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Abstract
Let  be a Banach operator ideal and 𝑋 be a Banach space. We undertake the study

of the vector space of -null sequences of Carl and Stephani on 𝑋, 𝑐0,(𝑋), from a

unified point of view after we introduce a norm which makes it a Banach space. To

give accurate results we consider local versions of the different types of accessibility

of Banach operator ideals. We show that in the most common situations, when  is

right-accessible for (𝓁1;𝑋), 𝑐0,(𝑋) behaves much alike 𝑐0(𝑋). When this is the case

we give a geometric tensor product representation of 𝑐0,(𝑋). On the other hand, we

show an example where the representation fails. Also, via a trace duality formula, we

characterize the dual space of 𝑐0,(𝑋). We apply our results to study some problems

related with the -approximation property giving a trace condition which is used

to solve the remaining case (𝑝 = 1) of a problem posed by Kim (2015). Namely, we

prove that if a dual space has the 1-approximation property then the space has the

𝑢1-approximation property.
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1 INTRODUCTION

The notions of null sequences and compact sets were shown to be closely related from the nowadays classical result of

Grothendieck which characterizes relatively compact sets as those contained in the absolutely convex hull of a norm null

sequence of vectors of the space. In the recent years strong forms of compactness have been studied, see for instance [1],

[2], [3], [13], [17], [22], [29], [31], [32], [34]. Many of the results obtained can be revisited under the Carl–Stephani theory

of -compact sets and -null sequences [4], where  denotes an arbitrary operator ideal. The key point in our theoretical

approach is the fact that -compact sets are determined by -null sequences and vice versa [4, Theorem 1.1]. Let us introduce

some definitions and notations.

As usual, , , and  are the ideals of bounded, finite rank, approximable and compact linear operators, respectively; all

considered with the supremum norm ‖ ⋅ ‖. Also, 𝑋 is a Banach space with closed unit ball 𝐵𝑋 . Recall that a sequence (𝑥𝑛)𝑛
in 𝑋 is -null if there exist a Banach space 𝑍, an operator 𝑅 ∈ (𝑍;𝑋) and a null sequence (𝑧𝑛)𝑛 ⊂ 𝑍 such that 𝑥𝑛 = 𝑅𝑧𝑛

for all 𝑛 ∈ ℕ (see [4, Definition 1.1 and Lemma 1.2]). Notice that any -null sequence is, in particular, norm null. We denote

by 𝑐0(𝑋) the space of null sequences endowed with the supremum norm and by 𝑐0,(𝑋) the linear space of -null sequences.

Clearly, 𝑐0(𝑋) = 𝑐0,(𝑋). In fact, 𝑐0(𝑋) = 𝑐0,(𝑋) for every operator ideal  such that  ⊂ , as can be inferred from [20,

Proposition 2.4].
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The first objective of this work is to study, from a unified point of view, 𝑐0,(𝑋) as a Banach space, here  =
(
, ‖⋅‖ )

is a Banach operator ideal. To understand its structure we inspect to what extent classical results remain valid. Recall that the

natural mapping: (𝑎𝑛)𝑛 ⊗ 𝑥 → (𝑎𝑛𝑥)𝑛 of 𝑐0 ⊗ 𝑋 into 𝑐0(𝑋) yields, via the injective tensor norm 𝜀, the well-known identification

𝑐0(𝑋) = 𝑐0⊗̂𝜀𝑋 due to Grothendieck [15] (see, e.g., [33, Example 3.5]). This type of identities appeared recently in similar

contexts. Oja proved [29, Theorem 4.1] that the space of 𝑝-null sequences of Delgado and Piñeiro [32] has a tensor representation

via the Chevet–Saphar tensor norm 𝑑𝑝 and with a similar proof J. M. Kim [17, Theorem 1.1] showed that the same is true for

the space of unconditionally 𝑝-null sequences with the tensor norm 𝑤𝑝, 1 ≤ 𝑝 < ∞. The link between these notions of nullity

and null sequences given by operator ideals is as follows: 𝑝-null sequences correspond with  𝑝-null sequences with  𝑝 the

ideal of right 𝑝-nuclear operators [22, Proposition 1.4 and Remark 1.3]. Also, unconditionally 𝑝-null sequences coincides with

𝔎𝑝′ -null sequences [3, Corollary 4.2], where 𝔎𝑝′ is the ideal of the classical 𝑝′-compact operators of Fourie and Swart [11]

and 𝑝′ is the conjugate of 𝑝. Taking this into account, the results by Oja and Kim read as follows: 𝑐0, 𝑝 (𝑋) = 𝑐0⊗̂𝑑𝑝
𝑋 and

𝑐0,𝔎𝑝′
(𝑋) = 𝑐0⊗̂𝑤𝑝

𝑋, respectively. See Section 2 for a more informative explanation.

On the other hand, the trace duality allows other type of identifications and evidence the interplay existing between opera-

tor ideals and tensor norms. For example, 𝑐0(𝑋) = 𝑤∗ (𝓁1;𝑋) isometrically, where 𝑤∗ stands for the weak∗-weak continuous

approximable linear operators. Also, 𝑐0(𝑋)′ = 𝓁1(𝑋′) = 𝓁1⊗̂𝜋𝑋′ (see [15] or, e.g., [33, Example 2.6]). Since 𝓁1 has the approx-

imation property, 𝑐0(𝑋)′ admits the isometric identification as the ideal of nuclear operators  (𝑐0;𝑋′). In the 𝑝-null setting

Delgado and Piñeiro showed [32, Proposition 3.1], via the trace duality, the identity 𝑐0, 𝑝(𝑋) = Π𝑝′ (𝑐0;𝑋′), where Π𝑝′ stands

for the ideal of 𝑝′-summing operators and 𝑝′ is the conjugate of 𝑝.

The Carl–Stephani theory propitiates the conditions to understand these results under a more general framework. To advance

our project we endow 𝑐0,(𝑋) with a norm coming from the measure of -compact sets given in [22]. Following [4], a subset

𝐾 of 𝑋 is relatively -compact if there exist a Banach space 𝑍, an operator 𝑇 ∈ (𝑍;𝑋) and a compact set 𝑀 ⊂ 𝑍 such that

𝐾 ⊂ 𝑇 (𝑀). The -compact measure of 𝐾 is defined as

𝑚(𝐾;𝑋) ∶= inf
{ ‖𝑇 ‖ ∶ 𝐾 ⊂ 𝑇 (𝑀), 𝑇 ∈ (𝑍;𝑋), 𝑀 ⊂ 𝐵𝑍

}
,

where the infimum is taken considering all Banach spaces 𝑍, all operators 𝑇 ∈ (𝑍;𝑋) and all compact sets 𝑀 ⊂ 𝐵𝑍 for which

the inclusion 𝐾 ⊂ 𝑇 (𝑀) holds. We often use that we may consider only operators in (𝓁1;𝑋) (see [22, Proposition 1.8]).

Now, 𝑐0,(𝑋) is a Banach space if considered with the norm

‖‖(𝑥𝑛)𝑛‖‖𝑐0,
∶= 𝑚({𝑥𝑛}𝑛;𝑋).

This metric counterpart allows us to inspect a tensor representation for 𝑐0,(𝑋). Recall that any Banach operator ideal has

associated a finitely generated tensor norm (see Section 2 for details). The tensor representation valid for 𝑐0(𝑋), 𝑐0, 𝑝 (𝑋) and

𝑐0,𝔎𝑝′
(𝑋) with the respective tensor norms 𝜀, 𝑑𝑝 and 𝑤𝑝 extends to 𝑐0,(𝑋) = 𝑐0⊗̂𝛼𝑋 when  is minimal and 𝛼 is its associated

tensor norm (Theorem 2.6), but it is not true in general as Example 2.14 shows. Nevertheless, considering local versions of

accessibility of Banach operator ideals (Proposition 2.7) we prove that in the most common situations, when is right-accessible

for (𝓁1;𝑋), 𝑐0,(𝑋) behaves much alike 𝑐0(𝑋) (Theorem 2.11). The structure of the dual space of 𝑐0,(𝑋) is studied in Section 3.

We show that 𝑐0,(𝑋)′ is naturally determined by the adjoint ideal of  if  is right-accessible for (𝓁1, 𝑋) (Theorem 3.1), and

by the conjugate ideal of  in the general case (Theorem 3.5). Also, we show that the identification is given via a trace duality

(Theorem 3.9).

The second objective of this work is the study of approximation properties related with -compact sets. This topic is treated

in Section 4. Operators playing a crucial role here are those sending bounded sets into relatively -compact sets, namely the

class of -compact operators [4] denoted by  which, in fact, is a Banach operator ideal [22] (see Section 2 for more details).

A Banach space 𝑋 has the -approximation property (-AP for short) if its identity map 𝐼𝑑𝑋 can be approximated by

finite-rank operators on -compact sets of 𝑋 under 𝑚. Recall that 𝑋 has the approximation property (AP for short) if 𝐼𝑑𝑋 can

be uniformly approximated by finite rank operators on compact sets. Thus, the -AP, defined and studied in [28] and [22] (see

also [20]), can be seen as the analogous to the AP where the system of compact sets is replaced with the system of -compact

sets and the uniform norm with 𝑚.

We focus our attention on the recent works of J. M. Kim [18] and [19]. In [18], the author introduced the 𝑢𝑝-approximation
property (𝑢𝑝-AP for short) related with unconditionally 𝑝-compact sets, 1 ≤ 𝑝 < ∞, (see Section 4 for details). This property

is, in terms of the metric Carl–Stephani theory, the -AP for  = 𝔎𝑚𝑎𝑥
𝑝′

the maximal hull of 𝔎𝑝′ with 𝑝′ is the conjugate of 𝑝

(Remark 4.6). The importance of this approximation property is the dual relation it satisfies with the 𝜅𝑝-approximation property
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(𝜅𝑝-AP for short) of Delgado, Piñeiro and Serrano [8, Defintion 1.1]. The 𝜅𝑝-AP coincides with the  𝑝-AP (as, for instance,

[22, Remark 1.7] shows). The main result in [18] reads as follows ([18, Theorem 1.1]).

Theorem (J. M. Kim) Let 1 < 𝑝 ≤ ∞. If the dual space 𝑋′ of a Banach space 𝑋 has the 𝑢𝑝-AP, then 𝑋 has the  𝑝-AP,
and if 𝑋′ has the  𝑝-AP, then 𝑋 has the 𝑢𝑝-AP.

