
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=lagb20

Download by: [Universidad de Buenos Aires], [Gabriela Jeronimo] Date: 25 April 2016, At: 15:45

Communications in Algebra

ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: http://www.tandfonline.com/loi/lagb20

Puiseux Expansions and Nonisolated Points in
Algebraic Varieties

María Isabel Herrero, Gabriela Jeronimo & Juan Sabia

To cite this article: María Isabel Herrero, Gabriela Jeronimo & Juan Sabia (2016) Puiseux
Expansions and Nonisolated Points in Algebraic Varieties, Communications in Algebra, 44:5,
2100-2109

To link to this article:  http://dx.doi.org/10.1080/00927872.2015.1033717

Published online: 25 Apr 2016.

Submit your article to this journal 

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=lagb20
http://www.tandfonline.com/loi/lagb20
http://dx.doi.org/10.1080/00927872.2015.1033717
http://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00927872.2015.1033717
http://www.tandfonline.com/doi/mlt/10.1080/00927872.2015.1033717
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2015.1033717&domain=pdf&date_stamp=2016-04-25
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2015.1033717&domain=pdf&date_stamp=2016-04-25


Communications in Algebra®, 44: 2100–2109, 2016
Copyright © Taylor & Francis Group, LLC
ISSN: 0092-7872 print/1532-4125 online
DOI: 10.1080/00927872.2015.1033717
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We consider the problem of deciding whether a common solution to a multivariate
polynomial equation system is isolated or not. We present conditions on a given
truncated Puiseux series vector centered at the point ensuring that it is not isolated. In
addition, in the case that the set of all common solutions of the system has dimension
1, we obtain further conditions specifying to what extent the given vector of truncated
Puiseux series coincides with the initial part of a parametrization of a curve of solutions
passing through the point.
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1. INTRODUCTION

A usual way to describe the set of complex common zeros V�f� of a
finite family of multivariate polynomials f with rational coefficients is by means
of the equidimensional decomposition of the algebraic variety V�f�. Several
general algorithmic symbolic procedures computing polynomials characterizing each
equidimensional component have been proposed (see, for example, [5], [4], [12], [15],
and [11]).

An alternative encoding of an equidimensional variety that originated in
the numerical algebraic geometry framework is by means of a witness point set,
namely a suitable linear slicing of the variety consisting of a finite set of points
containing as many points as the degree of the variety (see [18, Definition 13.3.1]).
This representation has been applied for algorithmic numerical equidimensional and
irreducible decomposition (see [18, Chapters 13–15]). In this context, for instance,
the software package PHCpack implements homotopy continuation methods to
compute a numerical irreducible decomposition (see [17]). However, numerical
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PUISEUX EXPANSIONS AND NONISOLATED POINTS 2101

approaches are subject to ill conditioning, which may lead to propagation of
roundoff errors and inconclusive results.

In the symbolic framework, for certain families of polynomial systems, larger
sets of points representing the equidimensional components of a variety (called
witness supersets, as introduced in [18, Definition 13.6.1]) can be computed with
better complexities than in previous symbolic decomposition procedures (see for
instance, [9], where the case of sparse polynomial systems with n equations in n
variables is considered), but no algorithm discarding extra points within the same
complexity order is known. This motivates the search for new symbolic tools that
may lead to solve this problem.

A first question that arises in this context is, given a point � ∈ V�f�, to decide
algorithmically whether it is isolated or not (numerical algorithms dealing with this
task can be found in [18, Section 13.7.2], [3] or [14]).

For a system of two polynomials in two variables, in [1, Proposition 5.3] it
is stated that, under certain hypotheses, if the second term in the Puiseux series
expansion at a common root � can be computed, then there exists a curve of
solutions for the original system; however, the result does not hold for arbitrary
bivariate polynomial systems. In [2] the authors extend this result to the case of n
variables and apply it successfully to produce exact representations for solution sets
of the cyclic n-roots problem.

