) , (2)

where gα : R → R are unidimensional smooth functions such that Egα(xα ) = 0. The condi-
tion Egα(xα ) = 0 is set to identify the components in which case μ = E(yi).

Let (Y,Xt, δ) be a random vector with the same distribution as (yi, xti , δi), with X =
(X1, . . . ,Xd )

t. Our aim is to estimate, with the data set at hand, the regression components
gα . An ignorable missing mechanism will be imposed by assuming that Y is mar, that is, δ
and Y are conditionally independent given X, i.e.,

P (δ = 1|(Y,X)) = P (δ = 1|X) = p (X) . (3)

Let K be a multivariate kernel function such that K : R
d → R, K ≥ 0,

∫K(u) du = 1,∫
uK(u) du = 0, and

∫
uutK(u) du = μ2(K)Id . On the other hand, we will denote by

Kh(u) = h−dK(u/h).

2.1. Marginal integration estimators

Among themethods to estimate the components under an additivemodel, we canmention the
backfitting algorithm introduced by Buja et al. (1989) (see also Mammen et al., 1999) and the
marginal integration procedure first introduced by Tjostheim and Auestad (1994) and Linton
andNielsen (1995). In this paper, we focus on themarginal integrationmethod to estimate the
additive components when missing responses arise. For the sake of completeness, we remind
the definition of the estimators. For the sake of simplicity, from now on, xα stands for the
(d − 1)-dimensional vector such that xα = (x1, . . . , xα−1, xα+1, . . . , xd)t. For any function
r : R

d → R and for any y, we allow the general notation r(y) = r(yα, yα ) to indicate the value
of the function r calculated at the vector y with component α equal to yα and the other ones
equal to those of y. This notation is used to point out with respect to which components we
are adding or integrating.

Let zi = (yi, xti ), 1 � i � n, with the same distribution of (Y,Xt) such that Y = m(X)
+ ϵ where the error ϵ is independent of X, E(ε) = 0 and m satisfies the additive model (2),
so that μ = E(Y ). Let μ̂ = ∑n

i=1 yi/n and consider the Nadaraya–Watson kernel estimator
defined as m̃(x) = ∑n

i=1 Kh(xi − x)yi/
∑n

j=1 Kh(xi − x). The additive component gα is then
estimated through

ĝα(xα ) = 1
n

n∑
i=1

m̃(xα, xαi) − μ̂ .

Onemaywonder if, ignoring the vectors withmissing responses, wewill still obtain consistent
estimators. That is, if the estimators obtained applying the previous procedure to the obser-
vations {zi1, . . . , ziN } = {(yi, xti )}{i:δi=1}, where N = ∑n

i=1 δi lead to asymptotically unbiased
estimators. This is one of the conditions needed to successfully apply the transfer principle
described in Koul et al. (2012). Using the observations {zi1, . . . , ziN } the obtained estimators
are given by

ĝc,α(xα) = 1
N

N∑
j=1

m̃c(xα, xαi j ) − μ̂c = 1∑n
i=1 δi

n∑
i=1

δim̃c(xα, xαi) − μ̂c ,
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416 G. BOENTE AND A. M. MARTÍNEZ

where μ̂c = ∑N
j=1 yi j/N = ∑n

i=1 δiyi/
∑n

i=1 δi and m̃c(x) = ∑N
j=1 Kh(xi j − x)yi j/∑N

�=1 Kh(xi� − x). Note that m̃c(x) = ∑n
i=1 Kh(xi − x)δiyi/

∑n
j=1 Kh(xi − x)δ j. We have

used a subscript c to indicate that the estimator is computed using only the complete sample.
As is well known, under mild conditions, m̃c(x)

a.s.−→ m(x), that is, the regression estima-
tors based on the available observations are still consistent. Moreover, as shown in Theorem
3.2.1, the estimator m̃c is uniformly consistent. Therefore, straightforward calculations and
the fact thatm satisfies the additive model (2) lead to

1
N

N∑
j=1

m̃c
(
xα, xαi j

) a.s.−→ μ + gα(xα) + 1
p

d∑
j=1, j �=α

E[p(X)g j(Xj)] ,

where (xα,Xα ) = (X1, ...,Xα−1, xα,Xα+1, ...,Xd) and p = Ep(X). On the other hand, since
μ̂c

a.s.−→ p−1
E[p(X)m(X)] = μ + p−1 ∑d

j=1 E[p(X)g j(Xj)], we get

ĝα,c(xα )
a.s.−→ gα(xα ) − 1

p
E[p(X)gα(Xα )] ,

so that, the estimators are asymptotically biased. Hence, the transfer principle cannot be con-
sidered when estimating the marginal effects through the marginal integration procedure
based on averaging over the covariates on the sample with δi = 1, that is, using only the obser-
vations {zi1, . . . , ziN } in the estimation procedure. The same conclusion is obtained if instead
of averaging over the directions not of interest Xα , one integrates using a fixed and known (d
− 1)-dimensional measure.

It is worth noting that the asymptotic bias of ĝα,c is not only due to the fact that the
location estimator μ̂c is not a consistent estimator of μ. Even by choosing a consistent esti-
mator of μ, we do not obtain consistent estimators of gα . Indeed, if one uses a consistent
estimator of μ, we get that ĝα,c(xα )

a.s.−→ gα(xα ) + p−1 ∑d
j=1, j �=α E[p(X)g j(Xj)], so, the bias

is p−1 ∑d
j=1, j �=α E[p(X)g j(Xj)]. The key point for the loss of consistency is that the prop-

erty Eg j(Xj) = 0 is not inherited by the complete sample, that is, we cannot assume that
E[p(X)gα(Xα )] = 0.

