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Abstract We present dimension-free reverse Hölder inequalities for strong A∗
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weights, 1 ≤ p < ∞. We also provide a proof for the full range of local integra-
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1 weights. The common ingredient is a multidimensional version of Riesz’s
“rising sun” lemma. Our results are valid for any nonnegative Radon measure with no
atoms. For p = ∞, we also provide a reverse Hölder inequality for certain product
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2 T. Luque et al.

1 Introduction and Main Results

In this article we present several results regarding reverse Hölder inequalities for
strong A∗

p(μ)Muckenhouptweights onRn for a general non-atomicRadonmeasureμ.
Before describing these facts, a fewwords concerning the family ofweights considered
in here are necessary.

The classes A∗
p(μ) of strong weights consist of all nonnegativeμ-measurable func-

tions on Rn such that, for 1 < p < ∞ and p′ = p/(p − 1), satisfy

[w]A∗
p(μ) := sup

R

(
−
∫
R

w dμ

) (
−
∫
R

w1−p′
dμ

)p−1

< ∞, (1.1)

where the supremum is taken over all rectangles R ⊂ R
n with sides parallel to the

coordinate axes. As usual, we denote by −
∫
E f dμ = fE = 1

μ(E)

∫
E f dμ the average

of f over E with respect to the measure μ.
The limiting case of (1.1), when p = 1, defines the class A∗

1(μ); that is, the set of
weights w such that

[w]A∗
1(μ) := sup

R

(
−
∫
R

w dμ

)
ess supR(w−1) < +∞.

This is equivalent to w having the property

Msw(x) ≤ [w]A∗
1(μ)w(x) μ a.e. x ∈ R

n .

Here Ms denotes the strong maximal function:

Ms f (x) = sup
R�x

−
∫
R

| f | dμ, (1.2)

where the supremum is taken over all rectangles R ⊂ R
n with sides parallel to the

coordinate axes containing the point x . Similarly,M will denote theHardy–Littlewood
maximal function, namely when the supremum is taken over cubes with sides parallel
to the coordinate axes.

It follows fromHölder’s inequality and the definitions above that the classes A∗
p(μ)

are increasing in p ≥ 1. It is thus natural to define the limiting class A∗∞(μ) as

A∗∞(μ) :=
⋃
p≥1

A∗
p(μ). (1.3)

If we only consider cubes with sides parallel to the coordinate axes, we obtain the
classical Muckenhoupt Ap(μ) classes. Throughout the paper, we will often use the
shorthand notation Ap and A∗

p since the underlying measure will always be clear from
the context.
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Typically, for w ∈ Ap, 1 ≤ p ≤ ∞, one expects an inequality of the form

−
∫
Q

w1+ε dμ ≤ C

(
−
∫
Q

w dμ

)1+ε

, (1.4)

valid for any cube Q, where the constant C may depend on the Ap constant of the
weight, the value of ε and on the measure μ. Inequalities like (1.4) are known as
reverse Hölder inequalities (RHI) and their study can be traced back to the works
of Muckenhoupt [31], Coifman and Fefferman [7], within the context of harmonic
analysis, and in the work of Gehring [12], within the context of the theory of quasi-
conformal mappings. Since then, these kinds of inequalities have been widely studied
in many different situations with several motivations; we refer to [3] and [18] for the
applications to elliptic PDE and quasiconformal mappings in the plane. We refer the
interested reader to the monographs [11, Chap. 4] and [2, Chap. 6] for more detailed
information on these issues. More recently, RHI with good control on the constants
have become relevant in the study of sharp bounds for some of the main operators in
harmonic analysis, such as singular integrals, maximal functions, commutators with
BMO functions and others. See, for instance, [6,16,24,25] for an account of this sub-
ject. More precisely, within this last context, it is particularly interesting to provide a
version of such inequalities with a constant C independent of the weight. In partic-
ular, in [17] the authors proved that, with underlying Lebesgue measure on R

n , we
can take C = 2 in the above inequality and the result is valid for any w ∈ A∞ and
0 < ε ≤ 1

2n+1[w]A∞
, where

[w]A∞ := sup
Q

1

w(Q)

∫
Q
M(wχQ) dx < ∞

is called the Fujii–Wilson constant. Moreover, this result can be trivially extended to
any doubling measures μ on R

n ; that is, a measure μ such that:

μ(2Q) ≤ Cμ μ(Q)

for every cube Q. Although the concept of doubling is affected by the family of sets
we consider, in the particular case of rectangles the above definition remains the same.
See [13, Sect. 5] for a more complete definition of doublingmeasures on general basis.

Most of the known proofs of RHI for classical Ap weights are based on the
Calderón–Zygmund (C–Z) decomposition lemma applied to the level set of theHardy–
Littlewood maximal function M . This kind of stopping time argument produces a
family of maximal cubes with nice properties. But in order to exploit the maximality,
one needs to relate the average over some cube Q to the average over the dyadic parent
of Q. In the case of doubling measures, the dilation process produces a dependence
on the doubling constant. In particular, it forces the dependence on the dimension for
the classical situation of the Lebesgue measure. This dependence on the dimension
appears on the range of possible values for the exponent in the RHI.
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4 T. Luque et al.