In [18], the author wonders if the result is true for 𝑝 = 1. In [19] the duality between the 1- and the 𝑢1-AP’s is treated. Here,

the author shows that the first statement of the above theorem reamisn valid when 𝑝 = 1 [19, Theorem 1.1]. Also, the second

assertion is shown to be true whenever 𝑋 is Asplund [19, Theorem 1.3]. Our results on the -AP allows us to prove that this

additional assumption on 𝑋, the Asplundness, can be removed (Theorem 4.7). In order to tackle our objective we proceed in

a natural way. Following Grothendieck’s prototype result [15] we first characterize the dual space of ((𝑋; 𝑌 ), 𝜏𝑠), the space

of bounded linear operators between Banach spaces 𝑋, 𝑌 , endowed with the topology of uniform convergence on -compact

subsets of 𝑋 under 𝑚 (Theorem 4.2). Finally, we give a trace condition for the -AP (Theorem 4.4). Similar approaches to

understand dual relations between approximation properties given by operator ideals can be found in [5] and [18].

Our notation is standard. We consider Banach spaces 𝑋, 𝑌 over the same, either real or complex, field 𝕂. We denote by 𝑋′

the topological dual of 𝑋 and by 𝑥 an element in 𝑋 canonically embedded in the bidual space 𝑋′′. For the sequence spaces

𝑐0, 𝓁1 and 𝓁∞ we denote respectively the 𝑛th-canonical element by 𝑒𝑛, 𝑒′𝑛 and 𝑒𝑛. Also, operators in  (𝑋; 𝑌 ) are regarded as

elements of the algebraic tensor product 𝑋′ ⊗ 𝑌 and tensors in 𝑋 ⊗ 𝑌 as operators in  (𝑋′; 𝑌 ). The tensor product 𝑋 ⊗ 𝑌

endowed with a tensor norm 𝛼 is denoted by 𝑋 ⊗𝛼 𝑌 and 𝑋⊗̂𝛼𝑌 stands for its completion. Every tensor norm considered in this

paper is assumed to be finitely generated (see [6, 12.4] for definition). As usual, we denote by 𝛼𝑡, 𝛼′ and ∕𝛼 the transpose, the

dual and the left injective associate tensor norm of 𝛼, respectively (see [6, 12.3], [6, 15.2] and [6, 20.7] for definitions). Given a

Banach operator ideal , we denote by 𝑚𝑖𝑛, 𝑑 , 𝑚𝑎𝑥, 𝑠𝑢𝑟, 𝑖𝑛𝑗 the minimal kernel, the dual ideal, the maximal, surjective

and injective hulls of , respectively, all considered with their usual norms (see [30, Ch. 8] for definitions).

All other relevant terminology and preliminaries are given in corresponding sections. For the theory of operator ideals and

normed tensor products we refer the reader to the books of Defant and Floret [6], of Diestel, Fourie and Swart [9] and of

Ryan [33]. For further reading on operator ideals we refer the reader to the books of Pietsch [30] and of Diestel, Jarchow and

Tonge [10]. For approximation properties we refer the reader to the books of Lindenstrauss and Tzafriri [25] and to the books

[6], [33].

2 TENSOR REPRESENTATION OF -NULL SEQUENCES

As a first insight to the Banach space of -null sequences on 𝑋 we give the following results. Proposition 2.2 collects the basics

of the theory relating null sequences, compact sets and compact operators given by operator ideals as well as the key role that

the space 𝓁1 plays. In general, we use this result without further mentioning.

Proposition 2.1. Let  be a Banach operator ideal and 𝑋 be a Banach space. Then 𝑐0 is complemented in 𝑐0,(𝑋). As a
consequence, 𝑐0,(𝑋) is not a dual space.

Proof. Fix 𝑥 ∈ 𝑋 with ‖𝑥‖ = 1 and take 𝑥′ ∈ 𝐵𝑋′ such that 𝑥′(𝑥) = 1. Consider the linear operators 𝑇1 ∶ 𝑐0 ←→ 𝑐0,(𝑋) and
𝑇2 ∶ 𝑐0,(𝑋) ←→ 𝑐0 defined by 𝑇1((𝛼𝑛)𝑛) = (𝛼𝑛𝑥)𝑛 and 𝑇2((𝑥𝑛)𝑛) = (𝑥′(𝑥𝑛))𝑛. Routine arguments show that ‖‖𝑇1‖‖ = ‖‖𝑇2‖‖ = 1
and that 𝑇2𝑇1 = 𝐼𝑑𝑐0

, which implies that 𝑇1𝑇2 is a projection of 𝑐0,(𝑋) with range equal to 𝑐0. Then, 𝑐0 is complemented in
𝑐0,(𝑋). On the other hand, Lindenstrauss [24] observed that a Banach space is complemented in some dual space if and only
if it is complemented in its own second dual. Then, the second statement follows. □

Another main ingredient in this theory is the space of -compact operators, denoted by . For Banach spaces 𝑋 and 𝑌 ,

(𝑋; 𝑌 ) ∶= {𝑇 ∈ (𝑋; 𝑌 ) ∶ 𝑇 (𝐵𝑋) ⊂ 𝑌 is relatively -compact},

which is a Banach operator ideal under the norm ‖𝑇 ‖
= 𝑚(𝑇 (𝐵𝑋); 𝑌 ) (see [22]). Recall that  is a surjective ideal and

can be seen as a composition ideal as  = 𝑠𝑢𝑟 ◦ = ( ◦ )𝑠𝑢𝑟 (see [4, Theorem 2.1] and [22, Proposition 2.1]). Since 𝓁1
has the lifting metric property, (𝓁1;𝑋) =  ◦ (𝓁1;𝑋).

Proposition 2.2. Let  and  be Banach operator ideals and 𝑋 be a Banach space. The following statements are equivalent.

(i) 𝑐0,(𝑋) = 𝑐0,(𝑋) isometrically.
(ii) Relatively -compact and -compact sets of 𝑋 coincide and 𝑚( ⋅ ;𝑋) = 𝑚( ⋅ ;𝑋).
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(iii) (𝑌 ;𝑋) = (𝑌 ;𝑋) isometrically, for all Banach spaces 𝑌 .
(iv)  ◦ (𝓁1;𝑋) =  ◦ (𝓁1;𝑋) isometrically.

Proof. On the one hand -compact sets of 𝑋 are those sets contained in the convex hull of sequences in 𝑐0,(𝑋) [4, Theo-
rem 1.1]. On the other hand, by [22, Propostion 1.4], a sequence (𝑥𝑛)𝑛 in 𝑐0(𝑋) is -null if {𝑥𝑛}𝑛 is -compact. Then, (i)
and (ii) are equivalent (the isometric part of the statements is straightforward). Clearly, (ii) implies (iii) and (iii) implies (iv)
follows from the paragraph below Proposition 2.1. Finally, by [22, Corollary 1.9], an -compact set may be regarded as an
 ◦ -compact set with equal measure and by [22, Proposition 1.8], this type of sets are determined by the image of operators
defined on 𝓁1. Thus, (iv) implies (ii) and the proof is complete. □

Given an operator ideal , we denote by 𝑤∗ (𝑋′; 𝑌 ) the subspace of all 𝑤∗ − 𝑤 continuous operators of  from 𝑋′ to

𝑌 . Clearly, 𝑤∗ (𝑋′; 𝑌 ) = 𝑋 ⊗ 𝑌 . Also, we denote by 𝜋𝑛 ∶ 𝓁1 ←→ 𝓁1 projection to the linear space generated by the first 𝑛-

coordinates of the canonical unit vectors of 𝓁1.

Lemma 2.3. Let  be a Banach operator ideal, 𝑋 be a Banach space and 𝑇 be in (𝓁1;𝑋). Then 𝑇 ∈ 𝑤∗ (𝓁1;𝑋) if and
only if (𝑇 𝑒′𝑛)𝑛 is an -null sequence in 𝑋. Moreover, ‖𝑇 ‖

= 𝑚({𝑇 𝑒′𝑛}𝑛;𝑋).

Proof. First note that 𝑇 (𝐵𝓁1
) is the absolutely convex hull of {𝑇 𝑒′𝑛}𝑛. Then, {𝑇 𝑒′𝑛}𝑛 is relatively -compact if and only if 𝑇 is

-compact and, from the definitions, ‖𝑇 ‖
= 𝑚({𝑇 𝑒′𝑛}𝑛;𝑋). Also, 𝑇 ∈ 𝑤∗ (𝓁1;𝑋) if and only if (𝑇 𝑒′𝑛)𝑛 ∈ 𝑐0(𝑋). By [22,

Proposition 1.4], -null sequences are those norm null sequences contained in -compact sets, thus the proof is complete. □

Lemma 2.4. Let  be a Banach operator ideal and 𝑋 be a Banach space. Then

𝑤∗ (𝓁1;𝑋)
‖⋅‖ = 𝑤∗ (𝓁1;𝑋)

holds isometrically. Moreover, if 𝑇 ∈ 𝑤∗ (𝓁1;𝑋) then lim𝑛→∞ ‖‖𝑇 − 𝑇 𝜋𝑛
‖‖

= 0.

Proof. Notice that (𝑇 𝜋𝑛)𝑛 is in 𝑤∗ (𝓁1;𝑋) for any 𝑇 in 𝑤∗ (𝓁1;𝑋). On the other hand,

‖‖𝑇 − 𝑇 𝜋𝑛
‖‖

≤ 𝑚(𝑇 (𝐼 − 𝜋𝑛)(𝐵𝓁1
);𝑋) = 𝑚({𝑇 𝑒′𝑗}𝑗≥𝑛;𝑋).

By Lemma 2.3, (𝑇 𝑒′
𝑗
)𝑗 is -null and then lim𝑛→∞ 𝑚({𝑇 𝑒′

𝑗
}𝑗≥𝑛;𝑋) = 0 (see for instance [35, Lemma 4]). Thus, the proof is

complete. □

A combination of the above lemmas yields the following characterization of the Banach space of -null sequences.

Proposition 2.5. Let  be a Banach operator ideal and 𝑋 be a Banach space. Then

𝑐0,(𝑋) = 𝑤∗ (𝓁1;𝑋)
‖⋅‖

holds isometrically. The identification is given by (𝑥𝑛)𝑛 ←→
∑∞

𝑛=1 𝑒𝑛 ⊗ 𝑥𝑛.