In this article, we give conditions that a vector of truncated Puiseux series �
centered at a point � ∈ V�f� must fulfill in order to ensure that � is not an isolated
point of V�f� in the general case. Moreover, if the dimension of V�f� is 1, we give
further conditions on � to ensure that its initial part coincides with the initial part
of a Puiseux series expansion of a parametrization of a curve in V�f� containing �.
We will assume that f does not vanish identically at � since, otherwise, the results
follow straightforwardly.

We first consider the case of two polynomials in two variables by means of
elementary resultant-based techniques. The given conditions depend on the degrees
of the polynomials involved. Then, we deal with the general case of n-variate
polynomial systems, obtaining conditions that depend on invariants associated to
the ideal the polynomials generate and the degree of the variety they define.

2. BIVARIATE POLYNOMIALS

The branches of a plane curve in �2 through a point can be locally
parametrized by means of Puiseux series (see, for example, [19]). A Puiseux series
with complex coefficients centered at �1 ∈ � is a formal expression of the form∑

i∈�0
ai�t − �1�

�i , where ai ∈ � for every i ∈ �0, and ��i	i∈�0
is a family of rational

numbers with bounded denominators such that �i < �i+1 for every i ∈ �0. We
denote by ord�t−�1��

∑
i∈�0

ai�t − �1�
�i � = min��i � ai �= 0	 the order of this Puiseux

series. We will write ���t − �1		 for the ring of all Puiseux series with complex
coefficients centered at �1.

Given a polynomial q ∈ �
t� Y� and a point � = ��1� �2� ∈ �2 such that q��� =
0 and q��1� Y� �≡ 0, there is at least one Puiseux series

∑
i∈�0

ai�t − �1�
�i such that

�0 = 0, a0 = �2 and q�t�
∑

i∈�0
ai�t − �1�

�i � = 0 (such a Puiseux series will be called a
parametrization of the curve through �). In the following lemma, we give conditions
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2102 HERRERO ET AL.

on the vanishing order of the polynomial q at a truncated Puiseux series to establish
to what extent it coincides with a parametrization of the curve defined by q.

Lemma 1. Let q ∈ �
t� Y� and � = ��1� �2� ∈ �2 such that q��� = 0. Let � =∑N
i=0 ai�t − �1�

�i with a0 = �2 and �0�    � �N � L ∈ � such that 0 = �0 < · · · < �N ≤ L
and ord�t−�1��q�t� ��� > L. If L ≥ mult��1� c�, where c ∈ �
t� is the leading coefficient
of q as a polynomial in �
t�
Y�, then there is a parametrization of a branch of the curve
V�q� ⊂ �2 through � whose initial terms are �t�

∑M
i=0 ai�t − �1�

�i �, where M = max�i ∈
�0�    � N	 � �i ≤ L−mult��1�c�

degY �q�
	.

Proof. Consider q as a polynomial in ���t − �1		
Y� and its linear factorization q =
c
∏D

h=1�Y − �h�, where c ∈ �
t�. If no �h ∈ ���t − �1		 begins with
∑M

i=0 ai�t − �1�
�i ,

by the definition of M we have that ord�t−�1�q�t� �� = mult��1� c� +∑D
h=1 ord�t−�1��� −

�h� ≤ mult��1� c� + D L−mult��1�c�

D
= L, contradicting the assumption that ord�t−�1�

�q�t� ��� > L. �

The following example shows that the bound given in the previous lemma can
be attained.

Example 1. Let q ∈ �
t� Y� be the polynomial q�t� Y� = td1�Y − 1�d2 and � = �0� 1�
a zero of q. Here, �t� 1� is a curve in V�q� passing through �. Let �� L ∈ � such that
L ≥ d1 and 0 < � ≤ L. Then � = 1 + t� satisfies that ordt�q�t� ��� > L if and only if
L−d1

d2
< �, and the bound given by the lemma in this case is exactly L−d1

d2
.