For that reason, amodified procedure needs to be considered to estimate gα(xα). In Sec. 2.2,
we describe two procedures leading to consistent estimators of the marginal effects. The first
one is based on the Nadaraya–Watson kernel estimator applied to the sample {zi1, . . . , ziN },
that is m̃c(x). The second one is based on a modified internally normalized estimator. Both
estimators turn out to be uniformly consistent. To obtain consistent estimators of gα(xα), the
estimators average over the direction Xα not only over the covariates with δi = 1 but over all
the covariates.

2.2. Our proposal for data sets withmissing responses

Using the set of complete data {(yi, xti )}{i:δi=1} we can introduce two estimators ofm. The first
one, denoted m̃(1)

s , equals m̃c, so it uses kernel weights modified multiplying by the indicator
of the missing variables in order to adapt to the complete sample and avoid bias. However, for
a better notation in the definitions to be given, we use m̃(1)

s instead of m̃c. On the other hand,
the second one, denoted m̃(2)

s , is related to the internally normalized estimators considered in
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Hengartner and Sperlich (2005). To be more precise, m̃(1)
s and m̃(2)

s are defined as

m̃(1)
s (x) =

n∑
i=1

wi,h(x) yi

⎡⎣ n∑
j=1

w j,h(x)

⎤⎦−1

, m̃(2)
s (x) =

n∑
i=1

wi,h(x) yi
f̂ (xi)

[
n∑

k=1

wk,h(x)
f̂ (xk)

]−1

,

(4)
wherewi,h(x) = Kh(x − xi)δi, f̂ (x) = (1/n)

∑n
j=1 Kh(x − x j) is the kernel density estimator

and h= hn is the bandwidth parameter. These regression estimators are based on the complete
sample, i.e., discarding every incomplete pair of the original sample. For that reason, they are
denoted with the subscript S as simplified estimators. This notation will be inherited by the
marginal estimators, even though, they are obtained averaging over all the covariates and not
only over those corresponding to δi = 1.

Let μ̂ be an estimator of μ = E(Y ). Chen (1994) applied kernel regression imputation
to estimate μ, see also Chu and Cheng (1995). Another possibility is to consider one of the
following estimators:

μ̂(1) = 1
n

n∑
i=1

m̂(xi), μ̂(2) = 1
n

n∑
i=1

δiyi
p̂(xi)

, (5)

where m̂(xi) is an estimator of the regression function m(x) such as m̃(1)
s or m̃(1)

s . The esti-
mator μ̂(2) is the propensity score estimator and assumes that the missingness probability p is
estimated by p̂when it is unknown.When m̃(1)

s is used as estimator of the regression function,
the marginal estimator μ̂(1) was previously considered by Cheng and Wei (1986) and Cheng
(1990), while Chen (1994) obtained that the estimator μ̂ = [

∑n
i=1 δiyi + (1 − δi)m̃(1)

s (xi)]/n
has the same asymptotic distribution as μ̂(1). Themain disadvantage of μ̂(1) is that in practice,
it inherits the curse of dimensionality problem of the kernel estimator even if its convergence
rate will still be root−n. On the other hand, μ̂(2) needs a preliminary estimator of the missing
probability. Usually, a parametric model is assumed for the missing probability so, only few
parameters need to be estimated. Hirano et al. (2000) considered the estimator μ̂(2) when a
kernel estimator is used to estimate p(x). See Wang et al. (2004) for a discussion on different
estimators of the response mean.

Using the estimators defined in (4), four estimators of the marginal functions using
marginal integration can be defined. Two of them are based on the Nadaraya–Watson esti-
mator (Nadaraya, 1964, Watson, 1964) while the other ones are based on the internally nor-
malized method introduced in Hengartner and Sperlich (2005). More precisely, the first pro-
cedure averages over the observations which can be computationally expensive for large data
sets while the second one proposes to marginally integrate the estimators defined through
(4). Even if, in most situations, the integrals cannot be computed analytically and numerical
integration is needed, for large data sets, numerical integration over a grid of points may be
less expensive than the former procedure. The estimators are then defined as

ĝ(1)
α,s(xα ) = 1

n

n∑
i=1

m̃(1)
s (xα, xαi) − μ̂, ĝ(2)

α,s(xα ) = 1
n

n∑
i=1

m̃(2)
s (xα, xαi) − μ̂,

where, as above, xα = (x1, . . . , xα−1, xα+1, . . . , xd )t.
To introduce the second class of estimators, consider a product measure Q on R

d with
Qα(xα ) = Q(R, xα )dxα and set qdx = dQ, qαdxα = dQα . Then, the estimators are defined
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418 G. BOENTE AND A. M. MARTÍNEZ

as

̂̂g(1)
α,s(xα ) =

∫
m̃(1)
s (xα, uα )qα(uα ) duα − μ̂ , ̂̂g(2)

α,s(xα ) =
∫
m̃(2)
s (xα, uα )qα(uα ) duα − μ̂.

(6)

Hence, simplified estimators of the regression function that make use of the additive
model assumption may be defined either as m̂( j)

s (x) = ∑d
α=1 ĝ

( j)
α,s(xα ) + μ̂ or ̂̂m( j)

s (x) =∑d
α=1

̂̂g( j)
α,s(xα ) + μ̂, for j = 1, 2, depending if one uses the estimators that average or inte-

grate the preliminary ones.