A finitely generated tensor norm 𝛼 and a Banach operator ideal  are associated if (𝑀 ;𝑁) = 𝑀 ′ ⊗𝛼 𝑁 holds for every

finite dimensional spaces 𝑀 and 𝑁 [6, 17.1]. Observe that 𝑚𝑎𝑥,  and 𝑚𝑖𝑛 are associated with the same finitely generated

tensor norm. In particular, two maximal (or minimal) ideals coincide if the are associated with the same finitely generated tensor

norm. Recall that the ideal  is associated with the tensor norm 𝜀. Also, the minimal ideal  𝑝 is associated with the Chevet–

Saphar tensor norm 𝑑𝑝 (see for instance [33, p. 140]) and the minimal ideal 𝔎𝑝′ is associated with the tensor norm 𝑤𝑝 as it can

be inferred from [12, Proposition 4.1].

Theorem 2.6. Let  be a Banach operator ideal with associated tensor norm 𝛼 and let 𝑋 be Banach space. Then,

(a)  has associated tensor norm ∕𝛼.
(b) 𝑚𝑖𝑛(𝓁1;𝑋) = 𝓁∞⊗̂𝛼𝑋 holds isometrically.
(c) 𝑐0,𝑚𝑖𝑛(𝑋) = 𝑐0⊗̂𝛼𝑋 holds isometrically. The identification is given by (𝑥𝑛)𝑛 ←→

∑∞
𝑛=1 𝑒𝑛 ⊗ 𝑥𝑛.

Proof. To prove (a) note that the operator ideal  ◦ also has associated tensor norm 𝛼. Now, denote by 𝛽 the associated
tensor norm of . Since  is surjective, 𝛽 is left injective (see for instance [13, Lemma 3.2]). On the other hand, for every
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𝑛 and every finite dimensional space 𝑁 we have the isometric identities

𝓁𝑛
∞ ⊗𝛼 𝑁 =  ◦ (𝓁𝑛

1;𝑁) = (𝓁𝑛
1;𝑁) = 𝓁𝑛

∞ ⊗𝛽 𝑁.

Using a left version of [6, Proposition 20.9], we conclude that 𝛽 = ∕𝛼.
To prove (b) note that by [22, Proposition 2.1], 𝑚𝑖𝑛 = (𝑚𝑖𝑛)𝑠𝑢𝑟. Then, by [6, Corollary 9.8], 𝑚𝑖𝑛(𝓁1;𝑋) = 𝑚𝑖𝑛(𝓁1;𝑋).

Now, since 𝓁′
1 has the AP, by [6, Corollary 22.2.1], 𝑚𝑖𝑛(𝓁1;𝑋) = 𝓁∞⊗̂𝛼𝑋. Hence,

𝑚𝑖𝑛(𝓁1;𝑋) = 𝑚𝑖𝑛(𝓁1;𝑋) = 𝓁∞⊗̂𝛼𝑋,

as desired. Finally, by the embedding lemma [6, Lemma 13.3] and (b), we have

𝑐0⊗̂𝛼𝑋 ⊂ 𝓁∞⊗̂𝛼𝑋 = 𝑚𝑖𝑛(𝓁1;𝑋).

These isometric identifications and the identity 𝑐0 ⊗ 𝑋 = 𝑤∗ (𝓁1;𝑋) allows us to see that

𝑐0⊗̂𝛼𝑋 = 𝑤∗ (𝓁1;𝑋)
‖⋅‖

𝑚𝑖𝑛 .

Then, (c) follows by Proposition 2.5. □

Notice that when  is minimal, Theorem 2.6 (c) gives a representation of 𝑐0,(𝑋) as a Banach tensor product. Also, this

result can be seen as an extension of the characterization given, with a different approach, by Oja [29] for 𝑝-null sequences and

J. M. Kim [17] for unconditionally 𝑝-null sequences. To be more precise we introduce some definitions.

Fixed 1 ≤ 𝑝 < ∞, 𝓁𝑝(𝑋) and 𝓁𝑢
𝑝(𝑋) denote the spaces of 𝑝-summable and unconditionally 𝑝-summable sequences in 𝑋

endowed with their natural norms. For (𝑥𝑛)𝑛 ∈ 𝓁𝑝(𝑋) we denote by p-co{𝑥𝑛} the absolutely 𝑝-convex hull of (𝑥𝑛)𝑛 defined as

p-co{𝑥𝑛} ∶=

{ ∞∑
𝑛=1

𝛼𝑛𝑥𝑛 ∶ (𝛼𝑛)𝑛 ∈ 𝐵𝓁𝑝′

}
,

where
1
𝑝
+ 1

𝑝′
= 1 and 𝓁𝑝′ = 𝑐0 if 𝑝 = 1. A sequence (𝑥𝑛)𝑛 in 𝑋 is 𝑝-null [32, Definition 2.1] if, given 𝜀 > 0, there exist 𝑛0 ∈ ℕ

and (𝑧𝑘)𝑘 ∈ 𝜀𝐵𝓁𝑝(𝑋) such that 𝑥𝑛 ∈ p-co{𝑧𝑘} for all 𝑛 ≥ 𝑛0. By [22, Proposition 1.5], 𝑝-null sequences and  𝑝-null sequences

coincide. When 𝓁𝑝(𝑋) is replaced with 𝓁𝑢
𝑝(𝑋) the unconditionally 𝑝-null sequences of J. M. Kim [17] are obtained. By [3,

Corollary 4.2], unconditionally 𝑝-null sequences and 𝔎𝑝′ -null sequences coincide. Therefore, once these concepts are described

under the framework of the metric Carl–Stephani theory, an application of Theorem 2.6 (c) for  𝑝 covers the result due to

Oja [29, Theorem 4.1] for 𝑝-null sequences, 𝑐0, 𝑝(𝑋) = 𝑐0⊗̂𝑑𝑝
𝑋. With 𝔎𝑝′ , the result by Kim [17, Theorem 1.1], 𝑐0,𝔎𝑝′

(𝑋) =
𝑐0⊗̂𝑤𝑝

𝑋, is covered. Also, Theorem 2.6 extends the representations given in [29, Theorem 4.1] and [17, Theorem 1.1], by

showing that a general element 𝑢 ∈ 𝑐0⊗̂𝛼𝑋 can be written as 𝑢 =
∑∞

𝑛=1 𝑒𝑛 ⊗ 𝑥𝑛, where (𝑥𝑛)𝑛 ⊂ 𝑋 is 𝑚𝑖𝑛-null. In addition we

have ‖𝑢‖𝑐0⊗̂𝛼𝑋 = ‖‖(𝑥𝑛)𝑛‖‖𝑐0,𝑚𝑖𝑛
.

Our next objective is to find out to what extent the identity 𝑐0,(𝑋) = 𝑐0⊗̂𝛼𝑋 holds. As it can be seen along the monograph by

Defant and Floret [6], accessibility of operator ideals facilitates the study of different type of characterizations via tensor products,

problems related with trace duality and approximation properties. Recall that the minimal kernel of  is the composition ideal

𝑚𝑖𝑛 =  ◦ ◦ . When the identity 𝑚𝑖𝑛 =  ◦ is satisfied,  is said to be right-accessible and if  ◦ = 𝑚𝑖𝑛,  is said

to be left-accessible (see [6, Propostion 25.2]). Close related with these notions we have the concepts of accesible and totally

accesible Banach operator ideal (see [6, 21.2]). In what follows we consider local versions of these notions by fixing an specific

pair of Banach spaces (𝑋, 𝑌 ). With the same proofs of [6, Propostion 25.2] we have the next localized results. As usual, FIN(𝑋)
and COFIN(𝑋) denote respectively the set of all finite dimensional and all co-finite dimensional subspaces of 𝑋.

Proposition 2.7. Let  be a Banach operator ideal and 𝑋, 𝑌 be Banach spaces.

(a) The following statements are equivalent.
(i) For all 𝑀 ∈ FIN(𝑋), 𝑇 ∈ (𝑀 ; 𝑌 ) and 𝜀 > 0 there exist 𝑁 ∈ FIN(𝑌 ) and 𝑆 ∈ (𝑀 ;𝑁) such that 𝑇 factors
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(ii) 𝑚𝑖𝑛(𝑋; 𝑌 ) =  ◦ (𝑋; 𝑌 ) isometrically.
(iii) 𝑚𝑖𝑛(𝑀 ; 𝑌 ) = (𝑀 ; 𝑌 ) isometrically, for all 𝑀 ∈ FIN(𝑋).

(b) The following statements are equivalent.
(i) For all 𝑁 ∈ FIN(𝑌 ), 𝑇 ∈ (𝑋;𝑁) and 𝜀 > 0 there exist 𝐿 ∈ COFIN(𝑋) and 𝑆 ∈ (𝑋∕𝐿;𝑁) such that 𝑇 factors

(ii) 𝑚𝑖𝑛(𝑋; 𝑌 ) =  ◦(𝑋; 𝑌 ) isometrically.
(iii) 𝑚𝑖𝑛(𝑋;𝑁) = (𝑋;𝑁) isometrically, for all 𝑁 ∈ FIN(𝑌 ).

We say that  is right-accessible (resp. left-accessible) for (𝑋, 𝑌 ) if any of the statements of Proposition 2.7 (a) (resp. (b))

is satisfied. In an analogous way, we also may consider the local notions of accessible and totally accessible Banach operator

ideal for (𝑋, 𝑌 ). The next lemmas present basic results on local accessibility.

Lemma 2.8. Let  be a Banach operator ideal and 𝑋, 𝑌 be Banach spaces.

(a)  is right-accessible for (𝑋, 𝑌 ) if and only if  is right-accessible for (𝑋′′, 𝑌 ).
(b)  is left-accessible for (𝑋, 𝑌 ) if and only if  is left-accessible for (𝑋, 𝑌 ′′).

Proof. To prove (a) we only show the “only if” part. Take 𝑀 ∈ FIN(𝑋′′), 𝑇 ∈ (𝑀 ; 𝑌 ) and 𝜀 > 0. Using the principle of
local reflexivity, there exists an injective linear operator 𝑢 ∶ 𝑀 → 𝑢(𝑀) ⊂ 𝑋 such that ‖𝑢‖ ‖‖‖𝑢−1

‖‖‖ ≤ 1 + 𝜀. Let 𝑀 = 𝑢(𝑀) ∈
FIN(𝑋), then 𝑚𝑖𝑛

(
𝑀 ; 𝑌

)
= 

(
𝑀 ; 𝑌

)
(see (a) (iii) of Proposition 2.7). Also,

‖𝑇 ‖𝑚𝑖𝑛(𝑀 ;𝑌 ) = ‖𝑇 𝑢−1𝑢‖𝑚𝑖𝑛(𝑀 ;𝑌 ) ≤ ‖𝑇 𝑢−1‖
𝑚𝑖𝑛(𝑀 ;𝑌 ) ‖𝑢‖

= ‖𝑇 𝑢−1‖
(𝑀 ;𝑌 ) ‖𝑢‖ ≤ ‖𝑇 ‖(𝑀 ;𝑌 ) ‖𝑢−1‖ ‖𝑢‖ .