Remark 2. If q��� = 0 and �q

�X2
��� �= 0, there exists a unique formal power series

with integer exponents
∑

i∈�0
ci�t − �1�

i such that q�t�
∑

i∈�0
ci�t − �1�

i� = 0 and c0 =
�2, and the Newton–Hensel lifting gives a constructive way to approximate it (see
[8, Lemma 3], [6] for algorithmic versions of this result). In this case, under the
assumptions of Lemma 1, ai = ci for all i ≤ L − mult��1� c�. This can be proved
following the arguments in the proof of the lemma and using that there is at most
one root �h of q such that ord�t−�1���2 − �h� > 0.

Now we analyze our main problem in the case of two bivariate polynomials.
Consider first the following easy example.

Example 2. Let f1� f2 ∈ �
X1� X2� be the polynomials

f1�X1� X2� = X2 − 1 + X1 + X
d1
1 and f2�X1� X2� = X2 − 1 + X1 + X

d2
1 

It is clear that the zero sets of f1 and f2 in �2 are the curves parametrized by
�t� 1 − t − td1� and �t� 1 − t − td2�, respectively, and so, if d1 �= d2, there is no curve
of common zeroes for these polynomials. Nonetheless, the terms of degree lower
than min�d1� d2	 of both expansions coincide.

The question that arises is, given two polynomials f1� f2 ∈ �
X1� X2� with a
common solution �, to what extent the Puiseux series expansions of parametrizations
of curves of solutions through � of f1 and f2, respectively, must coincide in order to be
able to conclude that f1 and f2 share a curve of solutions.
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PUISEUX EXPANSIONS AND NONISOLATED POINTS 2103

In [1, Proposition 5.3], it is stated that, given fi�X1� X2� = pi�X2� + Pi�X1� X2�

for i = 1� 2, where pi have nonzero constant term and all terms in Pi have a positive
power in X1, and �2 ∈ � − �0	 such that pi��2� = 0, �pi

�X2
��2� �= 0, and fi�t� �2� �= 0

for i = 1� 2, if the exponents and coefficients of the first two terms �X1 = t� X2 =
�2 + a1t

�1� of the series expansions at the common root � = �0� �2� coincide, there
exists a curve of common solutions containing � and these first two terms are in fact
the leading part of a Puiseux series expansion of a regular common factor of f1 and
f2. As we can see in the previous example, this is not always the case.

The example also shows that the precision required to ensure the existence of
a curve of common zeros containing � depends on the degrees of the polynomials
involved. Here we present a lower bound for this precision.

Proposition 3. Let f1� f2 ∈ �
X1� X2� be polynomials with positive degrees in the
variable X2 and with a common zero � = ��1� �2�. Let � = ∑N

i=0 ai�t − �1�
�i with a0 =

�2 and �0�    � �N � L ∈ � such that 0 = �0 < · · · < �N ≤ L and ord�t−�1��fj�t� ��� > L

for j = 1� 2. Let dij = degXi
�fj�. If L ≥ d11d22 + d12d21� then there exists a curve of

common zeroes of f1 and f2 that contains �. Moreover, there is a parametrization of the
curve whose initial terms are �t�

∑M
i=0 ai�t − �1�

�i �, where

M = max
{

i ∈ �0�    � N	 � �i ≤ L − �d11d22 + d12d21� − min�d11� d12	

min�d21� d22	
+ d11 + d12

}


Proof. If the resultant ResX2
�f1� f2� is not the zero polynomial, then

degX1
�ResX2

�f1� f2�� ≤ d11d22 + d12d21, and therefore, ord�t−�1��ResX2
�f1� f2��t�� ≤ L.