3. Consistency

3.1. Assumptions and notation

Let (yi, xti , δi)
n
i=1 be a sequence of i.i.d vectors in R

d+2 and (Y,Xt, δ) a vector with the same
distribution as (yi, xti , δ). Denote m(x) = E(Y |X = x) and by μ the probability measure of
X.

Given a function g : R
d → R, i(g) and ‖g‖0, � stand for i(g) = infx∈C g(x) and ‖g‖0,∞ =

supx∈C |g(x)|, respectively. Besides, for any function g : R → R, let iα(g) = infx∈Cα g(x) and
‖g‖α,∞ = supx∈Cα

|g(x)|.
Finally, we will denote by m̂Z(x) the Nadaraya–Watson estimator of the regression func-

tion, E(Z|X), based on the observations (zi, xti ) computed using with the kernel K and the
bandwidth hn, that is,

m̂Z(x) =
n∑

i=1

Kh (x − xi) zi

[
n∑

i=1

Kh (x − xi)

]−1

. (7)

For the sake of completeness, we remind some definitions that can be found, for instance, in
Devroye (1978).

Definition 1. The observations (yi)ni=1 are uniformly bounded if |Y − m(x)| � c a.s. for some c
< �.

Definition 2. The random variables (yi)ni=1 are uniformly generalized Gaussian if for some σ �
0 and c � 0

sup
x

E
{
eλ[Y−m(x)]|X = x

} ≤ e
σ2λ2

2(1−|λ|c) , f or all |λ| ≤ 1
c

.

Remark 3.1. It is clear that when the observations are uniformly bounded, they are uni-
formly generalized Gaussian. Besides, if (yi, xi)ni=1 are such that Y|X = x ∼ N(m(x), σ 2(x))
and supx∈Rd σ 2(x) < ∞, then (yi)ni=1 are uniformly generalized Gaussian.

In order to derive consistency of the estimators introduced in Sec. 2, we will need the fol-
lowing set of assumptions:

D1. Y = m(X) + σ (X)ϵ with E(ε) = 0 and Var(ε) = 1.
D2. The joint density of the covariates fX is compactly supported, Lipschitz continuous,

and strictly bounded away from zero and infinity on the interior of its compact sup-
port denoted C.
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D3. P(δ = 1|X, Y) = P(δ = 1|X) = p(X), with p : R
d → R continuous in C and such that

i(p) > 0.
D4. m : R

d → R and σ : R
d → R

+ are continuous in C.
D5. The errors ϵ are independent of (X, δ). Furthermore, the sequence (εi)

n
i=1 is uniformly

generalized Gaussian.
D6. The sequence (ε2i )

n
i=1 is uniformly generalized Gaussian.

D7. The product measureQ has a continuous density q(x) (with respect to Lebesgue mea-
sure) bounded away from zero and infinity. Further, the support of Q is contained in
the support of f(x).

For the sake of simplicity, from now on, u and uj stand for uj = σ (xj)ϵj and u = σ (X)ϵ, so Y
= m(X) + u.

Besides, wewill need the following assumptions on the kernelK and the smoothing param-
eter hn.

K1. K : R
d → R is non negative, bounded, and

∫K(u) du = 1.
K2. K(x) = K(‖x‖) for some non increasing function K : R

+ → R
+ such that

(i) udK(u) → 0 as u → �,
(ii) K(u∗) > 0 for some u∗ > 0.
H1. hn → 0 and nhdn/ log n → ∞.
The following assumptions will be used to derive the consistency of the marginal effects

estimators under the additive model (2). It is worth noticing that, underD2, the density func-
tion of the component Xα , denoted by fα , has a compact support denoted Cα = sop fα .
A1. m(x) = μ + ∑d

α=1 gα(xα ).
A2. (a) Egα(Xα ) = 0 for all 1 � α � d.

(b) �gα(xα)qα(xα) dxα = 0 where qα(x)dx = dQα(x) and Qα is the αth marginal of the
measure Q.

A3. gα is a continuous function in Cα for all 1 � α � d.

Remark 3.2. The assumptions stated above were also considered by Buja et al. (1989), Hastie
and Tibshirani (1990), Newey (1994), Tjostheim and Auestad (1994), Linton and Nielsen
(1995), Hengartner and Sperlich (2005), and Härdle et al. (2004), among others. These are
rather typical assumptions for ordinary kernel smoothing.

Assumption A1 sets that the considered model is an additive one, while A2 ensures that
the additive components gj are identifiable. Separable regression models, as the one studied,
are useful tools in analysing high-dimensional data sets because these models are not subject
to the course of dimensionality, see, for instance, Stone (1986). Separable models are also of
interest in econometric theory. Weak separable functions form a flexible class of functions
which provides good approximations to continuous functions of several variables. Thus, even
if the true underlying regression function is not separable, it may be well approximated by a
separable one.

Assumptions D2 and D4 state regularity conditions on the marginal density of X and on
the conditional distribution function. Note that D3 implies that some response variables are
observed for all x ∈ C. This assumption ensures the uniform convergence all over the compact
set C. Condition D5 is needed to obtain the almost surely uniform consistency of both pre-
liminary estimators m̃(1)

s and m̃(2)
s . To obtain asymptotic properties of the estimators based on

the internally normalized methodD6 is also required. ConditionD7 allows us to interchange
means with integrals to obtain the consistency of the estimatorŝ̂g and ̂̂m.