In the context of non-doubling measures, [32, Lemma 2.3] presents a characteriza-
tion of the class A∞ = ⋃

p≥1 Ap in terms of several equivalent properties, and theRHI
is among them. The only requirement imposed on the measure μ is the “polynomial
growth” condition; that is, there exists some 0 < α ≤ n such that, for any x ∈ R

n ,
and for any r > 0,

μ(B(x, r)) ≤ Crα. (1.5)

The relevant consequence of this condition is that μ does not concentrate positive
measure on hyperplanes parallel to the coordinate axes of some system of coordinates.
By changing variables, we can assume that this condition is fulfilled for the canonical
coordinates. Moreover, this latter condition is in fact a consequence of the absence
of atoms (see [29]). In that case, the lack of doubling is solved in [32, Lemma 2.1]
by using a suitable version of Besicovitch’s covering theorem. This result provides a
family of quasi-disjoint cubes with controlled average that covers the level set of the
maximal function. The overlap is controlled by a dimensional constant B(n), known
as the Besicovitch constant. Tracking the constants in [32, Lemma 2.3], the following
inequality holds

−
∫
Q

w1+ε dμ ≤ 2

(
−
∫
Q

w dμ

)1+ε

for any 0 < ε ≤ 1
2p+1B(n)[w]Ap , p > 1. Then, in this case, we observe that the RHI

depends on the dimension via the Besicovitch constant.
In this paper, we focus our attention in the reverse Hölder property for strong

weights. In the case of the Lebesgue measure, a simple change of variables produces
a RHI for rectangles since it is known for cubes (the details can be found in [9]).
However, this argument produces the same range for the exponent, and therefore it
will appear a dependence on the dimension. This clashes with the somewhat intuitive
idea that, in many circumstances, strong weights behave like one-dimensional objects;
see [22] for further details on this issue. In addition, our purpose here is to investigate
(1.4) for arbitrary non-atomic measures for which it is (in general) not possible to
apply a change of variables argument.

We present a proof of a dimension-free RHI avoiding the use of C–Z type lemmas.
We use instead what is known as a multidimensional form of the classical F. Riesz’s
“Rising Sun” lemma. The following lemma is from [21], and can be understood as a
more precise version of the classic C–Z lemma.

Lemma 1.1 (Multidimensional F. Riesz’s lemma) Let R ⊂ R
n be a rectangle and let

μ be any non-atomic, nonnegative Radon measure on R. Let f ∈ L1
R(μ) and fR ≤ λ.

Then there is a finite or countable set of pairwise disjoint rectangles {R j } j for which

−
∫
R j

f dμ = λ,

and f (x) ≤ λ for μ-almost all points x ∈ R \ (∪ j R j
)
.
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We remark that in [21] the above lemma is formulated for absolutely continuous
measures. But an inspection of the proof shows that it is sufficient that the measure
satisfies μ(L) = 0 for any hyperplane parallel to the coordinate axes.

Our first main result is the following.

Theorem 1.2 Consider a non-negative, non-atomic Radon measure μ. Let w ∈ A∗
p,

1 < p < ∞, and let R be a rectangle. Then

−
∫
R

w1+ε dμ ≤ 2

(
−
∫
R

w dμ

)1+ε

,

for any 0 < ε ≤ 1
2p+2[w]A∗

p
.

For the particular case of the A∗
1 weights, we also address other questions regarding

the sharp local integrability range for the weight w. In dimension 1 (for the Lebesgue
measure), it is known that if a weight w is in A∗

1 ≡ A1 then for any finite interval
I ⊂ R we have that

−
∫
I
w(x)s dx ≤ Cs,w

(
−
∫
I
w(x) dx

)s

(1.6)

for all s such that 1 < s <
[w]A1[w]A1−1 = ([w]A1)

′. This result is from [4, Corollary 1]

and there is also a sharp estimate on Cs,w (see also [27], [28]). In higher dimensions
the known result is due to Kinnunen. In [19] the author proved the analogue of (1.6)
for A∗

1 weights, also with sharp constants. His proof relies strongly on the fact that
the Lebesgue measure is a product measure. Therefore, an induction argument on the
dimension can be carried out. For the particular case of cubes, the best known result
is in [20, Theorem 1.3].

In the case of dyadic A1 weights, the sharp result can be found in [30]. For the
case of doubling measures in metric spaces, some results are in [1] but without sharp
constants.

Our second main result is the extension of Kinnunen’s result to general measures:

Theorem 1.3 Let μ be a non-atomic Radon measure on Rn. Let w ∈ A∗
1. Then

−
∫
R

ws dμ ≤ s

1 − (s − 1)([w]A∗
1
− 1)

(
−
∫
R

w dμ

)s

,

for any 1 < s <
[w]A∗

1[w]A∗
1
−1 .

We present here a short and simple proof based on the multidimensional Riesz’s
lemma to obtain the result for general measures with mild conditions. With this argu-
ment we are able to obtain the same optimal range for the exponent s. Moreover,
Theorem 5.1 describes a different version of these results with the range s depending
on the norm of the strongmaximal operator Ms on the dual space, namely L p′

(w1−p′
).

In fact the case p = 1 can be seen as a limiting case of Theorem 5.1.
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6 T. Luque et al.

Finally, we also study reverse Hölder inequalities for strong A∗∞ weights where the
previous approach using the Riesz’s Lemma cannot be extended for general measures.
For the particular case of the Lebesgue measure, [14] presents also a different nice
approach using Solyanik estimates.