On the other hand, since the order of any linear combination of f1 and f2 with
coefficients in �
X1� X2�, evaluated in �t� �� is higher than L, it follows that
ord�t−�1��ResX2

�f1� f2��t�� > L. Therefore, if L ≥ d11d22 + d12d21, we have that
ResX2

�f1� f2� = 0 and so, f1 and f2 have a common factor depending on X2.
Let q �= gcd�f1� f2� ∈ �
X1� X2�, and let f̃1, f̃2 be such that f1 = qf̃1 and f2 =

qf̃2. If q��� �= 0, then ord�t−�1��̃fj�t� ��� = ord�t−�1��fj�t� ��� > L and, repeating the
arguments above, ResX2

�̃f1� f̃2� = 0, which is a contradiction.
Similarly, as ResX2

�̃f1� f̃2��t� �= 0, it follows that, for some j, ord�t−�1��̃fj�t� ��� ≤
�d11 − d1q��d22 − d2q� + �d12 − d1q��d21 − d2q�, where diq = degXi

�q� for i = 1� 2.
Then,

ord�t−�1�q�t� �� = ord�t−�1�fj�t� �� − ord�t−�1�f̃j�t� ��

> L − �d11 − d1q��d22 − d2q� − �d12 − d1q��d21 − d2q�

Since L − �d11 − d1q��d22 − d2q� − �d12 − d1q��d21 − d2q� = L − �d11d22 + d12d21� +
d2q�d11 + d12 − 2d1q� + d1q�d21 + d22� ≥ d1q, by Lemma 1, there is a parametrization
of a curve passing through � and contained in V�q� ⊂ V�f1� f2� whose initial terms
are ai�t − �1�

�i as long as

�i ≤ L − �d11 − d1q��d22 − d2q� − �d12 − d1q��d21 − d2q� − d1q

d2q
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2104 HERRERO ET AL.

As

L − �d11 − d1q��d22 − d2q� − �d12 − d1q��d21 − d2q� − d1q

d2q

= L − �d11d22 + d12d21� + d1q�d21 + d22 − 2d2q� − d1q

d2q

+ d11 + d12

≥ L − �d11d22 + d12d21� − min�d11� d12	

min�d21� d22	
+ d11 + d12�

the proposition follows. �

As before, the given bound can be attained:

Example 3. Let f1� f2 ∈ �
X1� X2� be the polynomials

f1�X1� X2� = X
d11
1 �X2 − 1�d2� f2�X1� X2� = X

d12
1 �X2 − 1�d2

and � = �0� 1� a common zero. Here, �t� 1� is a curve of common solutions of f1

and f2 containing �. Let �� L ∈ � such that L ≥ �d11 + d12�d2 and � ≤ L. The vector
�t� 1 + t�� satisfies the hypothesis of Proposition 3 if and only if L−min�d11�d12	

d2
< �,

which is exactly the same bound given by the proposition.

Remark 4. If for j = 1 or j = 2, we have that fj��� = 0 and �fj

�X2
��� �= 0, under

the assumptions of Proposition 3, following Remark 2, there is a common solution
curve for f1 and f2 having a parametrization whose initial terms are �t�

∑K
i=0 ai�t −

�1�
i� for K = 	L
 − min�d11� d12	.

3. ARBITRARY SYSTEMS

In this section, we are going to extend the results of Section 2 to arbitrary
multivariate polynomial equation systems.

3.1. Non-Isolated Points

Let f = �f1�    � fm� be a polynomial system in �
X1�    � Xn� and V�f� =
V�f1�    � fm� be the set of the common zeros of f in �n. Let � = ��1�    � �n� ∈ �n be
a point in V�f�. The next theorem presents a bound for the vanishing order required
on the system evaluated at a vector of truncated Puiseux series centered at � to
ensure that � lies in an irreducible component W of V�f� such that �X1

�W� = �,
where �X1

� �n → � is the projection to the first coordinate, �X1
�x1�    � xn� = x1,

and the closure is taken with respect to the Zariski topology. The bound is given in
terms of the Noether exponent of the ideal �f1�    � fm, that is, the minimum positive
integer e�f� such that

(√�f1�    � fm)e�f� ⊂ �f1�    � fm.
In the sequel, for an irreducible variety C ⊂ �n such that �X1

�C� = �, we will
say that C is a variety with free variable X1.
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PUISEUX EXPANSIONS AND NONISOLATED POINTS 2105

Theorem 5. Let f = �f1�    � fm� be a polynomial system in �
X1�    � Xn� and � =
��1�    � �n� ∈ �n be a zero of f. Let �0�    � �N � L ∈ � such that 0 = �0 < · · · < �N ≤ L
and