Assumption K1 is a typical assumption for ordinary kernel smoothing while K2 restricts
the class of kernel functions to be chosen. Some relation between the bandwidth parameter
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420 G. BOENTE AND A. M. MARTÍNEZ

hn and the sample size n is always necessary. To obtain the consistency of the proposals H1
establishes conditions on the rate of convergence of the smoothing paramaters, which are
standard in non parametric regression. Product kernels, as those considered in Hengartner
and Sperlich (2005), can also be considered. In this case, K(x) = ∏d

�=1 K�(x�) and Kh(x) is
modified to Kh(x) = ∏d

�=1 K�(x�/h�)(
∏d

�=1 h�)
−1 and assumption H1 needs to be modified

to h�, n → 0 and n
∏d

�=1 h�,n/ log n → ∞. For the sake of simplicity, we only state here the
results when h�, n = hn for all �.

3.2. Strong uniform convergence of the simplified estimators

We begin by proving strong consistency of the preliminary estimators m̃(1)
s and m̃(2)

s defined
in (4).

Theorem 3.2.1. Under D1 to D5, K1, K2 , andH1, we have that
(a) sup

x∈C
|m̃(1)

s (x) − m(x)| a.s.−→ 0,

(b) sup
x∈C

|m̃(2)
s (x) − m(x)| a.s.−→ 0 if in addition, D6 holds.

As mentioned in Sec. 2, the estimators μ̂(1) and μ̂(2) have been previously considered in
the literature, where, for instance, asymptotic normality was derived for different choices of
the estimators m̂(x) and p̂(x). Proposition 3.2.1 gives a general consistency result, that will
be useful in the sequel. Its proof is immediate, so it is omitted.

Proposition 3.2.1. Let m̃ be an estimator of the regression function such that supx∈C |m̃(x) −
m(x)| a.s.−→ 0 and assume that D1 and D2 hold. Then, μ̂ a.s.−→ μ where μ̂ = ∑n

i=1 m̃(xi)/n.

A consequence of Theorem 3.2.1 and Proposition 3.2.1 is the consistency of the estimator∑n
i=1 m̃

(1)
s (xi)/n considered by Cheng andWei (1986) and Cheng (1990). In particular, under

A1,A2,A3, andD1 toD5,K1,K2, andH1, we have that μ̂(1) = (1/n)
∑n

i=1 m̃
(1)
s (xi)

a.s.−→ μ.
The following result, whose proof is straightforward and can be found in Boente and

Martínez (2012), states the strong consistency result for the estimators considered by Hirano
et al. (2000):

Theorem 3.2.2. Under D1 to D4, if p̂ is an estimator of the missing probability such that
supx∈C | p̂(x) − p(x)| a.s.−→ 0, we have that μ̂(2) = (1/n)

∑n
i=1(δiyi)/ p̂(xi)

a.s.−→ μ.

Theorem 3.2.3. Assume that D2, A1, A2 (a), and A3 hold. Let μ̂ a consistent estimator of μ

and m̃(x) such that supx∈C |m̃(x) − m(x)| a.s.−→ 0. Define ĝα(xα ) = (1/n)
∑n

i=1 m̃(xα, xαi) −
μ̂. Then, we have that

(a) supx∈Cα
|̂gα(xα ) − gα(xα )| a.s.−→ 0,

(b) supx∈C |m̂(x) − m(x)| a.s.−→ 0, where m̂(x) = ∑d
α=1 ĝα(xα) + μ̂.

Theorems 3.2.1 and 3.2.3 entail the consistency of the simplified estimators of the additive
components which is stated in the following corollary:

Corollary 3.2.1 If D1 to D5, A1, A2 (a), A3, K1, K2, andH1 hold, we have that
(a) supx∈Cα

|̂g(1)
α,s(x) − gα(x)| a.s.−→ 0, 1 � α � d, and supx∈C |m̂(1)

s (x) − m(x)| a.s.−→ 0,
(b) supx∈Cα

|̂g(2)
α,s(x) − gα(x)| a.s.−→ 0, 1 � α � d, and supx∈C |m̂(2)

s (x) − m(x)| a.s.−→ 0, if in
addition D6 holds.
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Theorem 3.2.4. Let μ̂ a consistent estimator of μ and m̃(x) such that
supx∈C |m̃(x) − m(x)| a.s.−→ 0. Define ̂̂gα,s(xα ) = ∫

m̃s(xα, uα )qα(uα ) duα − μ̂. Then, under
D2 , D6, D7, A1, A2 (b), and A3, we have that

(a) supx∈Cα
|̂̂gα(xα) − gα(xα)| a.s.−→ 0,

(b) supx∈C |̂̂m(x) − m(x)| a.s.−→ 0, where ̂̂m(x) = ∑d
α=1

̂̂gα(xα ) + μ̂.

From Theorems 3.2.1 and 3.2.4, we obtain the consistency of the estimatorŝ̂g(1)
α,s and̂̂g(2)

α,s
defined through (6), which is stated below.

Corollary 3.2.2. Assume D1 to D5, D7, A1, and A2 (b) and A3, K1, K2, and H1 hold. Then,
we have that

(a) supx∈Cα
|̂̂g(1)

α,s(x) − gα(x)| a.s.−→ 0, 1 � α � d, and supx∈C |̂̂m(1)
s (x) − m(x)| a.s.−→ 0,

(b) supx∈Cα
|̂̂g(2)

α,s(x) − gα(x)| a.s.−→ 0, 1 � α � d, and supx∈C |̂̂m(2)
s (x) − m(x)| a.s.−→ 0, if in

addition D6 holds.