Thus, ‖𝑇 ‖𝑚𝑖𝑛(𝑀 ;𝑌 ) ≤ (1 + 𝜀) ‖𝑇 ‖(𝑀 ;𝑌 ) and statement (a) follows. The proof of (b) is analogous. □

Lemma 2.9. Let  be a Banach operator ideal and 𝑋, 𝑌 be Banach spaces. If  is right-accessible for (𝑋′, 𝑌 ′) then 𝑑 is
left-accessible for (𝑌 , 𝑋).

Proof. We first prove that condition (b) (ii) of Proposition 2.7 is satisfied for 𝑑 and (𝑌 , 𝑋′′). Take 𝑇 ∈  ◦𝑑(𝑌 ;𝑋′′). Then,
by Lemma 2.8 (a), 𝑇 ′ ∈  ◦ (𝑋′′′; 𝑌 ′) = 𝑚𝑖𝑛(𝑋′′′; 𝑌 ′) and therefore, 𝑇 ∈ (𝑚𝑖𝑛)𝑑(𝑌 ;𝑋′′), with ‖‖𝑇 ′‖‖𝑚𝑖𝑛 ≤ ‖𝑇 ‖

 ◦𝑑 .
Since the range space is a dual space, by [6, Corollary 22.8 (1)], (𝑚𝑖𝑛)𝑑(𝑌 ;𝑋′′) = (𝑑)𝑚𝑖𝑛(𝑌 ;𝑋′′) isometrically. Thus,
 ◦𝑑(𝑌 ;𝑋′′) ⊂ (𝑑)𝑚𝑖𝑛(𝑌 ;𝑋′′). The other inclusion, with norm non greater than 1, always holds. Now, the result follows by
Lemma 2.8 (b). □

Lemma 2.10. Let  be a Banach operator ideal and 𝑋, 𝑌 be Banach spaces.

(a)  is right-accessible for (𝑋, 𝑌 ) if and only if  ◦ is right-accessible for (𝑋, 𝑌 ).
(b)  is left-accessible for (𝑋, 𝑌 ) if and only if  ◦ is left-accessible for (𝑋, 𝑌 ).

Proof. The proof is straightforward from the identities  ◦ =  and  ◦ =  and the respective definitions. □

Theorem 2.11. Let  be a Banach operator ideal with associated tensor norm 𝛼 and let 𝑋 be a Banach space. The following
statements are equivalent.

(i) 𝑐0,(𝑋) = 𝑐0⊗̂𝛼𝑋 isometrically.
(ii) (𝑌 ;𝑋) = 𝑚𝑖𝑛(𝑌 ;𝑋) isometrically, for all Banach space 𝑌 .

(iii) 𝑠𝑢𝑟 is right-accessible for (𝑌 , 𝑋) for all Banach space 𝑌 .
(iv) 𝑠𝑢𝑟 is right-accessible for (𝓁1, 𝑋).
(v)  is right-accessible for (𝓁1, 𝑋).
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Proof. To see that (i) implies (ii), first note that 𝑚𝑖𝑛 = (𝑚𝑖𝑛)𝑠𝑢𝑟. By Theorem 2.6, we know that 𝑐0,(𝑋) = 𝑐0,𝑚𝑖𝑛(𝑋) which,
by Proposition 2.2 is equivalent to the identity (𝑌 ;𝑋) = 𝑚𝑖𝑛(𝑌 ;𝑋) for every Banach space 𝑌 . Now suppose that (ii) holds.
Since, by [6, Ex. 21.1 (e)], (𝑚𝑖𝑛)𝑠𝑢𝑟 is right-accessible, we have that  is right-accessible for (𝑌 , 𝑋) for all Banach spaces
𝑌 . Since  = 𝑠𝑢𝑟 ◦, and application of Lemma 2.10 gives (iii). That (iii) implies (iv) is clear. Now, suppose that 𝑠𝑢𝑟 is
right-accessible for (𝓁1, 𝑋) and use that  and 𝑠𝑢𝑟 produce the same compact sets [4, p. 79]. Then, by Proposition 2.2,

 ◦ (𝓁1;𝑋) = 𝑠𝑢𝑟 ◦ (𝓁1;𝑋) = 𝑠𝑢𝑟 𝑚𝑖𝑛(𝓁1;𝑋).

On the other hand, we claim that 𝑚𝑖𝑛(𝓁1;𝑋) = 𝑠𝑢𝑟 𝑚𝑖𝑛(𝓁1;𝑋). This follows from the inclusions

𝑚𝑖𝑛(𝓁1;𝑋) ⊂ 𝑠𝑢𝑟 𝑚𝑖𝑛(𝓁1;𝑋) ⊂ 𝑚𝑖𝑛 𝑠𝑢𝑟(𝓁1;𝑋) = 𝑚𝑖𝑛(𝓁1;𝑋).

Thus,  ◦ (𝓁1;𝑋) = 𝑚𝑖𝑛(𝓁1;𝑋) and (v) follows. Finally, let us see that (v) implies (i). As  is right-accessible for (𝓁1, 𝑋),
 ◦ (𝓁1;𝑋) = 𝑚𝑖𝑛(𝓁1;𝑋) = 𝑚𝑖𝑛 ◦ (𝓁1;𝑋). By Proposition 2.2, 𝑐0,(𝑋) = 𝑐0,𝑚𝑖𝑛 (𝑋). Using Theorem 2.6 (c), we have
𝑐0,(𝑋) = 𝑐0⊗̂𝛼𝑋 isometrically and the proof is complete. □

Theorem 2.11 shows that in order to obtain a geometric tensor product representation for 𝑐0,(𝑋), regardless the Banach

space 𝑋, a condition of right-accessibility on the ideal is required. As it is usual in this type of problems, we may obtain the

same kind of description by imposing some additional hypothesis on 𝑋, regardless the Banach operator ideal  as it is shown in

the next proposition. Nevertheless, it turns out that in some situations one or the other restriction is necessary, as Example 2.14

shows.

Proposition 2.12. Let  be a Banach operator ideal with associated tensor norm 𝛼 and let 𝑋 be a Banach space. If  is
right-accessible or 𝑋 has the MAP, then 𝑐0,(𝑋) = 𝑐0⊗̂𝛼𝑋 isometrically.

Proof. Notice that by [6, Proposition 25.2 (1)], if 𝑋 has the MAP, then every Banach operator ideal  is right-accessible for
(𝑌 , 𝑋) for all Banach spaces 𝑌 . Now, the result follows as an application of Theorem 2.11. □

To exhibit a normed operator ideal which is not right-accessible, we resort to Pisier’s operator ideal
(
𝑃 , ‖⋅‖𝑃

)
, whose con-

struction appeals to Pisier’s space [6, Theorem 31.6]. Notice that a careful reading to [6, Theorem 31.6] and [6, Corollary 31.6]

allows us to localize both results as follows.

Theorem 2.13. (Defant–Floret–Pisier) Let 𝑃 be the Pisier Banach operator ideal and 𝑃 be the Pisier space. Then

(a) 𝑃 is neither left- nor right-accessible for (𝑃 , 𝑃 ).
(b) 

𝑖𝑛𝑗
𝑃

is not left-accessible for (𝑃 , 𝑃 ).

Example 2.14. Let 𝑃 be the Pisier Banach operator ideal and 𝑃 ′ be the dual space of the Pisier space 𝑃 . Let  = 𝑑
𝑃

and
𝛼 its associated tensor norm. Then 𝑐0,(𝑃 ′) ≠ 𝑐0⊗̂𝛼𝑃 ′.

Proof. Suppose that 𝑐0,(𝑃 ′) = 𝑐0⊗̂𝛼𝑃 ′, then by Theorem 2.11 (i) ⇒ (iii), we obtain that (𝑑
𝑃
)𝑠𝑢𝑟 is right-accessible for (𝑌 , 𝑃 ′)

for every Banach space 𝑌 and, in particular, for 𝑌 = 𝑃 ′. By [30, Theorem 8.5.8] we have (𝑑
𝑃
)𝑠𝑢𝑟 = (𝑖𝑛𝑗

𝑃
)𝑑 . An application of

Lemma 2.9 gives that (𝑖𝑛𝑗
𝑃
)𝑑𝑑 is left-accessible for (𝑃 , 𝑃 ). Being maximal, 𝑖𝑛𝑗

𝑃
= (𝑖𝑛𝑗

𝑃
)𝑑𝑑 . Thus, (𝑖𝑛𝑗

𝑃
) is left-accessible for

(𝑃 , 𝑃 ), contradicting Theorem 2.13. □

3 THE DUAL SPACE OF 𝒄𝟎,(𝑿) AND THE TRACE DUALITY

The main goal of this section is to characterize the dual space of 𝑐0,(𝑋) via a trace duality formula. If  is right-accessible for

(𝓁1, 𝑋), the characterization given below is immediate from the results obtained in Section 2. In what follows, ∗ is the adjoint

ideal of the Banach operator ideal , that is the maximal operator ideal associated to the tensor norm 𝛼∗ ∶= (𝛼𝑡)′ = (𝛼′)𝑡 (see

[6, 17.9] for more details).