� =
(

t�
N∑

i=0

ai2�t − �1�
�i �    �

N∑
i=0

ain�t − �1�
�i

)

be a Puiseux series vector with coefficients in � centered at �1 such that a0l = �l for all
2 ≤ l ≤ n and ord�t−�1��fj���� > L for all 1 ≤ j ≤ m. Let e�f� be the Noether exponent
of �f1�    � fm. If L ≥ e�f�� then there exists an irreducible component W of V�f� with
free variable X1 such that � ∈ W .

Proof. Let � be the algebraic variety of all irreducible components of V�f� with
free variable X1. If � = V�f�, there is nothing to prove.

Let p ∈ �
X1� be the monic polynomial of minimum degree that vanishes over
�X1

�V�f� − � �. Suppose � = ∅; then p ∈ √�f1�    � fm and so, pe�f� ∈ �f1�    � fm.
Hence, ord�t−�1��p���e�f�� = e�f�ord�t−�1��p�t�� ≤ e�f� ≤ L. As the order of any linear
combination of f1�    � fm evaluated in � is higher than L, it follows that � �= ∅.

Assume now that � �∈ �  Then, for every irreducible component C of V�f�
such that � ∈ C, �X1

�C� = �1. Let q ∈ �
X1�    � Xn� such that q vanishes over the
union of all irreducible components of V�f� that do not contain � and q��� �= 0.
Then �X1 − �1�q ∈ √�f1�    � fm and so, ��X1 − �1�q�e�f� is a linear combination of
f1�    � fm with coefficients in �
X1�    � Xn�; then, ord�t−�1����t − �1�q����e�f�� > L.
But ord�t−�1�q��� = 0. This leads to a contradiction and, consequently, � ∈ � . �

The following trivial example shows that the bound L ≥ e�f� in the previous
theorem is sharp.

Example 4. Let f = �xe
1� x2�    � xn�. Then, V�f� = �0	 and it is easy to see that

e�f� = e. Consider � = 0 and � = �t� 0� 0�    � 0�. Then ordt�f1���� = e and fj��� =
0 for every 2 ≤ j ≤ n. However, V�f� contains no curve.

Remark 6. Any explicit upper bound for e�f� provides an explicit bound for the
parameter L in Theorem 5. For instance, the following bounds could be applied:

• If deg�fj� ≤ d for every 1 ≤ j ≤ m, then e�f� ≤ dmin�n�m	 (see [10, Theorem 1.3]).
• For polynomials f1�    � fm with supports �1�    ��m ⊂ ��≥0�

n, respectively, (�i

is the set of vectors of exponents of the monomials of fi with nonzero coefficients
for all 1 ≤ i ≤ m), e�f� ≤ nn+2n!voln�� ∪ �n�, where � = ⋃m

j=1 �j and �n is the
standard simplex of �n (see [16]). Under certain assumption on an associated
polytope, the following smaller bound holds: e�f� ≤ min�n + 1� m	2n!voln�� ∪ �n�
(see [16, Theorem 2.10]).

3.2. Varieties of Dimension 1

Under certain assumptions, for a point � in an algebraic variety V�f�, Theorem
5 in the previous section ensures the existence of a positive dimensional component
of V�f� with free variable X1 containing �.
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2106 HERRERO ET AL.

If, in addition to the conditions of Theorem 5, dim�V�f�� = 1, a question that
arises naturally is to what extent the given Puiseux series vector coincides with the
expansion of a parametrization of a curve in V�f� containing the point �. In this
section, we give a degree bound that enables us to answer this question. The bound
depends on the Noether exponent of the ideal and the degree deg�V�f�� of the variety
(for the definition of degree we use, see [7]).

In order to deal with 1-dimensional varieties, we will use the notion of
a geometric resolution, widely used in computational algebraic geometry (see for
instance [6]).