Remark 3.2.1. As mentioned above, the strong uniform consistency results established also
hold if product kernels are considered and different bandwidths are considered for each
component. In this last situation, when no missing responses arise, under second derivative
assumptions, Linton andNielsen (1995) have shown thatmarginal integrationmethods attain
the optimal univariate rate if we consider two components, that is, if d = 2. In particular,
if h1, n = h2, n = n−1/5 the optimal rate n2/5 is attained. However, when d > 2 and the same
bandwidth is used for all the directions, the integration method still suffers from the curse
of dimensionality since it performs an average which reduces the order of the variance, but
not of the bias. To reduce the bias on the nuisance directions when d > 2, Linton and Härdle
(1996) consider a second order kernel on the direction of interest but higher order kernels
on the other directions. A different approach to solve the challenging problem of reducing
bias was given by Hengartner and Sperlich (2005) who introduced the internally normalized
estimators. The internally normalized estimator of g1 attains the univariate rate n2/5 if the
additive component g1 is twice continuously differentiable, K1 is a kernel of order 2, h1, n =
n−1/5, h�,n = O(n−1/(3r0)) with r0 = [[(d − 1)/2]] + 1 and K� are kernels of order r0, for � =
2, …, d . Even if asymptotic normality results are beyond the scope of this paper, it is expected
that both proposals will attain the same convergence rate as the related estimators when no
missing responses arise. In this sense, we expect that the internally corrected estimator will
lead to a better order of convergence when d> 2. The asymptotic behavior of the preliminary
estimators m̃(1) and m̃(2) can be derived using standardmethods (see, for instance, Boente and
Martínez, 2012). On the other hand, the study of the asymptotic behavior of̂̂g(1)

α,s and in par-
ticular, that of̂̂g(2)

α,s requires further study. This interesting topic may be the subject of future
research.

4. Monte carlo study

4.1. General description

This section contains the results of a simulation study conducted with the aim of comparing
the performance of the estimators m̃(1)

s , m̃(2)
s , m̂(1)

s , and m̂(2)
s , defined in Sec. 2. We perform

NR = 500 replications generating independent samples {(yi, xti , δi)}ni=1 of size n = 500. To
this end, we first generate observations (zi, xti ) such that zi = m(xi) + ui, 1 � i � n, where xi
= (xi1, xi2)∼U([0, 1]× [0, 1]), u= σ ϵwith ϵ∼N(0, 1) and σ = 0.5,m : R

2 → R an additive
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422 G. BOENTE AND A. M. MARTÍNEZ

function of the form:

m(x1, x2) = 4 + 24 (x1 − 0.5)2 + 2π sin(πx2) . (8)

To identify the marginal components and according to A2(a), their expectation is set equal
to 0. Then, under (8), we have that μ = 10 and the additive components are g1(x1) = 24(x1 −
0.5)2 − 2 and g2(x2) = 2πsin (πx2) − 4.

Missing responses are defined using different missing schemes as yi = zi if δi = 1 andmiss-
ing otherwise, where {δi}ni=1 are generated under amarmodel withmissing probability p equal
to one of the following functions, p1(x) � 1, which corresponds to the situation of complete
samples, p2(x) � 0.8, that is, mcar responses are generated and p3(x) = 0.4 + 0.5cos 2(2x1x2
+ 0.4). Besides, xi1, xi2, δi, and ui are generated independently to each other.

For the smoothing procedure, we use the Epanechnikov multiplicative kernel
K(x) = K(x1)K(x2) where K(u) = (3/4)(1 − u2)I[ − 1, 1](u) and we choose Kh(x) =
h−2 ∏2

�=1 K�(x�/h).
The behavior of an estimator m̂ of m is measured using an approximation of the inte-

grated squared error calculated at each replication as ise(m̂) = (1/�2)
∑�

s=1
∑�

j=1[m(u js) −
m̂(u js)]2, where ujs = (j/�, s/�), 1� j, s� �, � = 50. An approximation of the mise is obtained
averaging the ise over replications.

In Boente andMartínez (2012), a preliminary study was performed to choose between the
estimators μ̂(1) and μ̂(2) defined in (5). Based on the obtained results, we select μ̂1 as estimator
of themarginalmean in the rest of our study. It isworth noticing that, when selecting the cross-
validation bandwidth to estimate the additive components, the bandwidth for the estimator
μ̂(1) was kept fixed and equal to hn = 0.2. Besides, when computing m̃(2)

s , for the density
estimator the bandwidth was chosen equal to 0.2.

Results with fixed bandwidths h= 0.15, 0.2, 0.25, and 0.3 are reported in Sec. 4.3 in Boente
and Martínez (2012). We only report here the results corresponding to data-driven band-
widths.

4.2. Data-driven bandwidths

An important issue in any smoothing procedure is the choice of the smoothing parame-
ter. Under a non parametric regression model, two commonly used approaches are cross-
validation andplug-in.As iswell known, plug-inmethods require to obtain theoretical expres-
sions of the bias and the variance of regression estimators, which are not always available in
practice. Among others, for additivemodels with nomissing data, Opsomer (2000) developed
a plug-in bandwidth estimator for backfitting estimators, in the case of independence between
the covariates while Mammen and Park (2005) introduced bandwidth selectors for smooth
backfitting based on penalized sums of squared residuals. Finally, Nielsen and Sperlich (2005)
developed a cross-validation method for the smooth backfitting estimator. Recently, a data-
driven local bandwidth selector based on awild bootstrap approximation of themean squared
error of the estimators was developed by Martínez–Miranda et al. (2008) and extended to the
situation with missing responses by Martínez–Miranda and Raya–Miranda (2011). In our
simulation study, we have selected as criterion the cross-validation method, performed over
the observed observations. Besides, since we have assumed thatKh(x) = h−2 ∏2

�=1 K�(x�/h),
we select the data-driven bandwidth as ĥ = argminh∈R+

∑n
i=1 δi [yi − m̂−i,s(xi, h)]2, where

m̂−i,s(·, h) represents the leave-one-out estimator corresponding to the simplified estimator
m̂s(·, h) computed using the bandwidth h. As in cross-validation with complete data sets, the
ith observation (yi, xi) is not used to predict yi when δi = 1, that is, when yi is observed. In this
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way, we ensure that the observations used to calculate m̂−i,s(·, h) are independent of xi, the
observation at which we evaluate m̂−i,s(·, h) to predict the i-response, when it is not missing.