Theorem 3.1. Let  be a Banach operator ideal and 𝑋 be a Banach space. If  is right-accessible for (𝓁1, 𝑋), then

𝑐0,(𝑋)′ = ∗(𝑋;𝓁1)

holds isometrically. The identification is given by 𝑇 ←→ 𝜙𝑇 ((𝑥𝑛)𝑛) =
∑∞

𝑛=1 𝑒𝑛(𝑇 𝑥𝑛).
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Proof. Let 𝛼 be the associated tensor norm of . By Theorem 2.11, 𝑐0,(𝑋) = 𝑐0⊗̂𝛼𝑋 = 𝑋⊗̂𝛼𝑡𝑐0 isometrically. Applying the
representation theorem for maximal operator ideals we have ∗(𝑋, 𝑐′0) = (𝑋 ⊗𝛼′ 𝑐0)′ (see e.g. [6, Theorem 17.5]). Thus, the
identity follows and Theorem 2.6 (c), completes the proof. □

Having in mind the identities 𝑐0(𝑋) = 𝑐0⊗̂𝜀𝑋 and 𝑐0(𝑋)′ = 𝓁1(𝑋′) = 𝑋′⊗̂𝜋𝓁1, it is natural to ask in what cases the dual

space of 𝑐0,(𝑋) is, for some tensor norm, the completion of 𝑋′⊗ 𝓁1. The following result gives a partial positive answer to

this matter. Recall that a finitely generated tensor norm 𝛼 has the Radon–Nikodým property if 𝑋′ ⊗𝛼 𝓁1 = (𝑋 ⊗𝛼′ 𝑐0)′ holds

isometrically for all Banach spaces 𝑋 (see [6, Definition 33.2]).

Proposition 3.2. Let  be a maximal accessible Banach operator ideal with associated tensor norm 𝛼. Then there exists
a tensor norm 𝛽 such that 𝑐0,(𝑋)′ = 𝑋′⊗̂𝛽𝓁1 for all Banach spaces 𝑋 if and only if 𝑐0,(𝑋)′ = 𝑋′⊗̂𝛼∗𝓁1 and 𝛼∗ has the
Radon–Nikodým property.

Proof. Note that being  right-accessible, by Theorem 2.11, 𝑐0,(𝑋) = 𝑋⊗̂𝛼𝑡𝑐0 for every Banach space 𝑋. Since 𝛼∗ has the
Radon–Nikodým property, the “if” part follows directly.

For the converse, suppose that 𝑐0,(𝑋)′ = 𝑋′⊗̂𝛽𝓁1 for every 𝑋. Using that 𝓁1 has the AP, by Theorem 3.1, we obtain that
𝑚𝑖𝑛(𝑋;𝓁1) = 𝑋′⊗̂𝛽𝓁1 = ∗(𝑋;𝓁1); where  is an operator ideal associated to 𝛽. Since the latter identities hold for all
𝑋, 𝑚𝑖𝑛 ◦ (𝑋;𝓁1) = ∗ ◦ (𝑋;𝓁1). Now, since  is accessible, by [6, Corrolary 21.3], ∗ is also accessible (hence right-
accessible) and, using again that 𝓁1 has the AP, we have

𝑋′⊗̂𝛼∗𝓁1 = (∗)𝑚𝑖𝑛(𝑋;𝓁1) = ∗ ◦ (𝑋;𝓁1) = 𝑋′⊗̂𝛽𝓁1.

Thus, 𝑐0,(𝑋)′ = 𝑋′⊗̂𝛼∗𝓁1 for every Banach space 𝑋 and 𝛼∗ has the Radon–Nikodým property. □

As a consequence, since 𝑑∗
𝑝 , 1 < 𝑝 ≤ ∞ and 𝑤∗

𝑝, 1 ≤ 𝑝 < ∞ have the Radon–Nikodým property [6, Theorem 33.5], we see

that the dual spaces of the spaces of 𝑝-null and unconditionally 𝑝-null sequences are tensor spaces. Indeed, we have

𝑐0, 𝑝 (𝑋)′ = 𝑋′⊗̂𝑑∗
𝑝
𝓁1 and 𝑐0,𝔎𝑝′

(𝑋)′ = 𝑋′⊗̂𝑤∗
𝑝
𝓁1.

To characterize the dual space of 𝑐0,(𝑋) for a general Banach operator ideal  we appeal to its conjugated operator ideal, Δ

introduced and studied by Gordon, Lewis and Retheford [14]. Recall that Δ(𝑋; 𝑌 ) is the class of all operators 𝑇 ∈ (𝑋; 𝑌 )
for which there is a 𝜌 > 0 such that for any 𝑆 ∈  (𝑌 ;𝑋),

|tr(𝑆𝑇 )| ≤ 𝜌 ‖𝑆‖ ,

where tr denotes the trace function. With ‖𝑇 ‖Δ = inf{𝜌 > 0} where 𝜌 ranges over all constants satisfying the above inequality,

Δ is always a Banach operator ideal. In view of Proposition 2.5, we characterize the dual space of 𝑤∗ (𝑋′; 𝑌 )
‖⋅‖ .

Proposition 3.3. Let  be a Banach operator ideal, and 𝑋, 𝑌 be Banach spaces. Then

(
𝑤∗ (𝑋′; 𝑌 )

‖⋅‖

)′
= Δ


(𝑌 ;𝑋′)

holds isometrically. The identification is given by 𝑇 ←→ 𝜙𝑇 (𝑆) = tr(𝑆𝑇 ) = tr(𝑇 𝑆) for 𝑆 ∈ 𝑤∗ (𝑋′; 𝑌 ).

Proof. One of the inclusions is straightforward. Indeed, any 𝑇 ∈ Δ

(𝑌 ;𝑋′) gives, via the trace function, a ‖⋅‖

-continuous
linear functional on 𝑤∗ (𝑋′; 𝑌 ), which by density can be continuously extended to the closure of its domain.

Conversely, take 𝜙 in the dual of 𝑤∗ (𝑋′; 𝑌 )
‖⋅‖ and define the operator 𝑇 ∶ 𝑌 → 𝑋′ as (𝑇 𝑦)(𝑥) = 𝜙(𝑥 ⊗ 𝑦), which is

clearly linear. To show that 𝑇 is in Δ

(𝑌 ;𝑋′), take 𝜀 > 0 and 𝑆 ∈  (𝑋′; 𝑌 ), 𝑆 =

∑𝑚
𝑗=1 𝑧𝑗 ⊗ 𝑦𝑗 for some 𝑧1,… , 𝑧𝑚 in 𝑋′′ and

𝑦1,… , 𝑦𝑚 in 𝑌 . Denote 𝑍 = span{𝑧1,… , 𝑧𝑚} and 𝑊 = span{𝑇 𝑦1,… , 𝑇 𝑦𝑚}.
Since 𝑍 ⊂ 𝑋′′ and 𝑊 ⊂ 𝑋′ are finite dimensional subspaces, applying the principle of local reflexivity, we may find a linear

operator 𝑈 ∶ 𝑍 → 𝑋 such that

‖𝑈‖ ≤ (1 + 𝜀) and 𝑧𝑗(𝑇 𝑦𝑖) = (𝑇 𝑦𝑖)(𝑈𝑧𝑗) for 𝑖 = 1,… , 𝑚; 𝑗 = 1,… , 𝑚.
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Then we have,

tr(𝑇 𝑆) =
𝑚∑

𝑗=1
𝑧𝑗(𝑇 𝑦𝑗) =

𝑚∑
𝑗=1

(𝑇 𝑦𝑗)(𝑈𝑧𝑗) = 𝜙

(
𝑚∑

𝑗=1
𝑈𝑧𝑗 ⊗ 𝑦𝑗

)
,

and hence |tr(𝑇 𝑆)| ≤ ‖𝜙‖ ‖‖‖∑𝑚
𝑗=1 𝑈𝑧𝑗 ⊗ 𝑦𝑗

‖‖‖

.

Let us see that ‖‖‖∑𝑚
𝑗=1 𝑈𝑧𝑗 ⊗ 𝑦𝑗

‖‖‖

≤ (1 + 𝜀) ‖𝑆‖
. First, notice that as = 𝑑𝑑


[22, Corollary 2.4], we have ‖𝑆‖

=‖‖𝑆′′‖‖
. Now, consider the operator 𝑅 ∶ 𝑍′ → 𝑌 given by 𝑅 =

∑𝑚
𝑗=1 𝑧𝑗 ⊗ 𝑦𝑗 which satisfies 𝑅𝑈 ′ =

∑𝑚
𝑗=1 𝑈𝑧𝑗 ⊗ 𝑦𝑗 . Then,

‖‖‖‖‖‖
𝑚∑

𝑗=1
𝑈𝑧𝑗 ⊗ 𝑦𝑗

‖‖‖‖‖‖

≤ (1 + 𝜀) ‖𝑅‖
.

Also, with the inclusion 𝜄 ∶ 𝑍 → 𝑋′′, we have 𝑆′′ = 𝐽𝑌 𝑅𝜄′. Since  is regular [22, Theorem 2.2] and surjective, as 𝜄′ is a
metric surjection we have ‖𝑅‖

= ‖‖𝐽𝑌 𝑅𝜄′‖‖
= ‖‖𝑆′′‖‖

, and the result follows. □

Note that the proof of Proposition 3.3 essentially uses that the ideal  is surjective, regular and that  = 𝑑𝑑


. A similar

proof works for any ideal satisfying these conditions, among which we have all maximal surjective ideals. As a consequence,

Proposition 3.3 admits the following partial extension.

Corollary 3.4. Let  be a surjective, regular Banach operator ideal satisfying  ⊂ 𝑑𝑑 , and let 𝑋, 𝑌 be Banach spaces. Then(
𝑤∗ (𝑋′; 𝑌 )

‖⋅‖)′
= Δ (

𝑌 ;𝑋′)
holds isometrically. The identification is given by 𝑇 → 𝜙𝑇 (𝑆) = tr(𝑆𝑇 ) = tr(𝑇 𝑆) for 𝑆 ∈ 𝑤∗ (𝑋′; 𝑌 ).

Theorem 3.5. Let  be a Banach operator ideal and 𝑋 be a Banach space. Then

𝑐0,(𝑋)′ = Δ

(𝑋;𝓁1) =

(
 ◦

)Δ(𝑋;𝓁1)

holds isometrically. The identification is given by 𝑇 ←→ 𝜙𝑇 (𝑥𝑛) =
∑∞

𝑛=1 𝑒𝑛(𝑇 𝑥𝑛).

Proof. The first identity is a direct combination of Proposition 2.5 and Proposition 3.3. For the second identity, use that
(𝓁1;𝑋) =  ◦ (𝓁1;𝑋). □

Remark 3.6. Theorem 3.5 extends Theorem 3.1 since when  is right-accessible for (𝓁1;𝑋),
(
 ◦

)Δ(𝑋;𝓁1) = ∗(𝑋;𝓁1).
Indeed, for any Banach operator ideal  we always have Δ ⊂ ∗ and ∗ = (𝑚𝑖𝑛)∗. Thus, the norm one inclusion
(𝑚𝑖𝑛)Δ ⊂ ∗ holds.