Definition 7. Let V = ���1��    � ��D�	 ⊂ k
n

be a zero-dimensional variety defined
by polynomials in k
X1�    � Xn�, where k is a field of characteristic 0 and k an
algebraic closure of k. Given a linear form � = �1X1 + · · · + �nXn in k
X1�    � Xn�

such that ����i�� �= ����j�� if i �= j, the following polynomials completely characterize
V :

• The minimal polynomial q = ∏D
i=1�Y − ����i��� ∈ k
Y� of � over the variety V

(where Y is a new variable);
• Polynomials v1�    � vn ∈ k
Y� with deg�vj� < D for every 1 ≤ j ≤ n satisfying

��i� = �v1�����i����    � vn�����i���� for every 1 ≤ i ≤ D.

The family of univariate polynomials �q� v1�    � vn� ∈ k
Y�n+1 is called the
geometric resolution of V (or the geometric resolution of k
V�) associated with �. We
have

V = ��v1�y��    � vn�y�� ∈ k
n � y ∈ k� q�y� = 0	

The notion of geometric resolution can be extended to any equidimensional
variety. In our situation, it can be defined as follows: Let � ⊂ �n be an
equidimensional variety of dimension 1 defined by polynomials in �
X1�    � Xn�

such that X1 is free for each irreducible component of � . By considering ��X1� ⊗
�
� �, we are in a zero-dimensional situation, and a geometric resolution of � with
free variable X1 is a geometric resolution �q� v2�    � vn� ∈ ��X1�
Y�n of ��X1� ⊗
�
� � associated to a linear form � ∈ �
X2�    � Xn�.

Theorem 8. Let f = �f1�    � fm� be a polynomial system in �
X1�    � Xn� such that
dim�V�f�� ≤ 1 and � = ��1�    � �n� ∈ �n be a zero of f. Let �0�    � �N � L ∈ � such
that 0 = �0 < · · · < �N ≤ L and

� =
(

t�
N∑

i=0

ai2�t − �1�
�i �    �

N∑
i=0

ain�t − �1�
�i

)

be a Puiseux series vector with coefficients in � centered at �1 such that a0l = �l for all
2 ≤ l ≤ n and ord�t−�1��fj���� > L for all 1 ≤ j ≤ m. Let e�f� be the Noether exponent
of �f1�    � fm. If L ≥ e�f�deg�V�f��, there exists a curve W in V�f� with free variable
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X1 such that � ∈ W and there is a parametrization of W whose initial terms are �M �=
�t�
∑M

i=0 ai2�t − �1�
�i �    �

∑M
i=0 ain�t − �1�

�i �, where

M = max
{

i ∈ �0�    � N	 � �i ≤ L

e�f�deg�V�f��

}


Proof. By Theorem 5, the point � lies in an irreducible component W of V�f�
with free variable X1. Let � be the union of all the irreducible components
of V�f� with free variable X1, which is a nonempty equidimensional variety of
dimension 1. Replace X1 by t in the polynomials f1�    � fm, and consider the
ideal ��t� ⊗ �f ⊂ ��t�
X2�    � Xn� and its zeros �1�    � �D ∈ ���t − �1		

n−1. Let � =∑n
k=2 �kXk be a generic linear form and �q� v2�    � vn� ∈ ��t�
Y� be the geometric

resolution of � associated with �. Then, q�Y� = ∏D
h=1�Y − ���h�� and D ≤ deg�� �.

As � is generic, we may assume that, for every 1 ≤ h ≤ D, ord�t−�1������ − ���h�� =
min�ord�t−�1�����k − ��h�k� � 2 ≤ k ≤ n	.

Let � � � → �2 be the map ��x� = �x1� ��x2�    � xn��. Then, there is a
polynomial c ∈ �
t� such that q̂�t� Y� �= c�t�q�Y� ∈ �
t� Y� and q̂ defines the Zariski
closure of ��� �. Note that degt�c� + D ≤ deg�q̂� ≤ deg�� � (see [7, Lemma 2]).