This article is organized as follows. In Sect. 2 we prove Theorem 1.2. In Sect. 3 we
show that a similar argument can be used to derive Theorem 1.3 and obtain the full
range of local integrability for A∗

1 weights. In Sect. 4 we study this problem for A∗∞
weights. Finally, in Sect. 5 we study different formulations of RHI for A∗

p weights.

2 Dimension-Free RHI for A∗
p, 1 ≤ p < ∞

In this section we prove Theorem 1.2. We start with the following lemma, valid for
A∗
p weights for p ∈ (1,∞).

Lemma 2.1 Let μ be a non-atomic Radon measure μ. Let w ∈ A∗
p, 1 < p < ∞.

Then, for any rectangle R and any λ > wR, we have that

w({x ∈ R : w(x) > λ}) ≤ 2λμ({x ∈ R : w(x) >
1

2p−1[w]A∗
p

wR}). (2.1)

Proof Using Hölder’s inequality with p and its conjugate p′, we have that for every
rectangle R and every f ≥ 0,

(
−
∫
R
f dμ

)p

w(R) ≤ [w]A∗
p

∫
R
f pw dμ.

In particular, for any μ-measurable set E ⊂ R we can rewrite the last inequality for
f ≡ χE (

μ(E)

μ(R)

)p

≤ [w]A∗
p

w(E)

w(R)
. (2.2)

For a given rectangle R, define

ER =
{
x ∈ R : w(x) ≤ 1

2p−1[w]A∗
p

wR

}
.

Hence, since ER is a μ-measurable subset of R, (2.2) gives

(
μ(ER)

μ(R)

)p

≤ [w]A∗
p

w(ER)

w(R)
≤ [w]A∗

p

wR

w(R)
μ(ER)

1

2p−1[w]A∗
p

= 1

2p−1

μ(ER)

μ(R)
.

Then,

μ(ER) ≤ 1

2
μ(R). (2.3)
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Now we apply Lemma 1.1 to the rectangle R to obtain a countable set of pairwise
disjoint rectangles R j ∈ R satisfying

−
∫
R j

w dμ = λ

for each j , and w(x) ≤ λ for μ-a.e. points x ∈ R\
(⋃

j≥1 R j

)
. This decomposition

together with (2.3) yields

w({x ∈ R : w(x) > λ}) ≤ w(
⋃
j≥1

R j ) ≤
∑
j

w(R j ) = λ
∑
j

μ(R j )

≤ 2λ
∑
j

μ({x ∈ R j : w(x) >
1

2p−1[w]A∗
p

wR j })

≤ 2λμ({x ∈ R : w(x) >
1

2p−1[w]A∗
p

λ}),

since wR j = λ. Since λ > wR , this yields (2.1).
�

We now present the proof of the dimension-free RHI for A∗
p weights.

Proof of Theorem 1.2 Define �λ := {x ∈ R : w(x) > λ}. Then for arbitrary positive
ε we have

−
∫
R

w(x)εw(x) dμ = ε

μ(R)

∫ ∞

0
λεw(�λ)

dλ

λ

= ε

μ(R)

∫ wR

0
λεw(�λ)

dλ

λ
+ ε

μ(R)

∫ ∞

wR

λεw(�λ)
dλ

λ

= I + I I.

Observe that I ≤ (wR)ε+1. To estimate I I , we use Lemma 2.1

I I = ε

μ(R)

∫ ∞

wR

λεw(�λ)
dλ

λ

≤ 2ε

μ(R)

∫ ∞

wR

λ1+εμ({x ∈ R : w(x) >
1

2p−1[w]A∗
p

λ})dλ

λ

= (2p−1[w]A∗
p
)1+ε 2ε

μ(R)

∫ ∞
wR

2p−1[w]A∗
p

λε+1μ(�λ)
dλ

λ

≤ (2p−1[w]A∗
p
)1+ε2

ε

1 + ε
−
∫
R

w1+ε dμ.
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8 T. Luque et al.

Setting 0 < ε ≤ 1
2p+2[w]A∗

p
, we obtain

I I ≤ 1

2
−
∫
R

w1+ε dμ,

where we have used that t1/t ≤ 2 whenever t ≥ 1. Therefore we obtain

−
∫
R

w1+ε dμ ≤ 2

(
−
∫
R

w dμ

)1+ε

,

which is the desired estimate.

Remark 2.2 Clearly, Lemma 2.1 above does not hold for A∗
1 weights. But any A∗

1
weight w can be viewed as an A∗

p weight for any p > 1. Therefore we have that w

satisfies a RHI for any exponent ε such that 0 < ε < 1
2p[w]A∗

p
. Since the quantity

[w]A∗
p
increases to [w]A∗

1
, we conclude that the same result of Theorem 1.2 is valid

for A∗
1 weights with 0 < ε < 1

2η[w]A∗
1

for any η > 3.

3 Full Range of Local Integrability for Strong A∗
1 Weights

In this section we show how to apply Lemma 1.1 to prove the full range of local
integrability for A∗

1 weights. The key is to obtain a sort of self-improving property for
the operator Ms defined in (1.2).