Now, suppose that  is right-accessible for (𝓁1;𝑋), then  ◦ (𝓁1;𝑋) = 𝑚𝑖𝑛(𝓁1;𝑋) and
(
 ◦

)Δ(𝑋;𝓁1) =
(𝑚𝑖𝑛)Δ(𝑋;𝓁1) ⊂ ∗(𝑋;𝓁1). To prove what remains, note that since 𝑚𝑖𝑛 is right-accessible and 𝓁′

1 has the MAP, the local
version of [6, Ex. 21.1.(c)] gives that 𝑚𝑖𝑛 is totally-accessible for (𝓁1;𝑋) for all 𝑋. Now, for 𝑇 ∈ ∗(𝑋;𝓁1), 𝜀 > 0 and
𝑅 ∈  (𝓁1;𝑋), the local version of [6, Ex.17.4] implies that |tr(𝑇 𝑅)| ≤ (1 + 𝜀) ‖𝑇 ‖∗ ‖𝑅‖𝑚𝑖𝑛 . Therefore, the isometric result
follows.

Our purpose now is to show that the duality formula for 𝑐0,(𝑋) and its dual space 𝑐0,(𝑋)′ given in Theorem 3.5 is, in fact,

a trace duality. First we give a useful description of 
‖⋅‖ as a composition ideal.

Lemma 3.7. Let  be a Banach operator ideal. Then


‖⋅‖ =  ◦

holds isometrically.

Proof. It is clear that the norm one inclusion  ◦ ⊂ 
‖⋅‖ holds. Now, take 𝑇 ∈ 

‖⋅‖ (𝑌 ;𝑋) and fix 𝜀 > 0. Choose a
sequence (𝑇𝑛)𝑛 ⊂  (𝑌 ;𝑋) such that 𝑇 =

∑∞
𝑛=1 𝑇𝑛 in(𝑌 ;𝑋) and

∑∞
𝑛=1

‖‖𝑇𝑛
‖‖

≤ (1 + 𝜀) ‖𝑇 ‖
. Since is surjective and

 =  ◦ isometrically, by [16, Lemma 2.4 (b)], for each 𝑛 we may find a Banach space 𝑍𝑛 and operators 𝑆𝑛 ∈  (𝑋;𝑍𝑛)
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and 𝑅𝑛 ∈ (𝑍𝑛; 𝑌 ) such that 𝑇𝑛 = 𝑅𝑛𝑆𝑛 and ‖‖𝑅𝑛
‖‖

‖‖𝑆𝑛
‖‖ ≤ (1 + 𝜀) ‖‖𝑇𝑛

‖‖
. Moreover, we may choose the operators so

that ‖‖𝑆𝑛
‖‖ ≤ 1 with ‖‖𝑆𝑛

‖‖ ↘ 0 and ‖‖𝑅𝑛
‖‖

≤ (1 + 𝜀) ‖‖𝑇𝑛
‖‖

.
Take 𝑍 = {𝑧 = (𝑧𝑛)𝑛 ∶ 𝑧𝑛 ∈ 𝑍𝑛 and ‖𝑧‖𝑍 ∶= sup𝑛∈ℕ ‖‖𝑧𝑛

‖‖ < ∞} and denote, for each 𝑛, 𝜄𝑛 and 𝜋𝑛 the canonical inclusion
and projection associated to 𝑍 and 𝑍𝑛, respectively. Now, define the operators 𝑅 ∶ 𝑍 ←→ 𝑌 and 𝑆 ∶ 𝑋 ←→ 𝑍 as

𝑅 =
∞∑

𝑛=1
𝑅𝑛𝜋𝑛, 𝑆 =

∞∑
𝑛=1

𝜄𝑛𝑆𝑛.

Then we have 𝑅 ∈ (𝑍; 𝑌 ), 𝑆 ∈  (𝑋;𝑍), 𝑇 = 𝑅𝑆 and ‖𝑅𝑆‖
 ◦ ≤ (1 + 𝜀)2 ‖𝑇 ‖

. □

The next result should be related with [6, Proposition 17.19.1] and [6, Proposition 25.4.1]. Recall that for Banach operator

ideals  and , the quotient ideal  ◦−1 consists of all the operators 𝑇 such that 𝑇 𝑆 ∈  whenever 𝑆 ∈  (see [6, 25.6]).

Proposition 3.8. Let  be Banach operator ideal. Then

Δ

◦ ⊂ .

As a consequence, Δ

◦ ◦ ⊂  and  ◦Δ


◦ ⊂  .

Proof. We use again that  is surjective and that  =  ◦. Combining [16, Lemma 2.4] and [16, Proposition 2.5] we
have the identity

Δ

= Δ ◦−1


.

Since Δ =  [14, p. 93], then Δ

=  ◦−1


implying that Δ


◦ ⊂ . The other inclusions follow from the identities

 ◦ =  ◦ =  . □

Theorem 3.9. (Trace duality) Let  be a Banach operator ideal and 𝑋 be a Banach space. Let 𝜙 ∈ 𝑐0,(𝑋)′ with associated

map 𝑇 ∈ Δ

(𝑋;𝓁1) and (𝑥𝑛)𝑛 ∈ 𝑐0,(𝑋) with associated map 𝑆 ∈ 𝑤∗ (𝓁1;𝑋)

‖⋅‖ . Then 𝑇 𝑆 belongs to 𝑤∗ (𝓁1;𝓁1) and

⟨𝜙, (𝑥𝑛)𝑛⟩ = tr(𝑇 𝑆).

Proof. First note that by Proposition 2.5, 𝑆 =
∑∞

𝑛=1 𝑒′𝑛 ⊗ 𝑥𝑛. By Lemma 3.7, 𝑆 belongs to  ◦𝑤∗ (𝓁1;𝑋). On the other hand,
since 𝑇 ∈ Δ


(𝑋;𝓁1), by Proposition 3.8, 𝑇 𝑆 is in 𝑤∗ (𝓁1;𝓁1). Thus, the trace map is well defined and continuous. Now, a

density argument completes the proof. □

4 ON THE DUAL OF ((𝑿; 𝒀 ), 𝝉𝒔) AND APPLICATIONS TO THE -AP

For 𝑋, 𝑌 Banach spaces and 𝜏 a locally convex vector topology, the study of the dual space of ((𝑋; 𝑌 ), 𝜏) has been useful

to determine the presence of some approximation properties. It was Grothendieck [15] who first gave a representation of the

continuous linear functionals on ((𝑋; 𝑌 ), 𝜏𝑐) and used it to show the relation of the AP with the denseness of finite rank

operators. As usual, 𝜏𝑐 denotes de topology of uniform convergence on compact sets. There is a recent inclination to study

approximation properties related to (Banach) operator ideals, as it can be seen, among others, in [5], [7], [8], [18], [19], [20], [22],

[23], [27], [28], [34]. Our interest lies in the study of the -approximation property (-AP for short) which is defined taking into

account the geometry of . Recall that a Banach space 𝑋 has the -AP if for every Banach space 𝑌 ,  (𝑌 ;𝑋)
‖⋅‖ = (𝑌 ;𝑋)

(see [21, Definition 4.3] and [28]). More precisely we deal with the -AP.

As an immediate consequence of Lemma 3.7, we extend [22, Proposition 3.4] to arbitrary Banach operator ideals. There, a

reformulation of the -AP is given for  right-accessible, (see also the comments after [13, Proposition 3.9]).

Proposition 4.1. Let  be a Banach operator ideal. A Banach space 𝑋 has the -AP if and only if for all Banach spaces 𝑌 ,

(𝑌 ;𝑋) =  ◦ (𝑌 ;𝑋)

holds isometrically.
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In order to give a trace condition for the -AP, we begin with a characterization of the dual space of ((𝑋; 𝑌 ), 𝜏𝑠) where

𝜏𝑠 denotes the topology of uniform convergence on -compact sets under 𝑚. Indeed, 𝜏𝑠 is the topology generated by the

seminorms

𝑞𝐾 (𝑇 ) = 𝑚(𝑇 (𝐾); 𝑌 )

where 𝐾 runs trough all relatively -compact sets.

Theorem 4.2. Let be a Banach operator ideal, 𝑋, 𝑌 be Banach spaces and 𝜓 be a linear functional on(𝑋; 𝑌 ). The following
are equivalent.

(i) 𝜓 ∈ ((𝑋; 𝑌 ), 𝜏𝑠)′.
(ii) There exist a sequence (𝑥𝑛)𝑛 ∈ 𝑐0,(𝑋) and an operator 𝑅 in Δ


(𝑌 ;𝓁1) such that 𝜓(𝑇 ) =

∑∞
𝑛=1 𝑒𝑛(𝑅𝑇 𝑥𝑛).

(iii) There exist operators 𝑆 in 𝑤∗ (𝓁1;𝑋)
‖⋅‖ , 𝑅 in Δ


(𝑌 ;𝓁1) and 𝑈 in  (𝓁1;𝓁1) such that 𝜓(𝑇 ) = tr(𝑈𝑅𝑇 𝑆).

(iv) There exist a Banach space 𝑍, an operator 𝑆 ∈ (𝑍;𝑋) and a functional 𝜉 ∈ ((𝑍; 𝑌 ))′ such that 𝜓(𝑇 ) = 𝜉(𝑇 𝑆).

Proof. The proof of (i) implies (ii) essentially follows its classical prototype [25, Proposition 1.e.3], we briefly sketch
a proof. Take 𝜓 ∈ ((𝑋; 𝑌 ), 𝜏𝑠)′. There exists a sequence (𝑥𝑛)𝑛 ∈ 𝑐0,(𝑋) such that |𝜓(𝑇 )| ≤ 𝑚({𝑇 𝑥𝑛}𝑛; 𝑌 ). Consider
Ψ ∶ ((𝑋; 𝑌 ), 𝜏𝑠) → 𝑐0,(𝑌 ) the map given by Ψ(𝑇 ) = (𝑇 𝑥𝑛)𝑛. It is clear that Ψ is linear and continuous. Now, consider
the map 𝜙 defined on Ψ((𝑋; 𝑌 )) ⊂ 𝑐0,(𝑌 ) as

𝜙((𝑦𝑛)𝑛) = 𝜓(𝑇 ) if (𝑦𝑛)𝑛 = (𝑇 𝑥𝑛)𝑛.