As in the proof of Theorem 5, let p ∈ �
X1� be a monic polynomial of
minimum degree that vanishes over �X1

�V�f� − � � (if � = V�f� take p = 1). We
have that deg�p� ≤ deg�V�f�� − deg�� �. Since q̂�X1� ��p�X1� vanishes over V�f�, it
follows that �q̂�X1� ��p�X1��

e�f� is a linear combination of f1�    � fm with coefficients
in �
X1�    � Xn�; therefore, ord�t−�1���q̂�t� �����p�t��e�f�� > L. Then,

ord�t−�1��q̂�t� ������ >
L

e�f�
− deg�p� ≥ L

e�f�
− deg�V�f�� + deg�� �

≥
( L

e�f�deg�V�f��
− 1

)
deg�V�f�� + D + degt�c�

≥ LD

e�f�deg�V�f��
+ degt�c�

Since c is the leading coefficient of q̂ and degt�c� ≥ mult��1� c�, by Lemma 1,
there exists 1 ≤ h ≤ D such that

ord�t−�1������ − ���h�� >

LD
e�f�deg�V�f�� + degt�c� − mult��1� c�

D
≥ L

e�f�deg�V�f��


The theorem follows by our assumption on �. �

Although Theorem 8 states that, in the general case, a large number of terms
only provide a few ones of the initial part of a parametrization, the following example
shows that the precision order is sharp for certain choices of the parameters.

Example 5. Let f = �
∏d

k=1�x1 − kx2�
e� x3�    � xn� and � = 0 a common zero. It

is easy to see that e�f� = e and deg�V�f�� = d. Taking L = ed, the vector � =
�t� t + t1+�� 0�    � 0� satisfies the hypothesis from Theorem 8 for all � > 0 since
ordt�f1���� = e�d + �� > L and fj��� = 0 for all 2 ≤ j ≤ n − 1. In this case the
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precision bound from the previous theorem is exactly L
de

= 1, which coincides with
the first terms from � that correspond to a parametrization of a curve in V�f� for
all � > 0.

Remark 9. Explicit upper bounds for both e�f� and deg�V�f�� provide explicit
bounds for the parameters in Theorem 8. For instance, using the bounds for e�f�
already stated in Remark 6, we have as follows:

• If deg�fj� ≤ d for every 1 ≤ j ≤ m, then deg�V�f�� ≤ dmin�n�m	 (see [7, Theorem 1]).
Therefore, for L ≥ d2 min�n�m	 and � satisfying the conditions of the statement, if
�M ≤ Ld−2 min�n�m	, then �M is the initial part of a parametrization of a curve in
V�f� containing �.

• For polynomials f1�    � fm with supports �1�    ��m ⊂ ��≥0�
n, respectively,

deg�V�f�� ≤ n!voln�� ∪ �n� (see [13, Proposition 2.12]), where � = ⋃m
j=1 �j and

�n is the standard simplex of �n. Therefore, using the bound for e�f� stated
in Remark 6, for L ≥ nn+2�n!voln�� ∪ �n��

2 and � satisfying the conditions of
the statement, if �M ≤ L n−n−2�n!voln�� ∪ �n��

−2, then �M is the initial part of a
parametrization of a curve in V�f� containing �.
When m = n, the sharper bound deg�V�f�� ≤ 	�n��1 ∪ �n�    ��n ∪ �n� holds
(see [9, Theorem 16]), where 	�n denotes the n-dimensional mixed volume.
This leads to sharper bounds for L and the precision order �M . Under certain
assumptions on an associated polytope, the bounds from [16, Theorem 2.10] also
lead to improved estimates.

FUNDING

This work was partially supported by the Argentinean research grants
CONICET PIP 0099/11 and UBACYT 20020120100133 (2013-2016).

REFERENCES

[1] Adrovic, D., Verschelde, J. (2011). Tropical algebraic geometry in Maple: A
preprocessing algorithm for finding common factors for multivariate polynomials with
approximate coefficients. J. Symbolic Comput. 46(7):755–772.