Proof of Theorem 1.3: Set �t := {x ∈ R : Msw(x) ≥ t}. Then for any arbitrary
positive ε we have

−
∫
R
(Msw)εw dx ≤ ε

μ(R)

∫ ∞

0
tε−1w(�t ) dt

= ε

μ(R)

∫ wR

0
tε−1w(�t ) dt + ε

μ(R)

∫ ∞

wR

tε−1w(�t ) dt

≤ (wR)ε+1 + ε

μ(R)

∫ ∞

wR

tε−1w(�t ) dt.

To estimate the last integral, we use Lemma 1.1 to obtain a collection of disjoint
rectangles {R j } contained in R such that

−
∫
R j

w dx = t and w(x) ≤ t for a.e. x ∈ R \ ∪ j R j .
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Set E := R \ ⋃
j R j . Then,

w(�t ) = w
(
�t ∩ ∪ j R j

) + w (�t ∩ E)

≤ t
∑
j

|R j | + t |�t ∩ E | .

Note that for any x ∈ ∪ j R j , we have that Msw(x) ≥ t , and therefore we obtain∑
j |R j | ≤ |�t ∩ (∪ j R j )|. Hence,

w(�t ) ≤ t |�t ∩ (∪ j R j )| + t |�t ∩ E |
≤ t |�t |.

And then

ε

μ(R)

∫ ∞

wR

tε−1w(�t ) dt ≤ ε

μ(R)

∫ ∞

wR

tε|�t | dt

≤ ε

1 + ε
−
∫
R
(Msw)1+ε dμ

≤ ε[w]A∗
1

1 + ε
−
∫
R
(Msw)εw dμ.

Collecting all estimates, we have that

−
∫
R
(Msw)εw dμ ≤ (wR)ε+1 + ε[w]A∗

1

1 + ε
−
∫
R
(Msw)εw dμ. (3.1)

Setting 0 < ε < 1
[w]A∗

1
−1 , (3.1) yields

−
∫
R
(Msw)εw dμ ≤ 1 + ε

1 − ε([w]A∗
1
− 1)

(
−
∫
R

w dμ

)1+ε

.

To finish, we take 1 < s <
[w]A∗

1[w]A∗
1
−1 and let ε = s − 1. Then

−
∫
R

ws dμ ≤ −
∫
R
(Msw)(s−1)w dμ ≤ s

1 − (s − 1)([w]A∗
1
− 1)

(
−
∫
R

w dμ

)s

,

which is the desired estimate.

4 The Case of A∗∞ Weights

Until now, we have been focused on A∗
p weights with 1 ≤ p < ∞. The aim of this

section is to investigate a quantitative reverse Hölder property for the A∗∞ class in
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10 T. Luque et al.

terms of its constant. First, we remark here that in this case there are several possible
definitions of [w]A∗∞ . Apart from the natural Definition (1.3), a classical definition of
the A∗∞ constant is the one obtained by taking the limit in the A∗

p condition:

[w]expA∗∞ := sup
R

(
1

μ(R)

∫
R

w dμ

)
exp

(
1

μ(R)

∫
R
logw−1 dμ

)
< ∞ (4.1)

where the supremum is taken over all rectangles R ∈ R
n with sides parallel to the

coordinate axes. See [15] for more details on this definition. However, the current
tendency is to use a different A∞ constant (implicitly introduced by Fujii in [10]),
which seems to be better suited:

[w]A∗∞ := sup
R

1

w(R)

∫
R
Ms(wχR) dμ < ∞. (4.2)

If the measure μ is doubling, Definitions (4.1), (4.2) and (1.3) define the same class
of weights. However, for general measures some extra conditions need to be imposed
to establish the equivalence. For further details in the case of A∞ weights, see [32,
Remark 2.4].

Below, we consider separately the cases of dimension n = 1 and n > 1.

4.1 A∞ for the Line

In this case clearly there is no difference between cubic and rectangular weights and
both definitions are equivalent when μ is doubling. It makes sense also in this one-
dimensional case to use the centered maximal function Mc instead of M in Definition
(4.2):

[w]cA∞ := sup
I

1

w(I )

∫
I
Mc(wχI ) dμ.

Note that this other definition is again equivalent to the others wheneverμ is doubling.
However, as we remarked before, when the underlying measure μ is non-doubling,
the equivalence is not clear. It can be shown, as in [16, Proposition 2.2], that [w]A∞ ≤
cn[w]expA∞ . This inequality relies on the fact that M is bounded on L p(μ) for any
measure μ. Also, it is obvious that [w]cA∞ ≤ [w]A∞ but the finiteness of [w]cA∞ does
not characterize A∞. Indeed in [32, p. 2021] there is an example of a weight w which
is not in A∞ satisfying that Mcw � w for μ-a.e. x ∈ R. In other words, the centered
maximal operator is too small to characterize A∞.

The following result in this section shows that in fact [w]A∞ characterizes A∞.

Theorem 4.1 Let μ be any non-atomic Radon measure on R and let w be a weight
such that [w]A∞ < ∞. Then it satisfies the following RHI. For any 0 < ε < 1

4[w]A∞−1
and for any interval I , we have that

−
∫
I
w1+ε dμ ≤ 2

(
−
∫
I
w dμ

)1+ε

. (4.3)
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Remark 4.2 Using the characterization from [32, Lemma 2.3], we deduce from this
theorem that w ∈ A∞.