... Optimal bandwidths
In order to have an asymptotic counterpart for the cross-validation bandwidth, an opti-
mal deterministic smoothing parameter was selected for each of these estimators and for
each missing probability using as goodness-of-fit criterion the mean integrated square error,
MISE(h) = E

∫
[m(x) − m̂(x, h)]2dx, where m̂(·, h) denotes the estimator to be consid-

ered using as bandwidth the value h. We performed 500 replications generating indepen-
dent samples {(yi, xti , δi)}ni=1 of size n = 500 following the model described in Sec. 4.1. For
each value of the smoothing parameter, the value of the MISE was approximated by Monte
Carlo as

∑500
k=1 M(h, k)/500, where for each replication k,M(h, k) = ∑�

j=1
∑�

s=1[m(u js, h) −
m̂(u js, h)]2/�2, with ujs = (j/�, s/�), 1 � j, s � �, and � = 50 as in the computation of the
ise. For each of the three missing probabilities, the optimal smoothing parameter h was
selected over the grid G where G = {0.03, 0.04} ∪ G0 with G0 a grid of 14 equidistant points
between 0.045 and 0.08. When the minimization process leads to a value on the bound-
ary, the search was carried on over the limits of the interval. To be more precise, if in the
first step the bandwidth selected equals 0.03, the minimization was carried on over the
grid G1 = {0.015, 0.02, 0.025, 0.03, 0.035}. On the other hand, if the bandwidth selected was
equal to 0.8, the minimization was done over the grid G2 = {0.0775, 0.08, 0.085, 0.09, 0.1}.
Table 1 reports the values obtained in each situation. We denote hopt the optimal bandwidth
obtained.

... Cross-validation bandwidth
We computed the data-driven bandwidths for each of the missing probabilities p1, p2, and p3.
As in Sec. 4.2.1, the data-driven smoothing parameter h was selected over the grid of points
G. Besides, when the minimization process leads to a value on the boundary, the search was
carried on over the limits of the interval. Denote hcv the optimal bandwidth obtained.

Due to the expensive computing time, we have performed NR = 500 replications. Once
the optimal bandwidth (the asymptotic or the cross-validation one) is selected, the estima-
tors are computed as described in Sec. 2. Table 3 summarizes the results obtained using as
summary measure the ise(m̂). Besides, to evaluate the performance of the cross-validation
bandwidths with respect to the optimal one, Table 2 reports the minimum, the first quantile,
the median, the third quantile, and the maximum denoted, respectively,Q0,Q0.25,Q0.50,Q0.75,
andQ1 as well as themean of log(hcv/hopt). On the other hand, Fig. 1 shows the histograms
of log(hcv/hopt) obtained for the estimators m̂(1) and m̂(2), under differentmissing schemes,
respectively. Boxplots are given in Boente and Martínez (2012).

When nomissing responses arise, or under a completely at randommissingnessmodel, the
cross-validation bandwidth for m̂(1) performs better than that obtainedwhen using m̂(2). Even
though, as shown in Table 3, the performance of the marginal and final estimators derived
from the internally normalized regression estimator m̃(2) is better than that obtained from

Table . Optimal smoothing parameters hopt for each scenario and for each non parametric estimator.

p= p p= p p= p

m̂(1) . . .
m̂(2) . . .
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424 G. BOENTE AND A. M. MARTÍNEZ

Table . Summary measures of log(hcv/hopt) under the missing schemes p(x) � , p(x) � ., and
p(x)= .+ .(cos (xx + .)).

Q Q. Q. Mean Q. Q

m̂(1)

p= p − . − . . − . . .
p= p − . − . . − . . .
p= p − . − . − . − . . .

m̂(2)

p= p − . − . − . − . . .
p= p − . − . − . − . . .
p= p − . − . . − . . .

Table . mise of the simplified estimators of m, g, and g under different missing schemes, p(x) � ,
p(x) � ., and p(x) = . + .(cos (xx + .)), when the bandwidth is selected using a cross-
validation procedure.

p= p p= p p= p

m̃(1)
s . . .

m̂(1)
s . . .

m̃(2)
s . . .

m̂(2)
s . . .

ĝ(1)
1,s . . .

ĝ(1)
2,s . . .

ĝ(2)
1,s . . .

ĝ(2)
2,s . . .

Figure . Histogram of log(hcv/hopt) under different missing schemes p(x)� , p(x)� ., and p(x)=
.+ .(cos (xx + .)). The upper and lower plots correspond to the optimal and data-driven selectors
when using as estimates m̂(1) and m̂(2), respectively.
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the Nadaraya–Watson estimator. The estimators of the additive components ĝ(2)
j,s, j = 1, 2,

perform also better when a criterion which avoids border effects is considered (see Boente
and Martínez, 2012). For these reasons we recommend the internally normalized regression
estimators as a preliminary step to construct the marginal components.
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Appendix

PropositionA.1 due toDevroye (1978) will be used to derive the consistency of the estimators.