Routine arguments show that 𝜙 is well defined, linear and continuous. Then, by the Hahn–Banach Theorem, it has an extension
to 𝑐0,(𝑌 ) which we still call 𝜙. Applying Theorem 3.5, 𝜙 has an associated map 𝑅 ∈ Δ


(𝑌 ;𝓁1) such that

𝜓(𝑇 ) = 𝜙((𝑇 𝑥𝑛)𝑛) =
∞∑

𝑛=1
𝑒𝑛(𝑅𝑇 𝑥𝑛).

To see that (ii) implies (iii) suppose that 𝜓(𝑇 ) =
∑∞

𝑛=1 𝑒𝑛(𝑅𝑇 𝑥𝑛) with (𝑥𝑛)𝑛 ∈ 𝑐0,(𝑋) and 𝑅 ∈ Δ

(𝑌 ;𝓁1), and take (𝛽𝑛)𝑛 ∈

𝑐0 such that (𝑥𝑛∕𝛽𝑛)𝑛 belongs to 𝑐0,(𝑋). With 𝑥𝑛 = 𝑥𝑛∕𝛽𝑛, define 𝑆 ∶ 𝓁1 → 𝑋 by 𝑆 =
∑∞

𝑛=1 𝑒𝑛 ⊗ 𝑥𝑛. Now, by Proposition 2.5,

𝑆 ∈ 𝑤∗ (𝓁1;𝑋)
‖⋅‖ and

𝜓(𝑇 ) =
∞∑

𝑛=1
𝛽𝑛𝑒𝑛(𝑅𝑇 𝑆𝑒′𝑛).

Now, consider 𝑈 ∶ 𝓁1 → 𝓁1 the diagonal operator satisfying that 𝑈𝑒𝑛 = 𝛽𝑛𝑒𝑛. Clearly, 𝑈 ∈  (𝓁1;𝓁1) and, by Theorem 3.9,
the composition 𝑈𝑅𝑆𝑇 is in  (𝓁1;𝓁1). Then, we have

𝜓(𝑇 ) =
∞∑

𝑛=1
𝑒𝑛(𝑈𝑅𝑇 𝑆𝑒′𝑛) = tr(𝑈𝑅𝑇 𝑆).

Now suppose that (iii) holds. Note that 𝑈𝑅 ∈ Δ

(𝑌 ;𝓁1) then, by Theorem 3.9, we may define a continuous functional

𝜉 ∈
(
𝑤∗ (𝓁1; 𝑌 )

‖⋅‖
)′ as 𝜉(𝑉 ) = tr(𝑈𝑅𝑉 ). Since 𝑤∗ (𝓁1; 𝑌 )

‖⋅‖ ⊂ (𝓁1; 𝑌 ), by the Hahn–Banach Theorem, there is an
extension of 𝜉 to (𝓁1; 𝑌 ) which we still call 𝜉. Thus, 𝜓(𝑇 ) = tr(𝑈𝑅𝑇 𝑆) = 𝜉(𝑇 𝑆), proving (iv) for 𝑍 = 𝓁1.

Finally, to see that (iv) implies (i), note that if 𝜓(𝑇 ) = 𝜉(𝑇 𝑆) with 𝑆 ∈ (𝑍;𝑋) and 𝜉 ∈ ((𝑍; 𝑌 ))′, then

|𝜓(𝑇 )| = |𝜉(𝑇 𝑆)| ≤ ‖𝜉‖ ‖𝑇 𝑆‖
= ‖𝜉‖𝑚(𝑇 𝑆(𝐵𝑍 );𝑋).

Since 𝑆(𝐵𝑍 ) is a relatively -compact set in 𝑋, 𝑞(𝑇 ) = 𝑚(𝑇 𝑆(𝐵𝑍 );𝑋) is a 𝜏𝑠-continuous seminorm on (𝑋; 𝑌 ) and 𝜓 is
𝜏𝑠-continuous, concluding the proof. □

When  is right-accessible, by Remark 3.6, the identity
(
 ◦

)Δ(𝑌 ;𝓁1) = ∗(𝑌 ;𝓁1) holds. If, in addition,  is maximal,

then ∗ is left-accessible [6, Corollary 21.3]. With this in mind, the equivalences (i)–(iii) of Theorem 4.2 read as follows.
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Corollary 4.3. Let be a maximal, right-accessible Banach operator ideal, 𝑋, 𝑌 be Banach spaces and 𝜓 be a linear functional
on (𝑋; 𝑌 ). The following are equivalent.

(i) 𝜓 ∈ ((𝑋; 𝑌 ), 𝜏𝑠)′.
(ii) There exist a sequence (𝑥𝑛)𝑛 ∈ 𝑐0,(𝑋) and an operator 𝑅 in ∗(𝑌 ;𝓁1) such that 𝜓(𝑇 ) =

∑∞
𝑛=1 𝑒𝑛(𝑅𝑇 𝑥𝑛).

(iii) There exist operators 𝑆 ∈ 𝑚𝑖𝑛
𝑤∗ (𝓁1;𝑋) and 𝑅 ∈ (∗)𝑚𝑖𝑛(𝑌 ;𝓁1) such that 𝜓(𝑇 ) = tr(𝑅𝑇 𝑆).

As a by-product of the above results we give a trace condition for the -AP. Theorem 4.4 covers [8, Theorem 3.1].

Theorem 4.4. Let be a Banach operator ideal and 𝑋 be a Banach space. Then 𝑋 has the-AP if and only if for every-null
sequence (𝑥𝑛)𝑛 in 𝑋 and every operator 𝑅 in Δ


(𝑋;𝓁1) such that

∑∞
𝑛=1 𝑒𝑛(𝑅𝑥)𝑥𝑛 = 0 for all 𝑥 ∈ 𝑋, then

∑∞
𝑛=1 𝑒𝑛(𝑅𝑥𝑛) = 0.

Proof. By [22, Proposition 3.1], 𝑋 has the -AP if and only if 𝐼𝑑𝑋 ∈  (𝑋;𝑋)
𝜏𝑠 . Or equivalently, if 𝜓(𝐼𝑑𝑋) = 0 for any

𝜓 ∈ ((𝑋;𝑋); 𝜏𝑠)′ such that 𝜓(𝑥′ ⊗ 𝑥) = 0 for all 𝑥′ ∈ 𝑋′ and 𝑥 ∈ 𝑋. Thus, the result follows by the characterization of 𝜓

given in Theorem 4.2 (ii). □

The next lemma is an extension of a key tool often used in the course to prove results inferring approximation properties on

a dual space to the space.

Lemma 4.5. Let , be Banach operator ideals and 𝑋 be a Banach space. Assume that for every 𝜙 ∈ ((𝑋;𝑋), 𝜏𝑠)′ there is
a functional 𝜓 ∈ ((𝑋′;𝑋′), 𝜏𝑠)′ such that 𝜓(𝑇 ′) = 𝜙(𝑇 ) for all 𝑇 ∈ (𝑋;𝑋). If 𝑋′ has the -AP, then 𝑋 has the -AP.

Proof. Take 𝜙 ∈ ((𝑋;𝑋), 𝜏𝑠)′ such that 𝜙 vanishes on the finite rank operators and let us see that 𝜙(𝐼𝑑𝑋) = 0. Take 𝜓 ∈
((𝑋′;𝑋′), 𝜏𝑠)′ such that 𝜓(𝑇 ′) = 𝜙(𝑇 ) for all 𝑇 ∈ (𝑋;𝑋). Then, 𝜓(𝑆) = 0 for every 𝑆 ∈ 𝑤∗ (𝑋′;𝑋′) = 𝑋 ⊗ 𝑋′. Now, it
is easy to check that, for any, 𝑋 ⊗ 𝑋′ is 𝜏𝑠-dense in (𝑋′;𝑋′) (see e.g. [22, Lemma 3.6]). As 𝑋′ has the-AP, 𝜓(𝐼𝑑𝑋′ ) = 0
and

𝜙(𝐼𝑑𝑋) = 𝜓(𝐼𝑑′
𝑋
) = 𝜓(𝐼𝑑𝑋′ ) = 0.

Thus, 𝐼𝑑𝑋 ∈  (𝑋;𝑋)
𝜏𝑠 meaning that 𝑋 has the -AP [22, Proposition 3.1]. □

Now, we are in a position to show that the hypothesis of being Asplund for the Banach space 𝑋 in [19, Theorem 1.3] can

be removed. In this way, [19, Theorem 1.1] and Theorem 4.7 complete the case 𝑝 = 1 of [18, Theorem 1.1]. Before proceeding

recall that, as already mentioned, 𝑢𝑝 and 𝔎𝑝′
are isometrically isomorphic. For our purposes, let us spare some lines giving

a description of 𝑢𝑝 in terms of a maximal accessible ideal.

Remark 4.6. The identity 𝑢𝑝 = 𝔎𝑚𝑎𝑥
𝑝′

holds isometrically. Indeed, on the one hand, [22, Proposition 2.1] states that any

-compact operator ideal  satisfies the isometric identity  =
(
 ◦

)𝑠𝑢𝑟. Using this and that 𝔎𝑝′ is minimal [6, 22.3],
we get that 𝑢𝑝 = 𝔎𝑝′

= (𝔎𝑝′ ◦ )𝑠𝑢𝑟 = (𝔎𝑝′ )𝑠𝑢𝑟. On the other hand, 𝔎𝑝′ = (𝔎𝑚𝑎𝑥
𝑝′

)𝑚𝑖𝑛 = 𝔎𝑚𝑎𝑥
𝑝′

◦ , as 𝔎𝑚𝑎𝑥
𝑝′

is accessible [6,
Theorem 21.5]. Another application of [22, Proposition 2.1] gives that 𝔎𝑠𝑢𝑟

𝑝′
= 𝔎𝑚𝑎𝑥

𝑝′
and the assertion follows.

Theorem 4.7. Let 𝑋 be a Banach space. If 𝑋′ has the 1-AP then 𝑋 has the 𝑢1-AP.

Proof. Let us show that conditions of Lemma 4.5 are fulfilled. Take, 𝜙 ∈ ((𝑋;𝑋), 𝜏𝑠𝑢1
)′ and note that 𝑢1 = 𝔎𝑚𝑎𝑥

∞
with

𝔎𝑚𝑎𝑥
∞ an accessible ideal [6, Theorem 21.5]. By Corollary 4.3 (i) ⇒ (iii), there exist operators 𝑆 ∈ 𝔎∞𝑤∗ (𝓁1;𝑋) and 𝑅 ∈(
𝔎∗

∞
)𝑚𝑖𝑛(𝑋;𝓁1) such that 𝜙(𝑇 ) = tr(𝑅𝑇 𝑆). Now, we define 𝜓 on (𝑋′;𝑋′) by 𝜓(𝑈 ) = tr(𝑆′𝑈𝑅′). Let us show that 𝜓 is well

defined and 𝜏𝑠1
-continuous. It is clear that if this is the case, 𝜓(𝑇 ′) = 𝜙(𝑇 ) for all 𝑇 .