Proof We use a specific stopping time argument adapted to the μ-dyadic grid for a
given interval I . We begin with a similar idea as in [29, p. 536], where a proof of John–
Nirenberg’s inequality for non-atomicmeasures in the real line is presented.We sketch
here the construction. The first generation G1(I ) of the dyadic grid consists of the two
disjoint subintervals I+, I− of I satisfying μ(I+) = μ(I−) = μ(I )/2. The second
generationG2(I ) isG1(I+)∪G1(I−). Next generations are defined recursively. Since
the measure has no atoms, we can take closed intervals sharing the endpoints. LetDμ

I
be the family of all the dyadic intervals generated with this procedure. A collection of
nested intervals from this grid will be called a chain. More precisely, a chain C will
be of the form C = {Ji }i∈N such that Ji ∈ Gi (I ), and Ji+1 ⊂ Ji for all i ≥ 1.

If we define C∞ := ⋂
J∈C J as the limit set of the chain C, we have that C∞ could

be a single point or a closed interval of positive length. In any case, we clearly have
thatμ(C∞) = 0. We will say that those limit sets C∞ of positive length are removable.
Since we are in the real line, there are at most countably many of them and the whole
union is also a μ-null set. We denote byR the set of all chains with removable limits.
If we define

E := I \
⋃
C∈R

C∞, (4.4)

we conclude that μ(I ) = μ(E) and, in addition, for any x ∈ E , there exists a chain
of nested intervals shrinking to x . Therefore the grid Dμ

I forms a differential basis on
E . Moreover, the dyadic structure of the basis guarantees the Vitali covering property
(see [8, Chap. 1] ) and therefore this basis differentiates L1(E).

Associated with this grid we define a dyadic maximal operator as follows. For any
x ∈ E ,

MDμ
I f (x) = sup

J∈Dμ
I

−
∫
J
| f | dμ.

By a standard differentiation argument, we have that this maximal function satisfies
that f ≤ MDμ

I f , f ≥ 0, almost everywhere on E .
Now the proof of the main inequality (4.3) follows the same steps as in [17, Lemma

2.2]. First, we prove the following inequality for the maximal operator. We claim that,
for any 0 < ε ≤ 1

4[w]A∞−1 , we have that

−
∫
I
(MDμ

I (χIw))1+ε dμ ≤ 2[w]A∞

(
−
∫
I
w dμ

)1+ε

. (4.5)

To simplify the notation throughout the proof of this inequality, we will denote w :=
wχI , M := MDμ

I and �λ := I ∩ {Mw > λ}. We start with the following identity:

∫
I
(Mw)1+ε dμ ≤

∫ wI

0
ελε−1

∫
I
Mwdμ dλ +

∫ ∞

wI

ελε−1Mw(�λ) dλ.
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12 T. Luque et al.

Now, for λ ≥ wI , there is a family of maximal nonoverlapping μ-dyadic intervals
{I j } j for which

�λ =
⋃
j

I j and −
∫
I j

w dμ > λ.

Therefore, by using this decomposition and the definition of the A∞ constant, we can
write

∫
I
(Mw)1+ε dμ ≤ wε

I [w]A∞w(I ) +
∫ ∞

wI

ελε−1
∑
j

∫
I j
Mw dμdλ. (4.6)

By maximality of the intervals in {I j } j , it follows that the dyadic maximal function
M can be localized:

Mw(x) = M(wχI j )(x),

for any x ∈ I j , for all j ∈ N. Now, if we denote by Ĩ the dyadic parent of a given
interval I , then we have that

∫
I j
M(wχI j )dμ ≤ [w]A∞w(I j ) ≤ [w]A∞w Ĩ j μ( Ĩ j ) ≤ [w]A∞λ2μ(I j ).

Therefore, after averaging over I , we have that (4.6) becomes

−
∫
I
(Mw)1+ε dμ ≤ w1+ε

I [w]A∞ + ε2[w]A∞
1 + ε

−
∫
I
(Mw)1+ε dμ.

We conclude with the proof of inequality (4.5) by absorbing the last term into the left,
since 0 < ε ≤ 1

4[w]A∞−1 .
Now we argue in a similar way to obtain, by using that w ≤ Mw, the following

estimate

∫
I
w1+ε dμ ≤

∫ ∞

0
ελε−1w(�λ) dλ ≤ wε

Iw(I ) +
∫ ∞

wI

ελε−1
∑
j

w(I j ) dλ,

where the cubes {I j } j are from the decomposition of�λ above. Therefore, using again
that w(I j ) ≤ 2λμ(I j ), we get

∫
I
w1+ε dμ ≤ wε

Iw(I ) + 2ε
∫ ∞

wI

λεμ(�λ) dλ

≤ wε
Iw(I ) + 2ε

1 + ε

∫
I
(Mw)1+ε dμ.
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Averaging over I and using (4.5) we obtain

−
∫
I
w1+ε dμ ≤ w1+ε

I + 4ε[w]A∞
1 + ε

(
−
∫
I
w dμ

)1+ε

≤ 2

(
−
∫
I
w dx

)1+ε

,

where in the last step we have used that ε2[w]A∞
1+ε

≤ 1
2 . �

There are two immediate consequences of this result. Firstly, we have the following
precise open property for one-dimensional Ap weights (compare this to (5.6)).

Corollary 4.3 Let μ be any non-atomic measure onR. For 1 < p < ∞ andw ∈ Ap,
define the quantity r(w) = 1 + 1

4[w]A∞
. Then w ∈ Ap−ε where

ε = p − 1

r(σ )′
= p − 1

1 + 4[σ ]A∞

and σ = w1−p′
. Furthermore, [w]Ap−ε ≤ 2p−1[w]Ap .