Proposition A.1. Let (yi, xti )ni=1 a sequence of independent and identically distributed variables
and such that (yi)ni=1 is a uniformly generalized Gaussian sequence. Denote m̂n(x) = m̂Y (x) the
Nadaraya–Watson estimator defined in (7). Assume K1, K2,H1, m is bounded and continuous
in the support of μ and that there exist a, b > 0 such that infx∈A μ(S(x, r)) ≥ ard, all r � [0,
b], where S(x, r) is the closed sphere with center x and radius r. Then, for any compact set A,
we have that supx∈A |m̂n(x) − m(x)| a.s.−→ 0.

We first state some lemmas that will be used in the sequel.

Lemma A.1. Let m̂δY and m̂δ be defined as in (7). UnderD1 toD5, K1, K2 andH1, we have
(a) supx∈C |m̂δY (x) − p(x)m(x)| a.s.−→ 0,
(b) supx∈C |m̂δ (x) − p(x)| a.s.−→ 0.

Proof. We begin by proving (a). Note that, as δY = δm(x) + δu, where u = σ (x)ϵ, E(δY |X =
x) = p(x)m(x), so

sup
x∈C

|m̂δY − p(x)m(x)| = sup
x∈C

|m̂δm(x) + m̂δu(x) − p(x)m(x)| ≤ sup
x∈C

|m̂δm(x) − p(x)m(x)|
+ sup

x∈C
|m̂δu(x)|.

Hence, it will be enough to show that

sup
x∈C

|m̂δm(x) − p(x)m(x)| a.s.−→ 0, (A.1)

sup
x∈C

|m̂δu(x)| a.s.−→ 0. (A.2)

FromD4,m is bounded inC, then, the sequence of variables (δim(xi))ni=1 is a sequence of inde-
pendent, identically distributed and uniformly bounded variables such that E[δm(X)|X =
x] = m(x)E[δ|X = x] = m(x)p(x). Thus, using Remark 3.1 and Proposition A.1, (A.1) fol-
lows.

It is easy to see that the sequence of independent and identically distributed variables
(δiui)ni=1 is also a uniformly generalized Gaussian sequence.
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Effectively, using that the errors ϵ are independent of (δ, x) and that E(ε) = 0, we
get E(δu|X = x) = p(x)σ (x)E(ε) = 0. Then, for any λ ∈ R, we get E(eλδu|X = x) = 1 −
p(x) + p(x)E[eλσ (x)ε]. As (εi)

n
i=1 is a sequence of independent, identically distributed, and

uniformly generalized Gaussian variables, there exist τ � 0 and c � 0 such that if |φ| <

1/c, we get E(eφε ) ≤ exp{τ 2φ2/[2(1 − |φ|c)]}. D4 entails that σ is bounded in C, so taking
d = c‖σ‖20,∞ and τ̃ = τ‖σ‖0,∞ we obtain that, for all |λ| � 1/d, |φ| = |λ|σ (x) � 1/c,

sup
x∈C

E
{
exp [λσ (x)ε]

} ≤ sup
x∈C

exp
{

τ 2λ2σ 2(x)
[1 − |λ|σ (x)c]

}
≤ sup

x∈C
exp

[
τ 2λ2‖σ‖20,∞

(1 − |λ|c‖σ‖20,∞)

]
= exp

[
τ̃ 2λ2

(1 − |λ|d)

]
.

Therefore, if |λ| � 1/d, 1 ≤ eτ̃2λ2/(1−|λ|d), we have that

sup
x∈C

E
(
eλδu|x = x

) ≤ [1 − p(x)] + p(x) exp
[

τ̃ 2λ2

(1 − |λ|d)

]
≤ exp

[
τ̃ 2λ2

(1 − |λ|d)

]
,

which entails that (δ ju j)
n
j=1 is a uniformly generalizedGaussian sequence. As it is also an inde-

pendent and identically distributed sequence of variables, from Proposition A.1, we obtain
(A.2).

Finally, (b) can be obtained from (A.1) taking Y � 1 or using Proposition A.1 and the fact
that the sequence of independent and identically distributed variables (δi)

n
i=1 is a uniformly

bounded sequence and so a uniformly generalized Gaussian sequence. ��

LemmaA.2. LetA be a compact set, b(x) and f(x) two continuous functions inA. Let f̂ (x) =
f̂n(x) be such that supx∈A | f̂ (x) − f (x)| a.s.−→ 0. Then we have that
(a) supx∈C |̂a(x) − b(x) f (x)| a.s.−→ 0, for any â(x) = ân such that

supx∈A |̂a(x)/ f̂ (x) − b(x)| a.s.−→ 0
(b) supx∈A |̂a(x)/ f̂ (x) − b(x)| a.s.−→ 0, if inf

x∈A
f (x) > 0 and supx∈C |̂a(x) − b(x) f (x)| a.s.−→

0.

Proof.
(a) Note that

sup
x∈A

|̂a(x) − b(x) f (x)| ≤ sup
x∈A

∣∣∣∣∣ â(x)f̂ (x)
− b(x)

∣∣∣∣∣
[
sup
x∈A

| f (x)| + sup
x∈A

| f̂ (x) − f (x)|
]

+ sup
x∈A

|b(x)| sup
x∈A

| f̂ (x) − f (x)| .