First, we claim that 𝑆′ is in ∗
1(𝑋

′;𝓁∞) and 𝑅′ is in 𝑚𝑖𝑛
1 (𝓁∞;𝑋′). Indeed, as 𝑆 factors compactly through 𝑐0, 𝑆′ fac-

tors compactly through 𝓁1 and then 𝑆′ is in 𝔎1(𝑋′;𝓁∞) with 𝔎1 associated to the tensor norm 𝑤1 [6, 18.2]. Following the
tensor norm identities listed in [6, 12.7] we have 𝑤1 = 𝑑∞ = ((𝑑∞)𝑡)𝑡 = 𝑔𝑡

∞. Now, we resume several tensor norm equalities
by appealing to [33, Theorem 7.20], which provides us with the identity 𝑔′∞ = ∕𝑑1. Now, taking duals and transposes we get
𝑤1 = 𝑔𝑡

∞ = ((∕𝑑1)′)𝑡 = (∕𝑑1)∗. As in addition, 1 and ∕𝑑1 are associated [13, Theorem 3.3], giving that ∗
1 and 𝑤1 are asso-

ciated. Then, the minimal kernel of the operator ideals associated with 𝑤1 coincide. That is 𝔎1 = (∗
1)

𝑚𝑖𝑛 and, in particular,
𝑆′ belongs to ∗

1(𝑋
′;𝓁∞).

Regarding 𝑅′, we have to show that 𝑅 is in 𝑚𝑖𝑛 𝑑
1 (𝑋;𝓁1). As 𝓁1 is a dual space, 𝑚𝑖𝑛 𝑑

1 (𝑋;𝓁1) = 𝑑 𝑚𝑖𝑛
1 (𝑋;𝓁1) [6, Corol-

lary 22.8.1]. As 𝑅 ∈ (𝔎∗
∞)𝑚𝑖𝑛(𝑋;𝓁1) it is enough to show that (𝔎∗

∞)𝑚𝑖𝑛 = 𝑑 𝑚𝑖𝑛
1 . This is equivalent to prove that the associated

tensor norms to 𝔎∗
∞ and 𝑑

1 coincide. By [6, 18.2], 𝔎∗
∞ is associated to 𝑤∗

∞. Using again that 1 and ∕𝑑1 are associated we see
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that 𝑑
1 and (∕𝑑1)𝑡 are associated. With [6, Proposition 20.14] and the tensor norm identities given above, 𝑤∗

∞ = 𝑤′
1 = (∕𝑑1)𝑡

and the claim is proved.
Now, by [13, Remark 3.8], 𝑚𝑖𝑛

1 (𝓁∞;𝑋′) = 𝓁′
∞⊗̂∕𝑑1

𝑋′ and since 𝓁′
∞ has the AP, the identity 𝓁′

∞⊗̂∕𝑑1
𝑋′ = 1(𝓁∞;𝑋′) holds

[13, Theorem 3.11]. Then we have𝑚𝑖𝑛
1 (𝓁∞;𝑋′) = 1(𝓁∞;𝑋′). On the other hand, as1 is right-accessible, [26, Theorem 3.1]

asserts that ∗
1 ◦1 ⊂ . Therefore, [6, Proposition 25.4.2] gives the norm one inclusion ∗

1 ◦
𝑚𝑖𝑛
1 ⊂ 𝑚𝑖𝑛 =  . Then, for

all 𝑉 ∈ 1(𝓁∞;𝑋′), 𝑆′𝑉 ∈  (𝓁∞;𝓁∞) and the AP of 𝓁∞ allows us to define the continuous functional 𝜉 ∈ (1(𝓁∞;𝑋′))′ by
𝜉(𝑉 ) = tr(𝑆′𝑉 ). As 𝑈𝑅′ belongs to 1(𝓁∞;𝑋′) for every 𝑈 ∈ (𝑋′;𝑋′), we have that 𝜓(𝑈 ) = tr(𝑆′𝑈𝑅′) = 𝜉(𝑈𝑅′) and 𝜓

is well defined.
Finally, an application of Theorem 4.2 (iv) ⇒ (i), gives that 𝜓 is 𝜏𝑠1

-continuous. Now Lemma 4.5 applies which completes
the proof. □

ACKNOWLEDGEMENTS
This project was supported in part by CONICET PIP 0483, ANPCyT PICT-2015-2299 and UBACyT 1-474. The authors would

like to thank J. M. Kim for sending to them a preliminary and the final version of [19]. Also, the authors are grateful to the

referees for their careful reading and suggestions which helped them to improve the presentation of this article.

R E F E R E N C E S
[1] K. Ain, R. Lillemets, and E. Oja, Compact operators which are defined by 𝓁𝑝-spaces, Quaest. Math. 35 (2012), 145–159.

[2] K. Ain and E. Oja, A description of relatively (𝑝; 𝑟)-compact sets, Acta Comment. Univ. Tartu. Math. 16 (2012), 227–232.

[3] K. Ain and E. Oja, On (𝑝, 𝑟)-null sequences and their relatives, Math. Nachr. 288 (2015), 1569–1580.

[4] B. Carl and I. Stephani, On -compact operators, generalized entropy numbers and entropy ideals, Math. Nachr. 199 (1984), 77–95.

[5] Y. S. Choi and J. M. Kim, The dual space of ((𝑋, 𝑌 ); 𝜏𝑝) and the 𝑝-approximation property, J. Funct. Anal. 259 (2010), 2437–2454.

[6] A. Defant and K. Floret, Tensor Norms and Operators Ideal (North-Holland Publishing Co., Amsterdam, 1993).

[7] J. M. Delgado, E. Oja, C. Piñeiro, and E. Serrano, The 𝑝-approximation property in terms of density of finite rank operators, J. Math. Anal. Appl.

354 (2009), 159–164.

[8] J. M. Delgado, C. Piñeiro, and E. Serrano, Density of finite rank operators in the Banach space of 𝑝-compact operators, J. Math. Anal. Appl. 370
(2010), 498–505.

[9] J. Diestel, J. H. Fourie, and J. Swart, The Metric Theory of Tensor Products, Grothendieck’s résumé revisited (American Mathematical Society,

Providence, RI, 2008).

[10] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics Vol. 43 (Cambridge Uni-

versity Press, Cambridge, 1995).

[11] J. Fourie and J. Swart, Banach ideals of p-compact operators, Manuscripta Math. 26 (1979), 349–362.

[12] J. Fourie and J. Swart, Tensor products and Banach ideals of p-compact operators, Manuscripta Math. 35 (1981), 343–351.

[13] D. Galicer, S. Lassalle, and P. Turco, The ideal of 𝑝-compact operators: a tensor product approach, Studia Math. 211 (2012), 269–286.

[14] Y. Gordon, D. Lewis, and J. Retheford, Banach ideals of operators with applications, J. Funct. Anal. 14 (1973), 85–129.

[15] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Memoirs of the American Mathematical Society 16 (1955), 140 pp.

[16] H. Jarchow and R. Ott, On trace ideals, Math. Nachr. 108 (1982), 23–37.

[17] J. M. Kim, Unconditionally 𝑝-null sequences and uncoditionally 𝑝-compact operators, Studia Math. 224 (2014), 133–142.

[18] J. M. Kim, The 𝑢𝑝-approximation property and its duality, J. Aust. Math. Soc. 98 (2015), 364–374.

[19] J. M. Kim, Duality between the 1- and the 𝑢1-approximation properties, To appear in Houston J. Math.

[20] S. Lassalle, E. Oja, P. Turco, Weaker relatives of the bounded approximation property for a Banach operator ideal, J. Approx. Theory 205 (2016),

25–42.

[21] S. Lassalle and P. Turco, On 𝑝-compact mappings and the 𝑝-approximation properties, J. Math. Anal. Appl. 389 (2012), 1204–1221.

[22] S. Lassalle and P. Turco, The Banach ideal of -compact operators and related approximation properties, J. Funct. Anal. 265 (2013), 2452–2464.

[23] A. Lima, V. Lima, and E. Oja, Bounded approximation properties via integral and nuclear operators, Proc. Amer. Math. Soc. 138 (2010),

287–297.

[24] J. Lindenstrauss, On a certain subspace of 𝓁1, Bull. Acad. Pol. Sci., Sr. Sci. Math. Astron. Phys. 12 (1964), 539–542.

[25] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Vol. 92 (Springer-Verlag, Berlin, New York, 1977).

[26] F. Oertel, Local properties of accessible injective operator ideals, Czechoslovak Math. J. 48(123) (1998), 119–133.



14 LASSALLE AND TURCO

[27] E. Oja, Inner and outer inequalities with applications to approximation properties, Trans. Amer. Math. Soc. 363 (2011), 5827–5846.

[28] E. Oja, A remark on the approximation of p-compact operators by finite-rank operators, J. Math. Anal. Appl. 387 (2012), 949–952.

[29] E. Oja, Grothendieck’s nuclear operator theorem revisited with an application to p-null sequences, J. Funct. Anal. 263 (2012), 2876–2892.

[30] A. Pietsch, Operators Ideals (North-Holland Publishing Company, Amsterdam/New York/Oxford, 1980).

[31] A. Pietsch, The ideal of 𝑝-compact operators and its maximal hull, Proc. Amer. Math. Soc. 142 (2014), 519–530.

[32] C. Piñeiro and J. M. Delgado, 𝑝-convergent sequences and Banach spaces in which 𝑝-compact sets are 𝑞-compact, Proc. Amer. Math. Soc. 139
(2011), 957–967.

[33] R. Ryan, Introduction to Tensor Products on Banach Spaces (Springer, London, 2002).

[34] D. P. Sinha and A. K. Karn, Compact operators whose adjoints factor trough subspaces of 𝓁𝑝, Studia Math. 150 (2002), 17–33.

[35] P. Turco, -compact mappings, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2015), 863–880.

How to cite this article: Lassalle S. Turco P. On null sequences for Banach operator ideals, trace duality and approxima-

tion properties. Mathematische Nachrichten. 2017;00:1–14. https://doi.org/10.1002/mana.201600273