We omit the proof of this corollary because, since it does not depend on further
properties of the measure, it is exactly the same as in [17].

The next corollary is a mixed Ap–A∞ estimate for the H–L maximal operator M .
The result for spaces of homogeneous type can be found in [17]. Further improvements
based on a different approach avoiding the RHI property have been obtained in [33].

Corollary 4.4 Letμ be any non-atomic Radonmeasure onR and let M be theHardy–
Littlewood maximal function. For 1 < p < ∞ and w ∈ Ap, define as above σ =
w1−p′

. Then there is a constant C > 0 such that

‖M‖L p(w) ≤ c
(
p′[w]Ap [σ ]A∞

)1/p
.

Recall that as in the rest of the paper ‖M‖L p(w) is the L p operator norm of M with
respect to wdμ.

Proof For the proof of the corollary we need the following weak weighted norm
estimate for the maximal function.

‖M‖Lq,∞(w) ≤ 5 [w]
1
q
Aq

, 1 < q < ∞. (4.7)

Consider, for any nonnegative measurable function f and λ > 0, the level set �λ =
{x ∈ R : M f (x) > λ}. Sincewe are in the real line,we can proceed by using a covering
lemma specific for one-dimensional intervals (see the details in [34], p. 1232). We can
obtain a countable family of disjoint intervals {I j } j such that

1

μ(I j )

∫
I j

f dμ > λ and �λ ⊂
⋃
j

I ∗
j
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14 T. Luque et al.

where I j ⊂ I ∗
j and μ(I ∗

j ) ≤ 5μ(I j ). Therefore

λqw(�λ) ≤
∑
j

w(I ∗
j )

(
1

μ(I j )

∫
I j

f w
1
q w

− 1
q dμ

)q

≤ 5q
∑
j

w(I ∗
j )

μ(I ∗
j )

(
1

μ(I ∗
j )

∫
I ∗
j

σ dμ

)q−1 ∫
I j

f qw dμ

≤ 5q [w]Aq‖ f ‖qLq (w)

and then (4.7) follows. The next steps are the same as in [17, Theorem 1.3]; we sketch
the proof for completeness. Indeed, by a change of variables and using the above
relation between the level sets, we write

‖M f ‖p
L p(w) ≤ p2p

∫ ∞

0
t pw{y ∈ R : M( f χ f >t )(y) > t}dt

t
.

Using the weak norm estimate for Ap−ε (4.7), we obtain

‖M f ‖p
L p(w) ≤ p10p

[w]Ap

ε

∫
R

f pw dμ.

The desired inequality follows choosing ε = p−1
1+4[σ ]A∞

, from Corollary 4.3. �

4.2 Higher Dimensions: A∗∞ for R
n

The first observation is that in higher dimensions and for any doubling measure we
can easily adapt the result from [17] to strong weights.

Theorem 4.5 Let μ be a doubling measure on R
n and let w ∈ A∗∞. Then for any

rectangle R,

−
∫
R

w1+ε dμ ≤ 2

(
−
∫
R

w dμ

)1+ε

,

for any ε > 0 such that 0 < ε ≤ 1
2Cμ[w]A∗∞−1 . Here Cμ depends on the doubling

constant of the measure.

The key is to consider a local dyadic version of the maximal operator. For a fixed
rectangle R0, we also consider the dyadic local maximal operator Md

R0
defined by

averages over dyadic children of R0. More precisely, we consider R0 as a part of a
dyadic grid and the family D(R0) will be obtained by successive dyadic subdivisions
of the rectangle R0. Then, define

Md
R0

f (x) = sup
R�x,R∈D(R0)

−
∫
R

| f | dμ.
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Now, for general measures, we can track carefully the constants through the proof
from [32] and obtain the analogue of Theorem 4.5 for cubes and the constant [w]expA∞ .
More precisely, it can be proved that for any w ∈ A∞, there exists a constant C such
that

−
∫
Q

w1+ε dμ ≤ C

(
−
∫
Q

w dμ

)1+ε

holds whenever

0 < ε ≤ cn

2[w]expA∞

(
e2[w]expA∞ − 1

) .

Here cn denotes a dimensional constant. Clearly, this range for ε is worse than the one
obtained in Theorems 4.5 or 4.1.

The main result of this section involves the (strong) Fujii–Wilson constant [w]A∗∞
defined in (4.2). A first problem that we can consider is to determine the validity of
the inequality [w]A∗∞ ≤ cn[w]expA∗∞ . This estimate in dimension 1 is a consequence of
the L p(μ) boundedness of M which is always true for any measure μ. However, the
corresponding question in higher dimensions is still open since it could be the case that
the maximal function M is bounded only on L∞, and not in any L p, 1 < p < ∞ even
for the centered case (see, for example, [35] for recent developments on this subject).

Going back to rectangles, we are able to describe a rather more abstract theorem for
strong weights than Theorem 4.1. The general standing assumption on the measure
μ will be the absence of atoms. As we already mentioned, we can then assume that
the measure of hyperplanes parallel to the coordinates axes is zero. Therefore, we can
define the sameμ-dyadic grid by splitting any fixed rectangle R into 2n sub-rectangles
{Ri : 1 ≤ i ≤ 2n} such that μ(Ri ) = 2−nμ(R) (note that there is no unique way
of doing this). Start with a given rectangle R0 and define recursively the dyadic grid
Dμ

R0
. As before, the corresponding local maximal operator is

M
Dμ

R0 f (x) = sup
R∈Dμ

R0

−
∫
R

| f | dμ.