Thus, (a) follows from the fact that b(x) and f(x) are continuous so, bounded overA.
(b) Using that

sup
x∈A

∣∣∣∣∣ â(x)f̂ (x)
− b(x)

∣∣∣∣∣ ≤ supx∈A |̂a(x) − b(x) f (x)| + supx∈A |b(x)| supx∈A | f̂ (x) − f (x)|
infx∈A | f (x)| − supx∈A | f̂ (x) − f (x)| ,

the result follows from the fact that b(x) is bounded on A, infx∈A f (x) > 0 and the
uniform strong consistency of â(x) and f̂ (x). ��

Proof of Theorem 3.2.1.
(a) The result follows easily from Lemma A.1 since m̃(1)

s (x) = m̂δY (x)/m̂δ(x). See Boente
and Martínez (2012) for details.
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(b) For the sake of simplicity denote f̂ (x) = f̂n(x) for all x ∈ C. Recall that wi,h(x) =
Kh (x − xi) δi. As yi = m(xi) + ui, we have m̃(2)

s (x) = [B1(x) + B2(x)]/B0(x)
where B0(x) = (1/n)

∑n
i=1 wi,h(x)/ f̂ (xi), B1(x) = (1/n)

∑n
i=1 wi,h(x)m(xi)/ f̂ (xi),

and B2(x) = (1/n)
∑n

i=1 wi,h(x) u(xi)/ f̂ (xi). Hence, using that i(p) > 0 and Lemma
A.2, it will be enough to show that
(i) supx∈C |B1(x) − p(x)m(x)| a.s.−→ 0,
(ii) supx∈C |B2(x)| a.s.−→ 0,
(iii) supx∈C |B0(x) − p(x)| a.s.−→ 0.
(i) B1(x) can be written as B1(x) = B11(x) + B12(x) where

B11(x) = 1
n

n∑
i=1

wi,h(x)
m(xi)
f (xi)

and

B12(x) = 1
n

n∑
i=1

wi,h(x)m(xi)

[
1

f̂ (xi)
− 1

f (xi)

]
.

Thus, the proof of (i) will be completed if we show that

sup
x∈C

|B11(x) − p(x)m(x)| a.s.−→ 0, (A.3)

sup
x∈C

|B12(x)| a.s.−→ 0. (A.4)

The fact that m and f are bounded in C entails that the sequence of
i.i.d. variables {δim(xi)/ f (xi)}ni=1 are uniformly bounded. Using that
E[δm(X)/ f (X)|X = x] = m(x)p(x)/ f (x) and Proposition A.1 we get that
supx∈C

∣∣∣B11(x)/ f̂ (x) − p(x)m(x)/ f (x)
∣∣∣ a.s.−→ 0. On the other hand, D2, K1, K2,

andH1 imply that (see Prakasa Rao, 1983)

sup
x∈C

∣∣∣ f̂ (x) − f (x)
∣∣∣ a.s.−→ 0. (A.5)

Thus, (A.3) follows from Lemma A.2.
Using thatX has compact support,m is bounded on the support ofX andK ≥ 0,
we obtain the bound

|B12(u)| ≤ ‖m‖0,∞ f̂ (u)
supx∈C | f̂ (x) − f (x)|

infx∈C f̂ (x) infx∈C | f (x)|
so, (A.4) follows easily from (A.5) and the fact that i(f) > 0.

(ii) The proof follows similar steps to those used in (i) since B2(x) = B21(x) + B22(x)
with

B21(x) = 1
n

n∑
i=1

wi,h(x)
ui

f (xi)
and

B22(x) = 1
n

n∑
i=1

wi,h(x) ui

[
1

f̂ (xi)
− 1

f (xi)

]
.

Effectively, using Proposition A.1 and Lemma A.2, we get that
supx∈C |B21(x)| a.s.−→ 0. On the other hand, analogous arguments to those consid-
ered in the proof of (A.4), the Cauchy–Schwartz inequality and assumption D6
lead to supx∈C |B22(x)| a.s.−→ 0, concluding the proof of (ii).
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(iii) Note that B0(x) corresponds to B1(x) when m � 1. Therefore, (iii) follows from
(i). ��

Proof of Theorem Theorem 3.2.3. We begin by proving (a).
For any fixed 1 � α � d, we have that supxα∈Cα

|̂gα(xα ) − gα(xα )| ≤
B1 + B2 + B3 where B1 = supxα∈Cα

∣∣(1/n)
∑n

i=1 m̃(xα, xαi) − m(xα, xαi)
∣∣, B3 =

supxα∈Cα
|(1/n)

∑n
i=1 m(xα, xαi) − μ − gα(xα )|, and B2 = |μ̂ − μ|. The consistency of μ̂

entails that B2
a.s.−→ 0. On the other hand, the uniform strongly convergence of m̃ imply that

B1
a.s.−→ 0. Thus, in order to prove (a) it will be enough to show that B3

a.s.−→ 0. Using that m
satisfies A1, we get that B3 = supxα∈Cα

|∑d
τ=1,τ �=α

∑n
i=1 gτ (xτ i)/n|. Since E|gτ (Xτ )| < ∞ and

A2(a) holds, the result follows now from the strong law of large numbers.
(b) The proof follows easily from (a) and the consistency of μ̂ using the bound

supx∈C |m̂(x) − m(x)| ≤ |μ̂ − μ| + ∑d
α=1 supxα∈Cα

|̂gα(xα ) − gα(xα )|. ��
Proof of Theorem 3.2.4. The proof follows using analogous arguments to those considered
in the proof of Theorem 3.2.3 changing the averages to integrals and using A2(b). �
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