[2] Adrovic, D., Verschelde, J. (2012). Computing Puiseux series for algebraic surfaces.
In: Proceedings of the 37th International Symposium on Symbolic and Algebraic
Computation (ISSAC 2012), Grenoble, France, July 22–25, pp. 20–27.

[3] Bates, D., Hauenstein, J., Peterson, C., Sommese, A. (2009). A local dimension test
for numerically approximated points on algebraic sets. SIAM J. Numerical Analysis
47:3608–3623.

[4] Elkadi, M., Mourrain, B. (1999). A new algorithm for the geometric decomposition of
a variety. In: Proceedings of ISSAC’99. New York: ACM, pp. 9–16.

[5] Giusti, M., Heintz, J. (1991). Algorithmes - disons rapides - pour la décomposition
d’une variété algébrique en composantes irréductibles et équidimensionelles. In: Proc.
Effective methods in algebraic geometry (Castiglioncello, 1990). Progr. Math., Vol. 94.
Boston, MA: Birkhäuser Boston, pp. 169–194.

[6] Giusti, M., Lecerf, G., Salvy, B. (2001). A Gröbner free alternative for polynomial
system solving. J. Complexity 17(1):154–211.

[7] Heintz, J. (1983). Definability and fast quantifier elimination in algebraically closed
fields. Theoret. Comput. Sci. 24(3):239–277.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

B
ue

no
s 

A
ir

es
],

 [
G

ab
ri

el
a 

Je
ro

ni
m

o]
 a

t 1
5:

45
 2

5 
A

pr
il 

20
16

 



PUISEUX EXPANSIONS AND NONISOLATED POINTS 2109

[8] Heintz, J., Krick, T., Puddu, S., Sabia, J., Waissbein, A. (2000). Deformation
techniques for efficient polynomial equation solving. J. Complexity 16(1):70–109.

[9] Herrero, M. I., Jeronimo, G., Sabia, J. (2013). Affine solution sets of sparse polynomial
systems. J. Symbolic Comput. 51:34–54.

[10] Jelonek, Z. (2005). On the effective Nullstellensatz. Invent. Math. 162(1):1–17.
[11] Jeronimo, G., Krick, T., Sabia, J., Sombra, M. (2004). The computational complexity

of the Chow form. Found. Comput. Math. 4(1):41–117.
[12] Jeronimo, G., Sabia, J. (2002). Effective equidimensional decomposition of affine

varieties. J. Pure Appl. Algebra 169(2–3):229–248.
[13] Krick, T., Pardo, L. M., Sombra, M. (2001). Sharp estimates for the arithmetic

Nullstellensatz. Duke Math. J. 109(3):521–598.
[14] Kuo, Y. C., Li, T. Y. (2008). Determining dimension of the solution component that

contains a computed zero of a polynomial system. J. Math. Anal. Appl. 338:840–851.
[15] Lecerf, G. (2003). Computing the equidimensional decomposition of an algebraic

closed set by means of lifting fibers. J. Complexity 19(4):564–596.
[16] Sombra, M. (1999). A sparse effective Nullstellensatz. Adv. Appl. Math. 22:271–295.
[17] Sommese, A. J., Verschelde, J., Wampler, C. W. (2003). Numerical irreducible

decomposition using PHCpack. In: Algebra, Geometry, and Software Systems. Berlin:
Springer, pp. 109–129.

[18] Sommese, A. J., Wampler, C. W. (2005). The Numerical Solution of Systems of
Polynomials Arising in Engineering and Science. Hackensack, NJ: World Scientific
Publishing Co. Pte. Ltd.

[19] Walker, R. J. (1950). Algebraic Curves. Princeton Mathematical Series, Vol. 13.
Princeton, NJ: Princeton University Press.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

B
ue

no
s 

A
ir

es
],

 [
G

ab
ri

el
a 

Je
ro

ni
m

o]
 a

t 1
5:

45
 2

5 
A

pr
il 

20
16

 


	Introduction
	Bivariate Polynomials
	Arbitrary Systems
	Non-Isolated Points
	Varieties of Dimension 1

	Funding
	References