We have the following theorem. Since the proof follows the same steps as in the
one-dimensional case, we left the details to the reader.

Theorem 4.6 Let μ be a non-atomic Radon measure on R
n and let w ∈ A∗∞.

Suppose, in addition, that there is a constant C such that, for any rectangle R,
w(x) ≤ CMDμ

Rw(x) μ-a.e. on R. Then for any rectangle R,

−
∫
R

w1+ε dx ≤ 2C

(
−
∫
R

w dx

)1+ε

,

for any ε > 0 such that 0 < ε ≤ 1
2n+1[w]A∗∞−1

.
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16 T. Luque et al.

It would be interesting to characterize those measures fulfilling the hypothesis of
the above theorem. First, in order to have a new and better estimate, we need the HL
maximal operator to be bounded on L p(μ) for some p < ∞. In addition, although
it could seem trivial, it is not always true that the local maximal operator defined in
terms of the dyadic grid majorizes the function. This will depend on the geometry of
the grid.

Example 4.7 A family ofmeasures for whichwe can solve both problems is the family
of tensor product measures. A classical example of a nondoubling measure of this type
is the Gaussian measure μδ with density dμδ(x) = e−|x |δdx . We will assume that the
measure μ on Rn can be written as μ = ⊗n

i=1 μi , where μ1, μ2, . . . , μn are defined
on R and none of them has atoms. In this case, by iterating the result for the real line,
we know that the HL maximal function over rectangles (and, a fortiori, over cubes)
is bounded on L p(μ) and therefore the constant [w]A∗∞ provides better estimates. To

verify that w ≤ MDμ
R (w) a.e. μ, we need to perform the dyadic partition on each

direction separately. Suppose that the rectangle R is of the form R = ∏n
i=1 Ii . We

perform the partition on each direction to obtain the dyadic grid Dμ
i = ⋃

j≥1 G j (Ii ).
Following the same idea as in the linear case, we call Ri the family of all chains
with removable limits on each direction. After removing all of them, we can assume
that any chain C = {Jm}m∈N in Dμ

i verifies that limm→∞ diam(Jm) = 0. Define in a
similar way as in (4.4) the sets

Ei := Ii \
⋃
C∈Ri

C∞, 1 ≤ i ≤ n

and
E := E1 × · · · × En .

We can build the dyadic grid for R taking the products elements of each Dμ
i of the

same level. More precisely, the k-th level dyadic grid is

Dμ
k = {R = J1 × · · · × Jn : Ji ∈ Gk(Ii ), 1 ≤ i ≤ n} ,

and the complete grid is the union of all levels:

Dμ =
⋃
k

Dμ
k .

The gridDμ
k defined in this way is a differential basis on E as in the 1-dimensional

case satisfying the Vitali covering property. Hence, the same reasoning used before

allows us to conclude that w ≤ M
Dμ
s w for μ-almost all x in E .

As a remark related to Theorem 4.6 and the above example, we can derive a result
in the spirit of Corollary 4.4 for the strong maximal function Ms associated with an
n-product of non-atomic Radon measures on R; that is, for μ = ⊗n

i μi we have:

‖Ms‖L p(wdμ) ≤ c (p′)n[w]
1
p +2 n−1

p−1
A∗
p

[σ ]
1
p
A∗∞ 1 < p < ∞ (4.8)
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where as usual σ = w1−p′
. Unfortunately this result is far from being sharp since it

can be shown that the expected consequence, namely

‖Ms‖L p(wdμ) ≤ c (p′)n[w]
n

p−1
A∗
p

(4.9)

cannot be derived. For this reason we omit the proof of (4.8) which is based on similar
arguments as before, namely combining an appropriate weak norm estimate

‖Ms‖Lq (wdμ)→Lq,∞(wdμ) ≤ Cn(q
′)n−1[w]

1
q + n−1

q−1
A∗
q

1 < q < ∞, (4.10)

together with the open property derived from the RHI property from Theorem 4.6.

5 Further Variants of RHI for A∗
p Weights

We include here some additional versions of the RHI related to the operator norm of
the maximal function. For the sake of clarity, in this section we restrict ourselves to
the case of the Lebesgue measure, although some of the results are valid in a wider
scenario.

Let us recall that Buckley’s result from [5] states that the maximal function M (over
cubes) satisfies

‖M‖L p(w) ≤ cp[w]
1

p−1
Ap

, w ∈ Ap(dx). (5.1)

This result can be obtained using the following result from [23]: if w ∈ Ap, p > 1.
Then for each cube Q

−
∫
Q

w1+ε dx ≤ 2

(
−
∫
Q

w dx

)1+ε

,

for any 0 < ε ≤ 1
2n+2‖Ms‖L p′ (σ )

, where σ = w1−p′
. This results implies the open

property, namely if w ∈ Ap implies w ∈ Ap−ε with ε = p−1
1+2n+2‖M‖L p (w)

and

[w]Ap−ε ≤ 2p−1[w]Ap . Now, using the same argument as in the proof Corollary
4.4 based on [17, Theorem 1.3], the following result follows easily

‖M‖L p(w) ≤ cn p
′ ‖M‖L p(w)→L p,∞(w) ‖M‖1/pL p(w) w ∈ Ap. (5.2)

This gives another proof of (5.1) although the constant cp is not the correct one, namely
cp ≈ p′p′

instead of cp ≈ p′.
Concerning the strong maximal function Ms , a still not answered question is

whether (5.1) holds with the same exponent or not.
We do not know if (5.2) holds for the strong maximal function. However, if this

estimate were true it seems that it is not of so much interest since the scheme just
sketched breaks down. Indeed, the combination of (5.2) and (4.10) does not lead
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to the expected result (4.9). Of course this is related to the question of the precise
dependence of the weighted norm ‖Ms‖L p(w)→L p,∞(w) in terms of [w]A∗

p
which is

still an open problem. In particular, for product weights there are sharp estimates for
both the weak and strong norms (see inequality (5.7) below; details can be found in
the forthcoming paper [26]). If we combine the sharp estimate for the weak norm
(5.7) for product weights together with (5.2) we still do not recover the known sharp
estimate for the strong norm for product weights. Anyway, we can prove a similar
open property as in the cubic case as a consequence of the first part of the following
result.

Theorem 5.1 Let w ∈ A∗
p, p > 1. Then for each rectangle R

−
∫
R

w1+ε dx ≤ 2

(
−
∫
R

w dx

)1+ε

(5.3)

for any 0 < ε ≤ 1
2‖Ms‖L p′ (σ )

, where σ = w1−p′
.

Similarly,

−
∫
R

ws dμ ≤ s

1 − (s − 1)(‖Ms‖L p′ (σ )
− 1)

(
−
∫
R

w dμ

)s

(5.4)

for any 1 < s <
‖Ms‖L p′ (σ )

‖Ms‖L p′ (σ )
−1 .

Proof It follows from the same argument as in the proof of Theorem 1.3, inequality
(3.1), that for any arbitrary positive ε we have

−
∫
R
(Msw)εw dx ≤ (wR)ε+1 + ε

1 + ε
−
∫
R
(Msw)ε+1dx .

Following [23], by Hölder’s inequality and the trivial bound w ≤ Msw we obtain

∫
R
(Msw)ε+1 dx =

∫
R
(Msw)

ε
p w1/p (Msw)

1+ ε
p′ w−1/p dx

≤
(∫

R
(Msw)ε wdx

)1/p (∫
R
(Msw)p

′+ε w1−p′
dx

)1/p′

≤ ‖Ms‖L p′ (σ )

∫
R
(Msw)ε wdx .

In the last inequality we use that

‖Ms‖p1
L p1 (μ)

≤ ‖Ms‖p2
L p2 (μ)

for p1 ≥ p2.
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Hence,

1

|R|
∫
R
(Msw)εwdx ≤ (wR)ε+1 + ε

ε + 1
‖Ms‖L p′ (σ )

1

|R|
∫
R
(Msw)ε wdx (5.5)

and letting ε = 1
2‖M‖

L p
′
(σ )

we get

1

|R|
∫
R
(Msw)εwdx ≤ 2 (wR)ε+1.

This last estimate clearly yields (5.3).
Similarly, setting 0 < ε < 1

‖M‖
L p

′
(σ )

−1 , we have that

−
∫
R
(Msw)εw dμ ≤ 1 + ε

1 − ε(‖M‖L p′ (σ )
− 1)

(
−
∫
R

w dμ

)1+ε

,

which yields (5.4). �
In a similar way as in Corollary 4.3, we can derive also an alternative version of the

open property for A∗
p classes; more precisely, if w ∈ A∗

p and r(w) = 1 + 1
2‖Ms‖L p (w)

then w ∈ A∗
p−ε where

ε = p − 1

r(σ )′
= p − 1

1 + 2‖Ms‖L p′ (σ )

. (5.6)

Now we want to collect all the estimates for the RHI. We have Theorems 1.2 and
5.1. In addition, we also have Theorems 4.5 or 4.6 since we are considering μ as the
Lebesgue measure which is both doubling and a product measure. Then, we have that
any w ∈ A∗

p satisfies a RHI with exponent 1 + ε for any

0 ≤ ε < max

{
1

2p+2[w]A∗
p

,
1

2‖Ms‖L p′ (σ )

,
1

2n+1[w]A∗∞ − 1

}
.

Which of these estimates is better will depend on what is the best bound for the
weighted norm of the strong maximal function. It is clear that we have ‖Ms‖L p′ (σ )

≤
cn pn[w]nA∗

p
. But it is not known in general if the exponent on the constant of the weight

can be smaller than n.
Note for example that in the case of strong product weights, [26, Theorem 3.7]

shows that 2‖Ms‖L p′ (σ )
≤ 2p+2[w]A∗

p
and therefore Theorem 5.1 would provide a

better result than Theorem 1.2 in this case. Moreover, in this particular case, [26,
Theorem 3.1] also assures the next sharp result:

‖Ms f ‖L p,∞(w) �n,p [w]
1

p−1 (1− 1
np )

A∗
p

‖ f ‖L p(w). (5.7)
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This combined with Theorem 5.1 yield the multiparameter version of (5.2). How-
ever, we do not recover the sharp result in this particular case of product weights.
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