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a b s t r a c t

We initiate the study of graph classes of power-bounded clique-width, that is, graph classes
for which there exist integers k and ℓ such that the kth powers of the graphs are of clique-
width at most ℓ. We give sufficient and necessary conditions for this property. As our
main results, we characterize graph classes of power-bounded clique-width within classes
defined by either one forbidden induced subgraph, or by two connected forbidden induced
subgraphs. We also show that for every positive integer k, there exists a graph class such
that the kth powers of graphs in the class form a class of bounded clique-width, while this
is not the case for any smaller power.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The two main notions studied in this paper are the notion of graph powers and the notion of clique-width. Recall that
for a positive integer k, the kth power of a graph G is the graph denoted by Gk and obtained from G by adding to it all edges
between pairs of vertices at distance at least 1 and at most k. Graph powers are basic graph transformations with a number
of results about their properties in the literature (see, e.g., [5,42]). The othermain notion of the paper, clique-width, is a graph
parameter, denoted by cw(G), with many algorithmic applications when bounded by a constant (see, e.g., [9,13,18,21,22,33,
41,47]). We study these two notions in the framework of graph classes, that is, sets of graphs closed under isomorphism,
paying particular attention to hereditary graph classes.

For a graph class G and a positive integer k, the kth power of G is the set Gk of all kth powers of graphs in G. The fact that
several graph algorithmic problems can be expressed in terms of graph powers (see, e.g., [4,6,27,32,40,47]) motivates the
study of graph classes the kth power of which has small clique-width, where k is a fixed positive integer. More specifically,
one can study the following properties of graph classes capturing, on a coarse scale, various dependencies regarding the
behavior of the clique-width with respect to graph powers, where, for a graph class G, the clique-width of G is defined as
cw(G) = sup{cw(G) | G ∈ G}:

• For a pair of positive integers k and ℓ, we say that G is of (k, ℓ)-power-bounded clique-width if cw(Gk) ≤ ℓ.
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• For a positive integer k, we say that G is of (k, ∗)-power-bounded clique-width if cw(Gk) ≤ ℓ for some positive integer ℓ.
• For a positive integer ℓ, we say that G is of (∗, ℓ)-power-bounded clique-width if cw(Gk) ≤ ℓ for some positive integer k.
• Finally, we say that G is of (∗, ∗)-power-bounded clique-width (or simply: of power-bounded clique-width) if cw(Gk) ≤ ℓ

for some pair of positive integers k and ℓ.

In the above terminology, a graph class G is of bounded clique-width if and only if it is of (1, ∗)-power-bounded
clique-width. Thus, the above framework can be seen as a graph-powers-oriented extension of the notion of graph
classes of bounded clique-width. We should emphasize that, while characterizing graph classes with respect to bounded-
ness/unboundedness of their clique-width is important for algorithmic purposes, this is not a simple task, as proving lower
bounds on the clique-width of a given graph class can be quite challenging. For instance, while it is known that the class
of H-free graphs is of bounded clique-width if and only if H is an induced subgraph of the 4-vertex path [15], a complete
dichotomy for graph classes defined by two forbidden induced subgraphs, say H and H ′, is still not known, even in the case
when both H andH ′ are connected [15,16]. Moreover, given a graph G and an integer k, it isNP-complete to determine if the
clique-width of G is at most k [17], while for fixed values of k polynomial-time algorithms are known only for k ≤ 3 [10].

We thus propose the study of graph classes of (k, ℓ)-power-bounded clique-width, which, as indicated above, can be
useful for algorithmic purposes also for k > 1. The difficulties of understanding the corresponding graph classes for fixed
values of k and ℓ motivate the introduction of the more relaxed properties of (k, ∗)-, (∗, ℓ), and (∗, ∗)-power-bounded
clique-width. We expect that relaxing one or both of the two parameters to be unconstrained might lead to more tractable
cases in terms of proving dichotomy results. This seems to be indeed the case, as certified for instance by the complete char-
acterization of graph classes of power-bounded clique-width within classes defined by two connected forbidden induced
subgraphs, which we prove in this paper (Theorem 6.5). At the same time, we expect that research leading to such results
will also lead to discoveries of new structural properties of the graph classes under consideration.

We now summarize our main results and connect them with some known results from the literature. We focus mainly
on the last, most relaxed property, that is, on graph classes of power-bounded clique-width. Several of our results also have
implications for the other three properties.

First, we observe that several well-known graph classes, including grids, bipartite permutation graphs, unit interval
graphs, and hypercube graphs, are of power-unbounded clique-width. In particular, this implies that none of these graph
classes is of (k, ℓ)-, (k, ∗)-, or (∗, ℓ)-power-bounded clique-width, for any positive integers k and ℓ, thus strengthening the
known fact that these graph classes are of unbounded clique-width.

Second, for every positive integer k, we construct a graph class G such that the power class Gk is of bounded clique-
width, while this is not the case for any smaller power. This implies that the families of (k, ∗)-power-bounded classes are
all pairwise distinct and further motivates the study of these properties.

Third, we prove a sufficient condition for power-boundedness of the clique-width, generalizing the simple observation
that every graph class of bounded diameter is of power-bounded clique-width. Informally speaking, the condition states
that for every class G of graphs of bounded diameter, the class of graphs arising from graphs in G by subdividing (arbitrarily
many times) a bounded number of edges is of power-bounded clique-width.

Finally, using the above condition, we develop our main result: a complete characterization of graph classes of power-
bounded clique-width within classes defined by two connected forbidden induced subgraphs (Theorem 6.5). As remarked
above, this result contrasts with the case of graph classes of bounded clique-width, that is, of (1, ∗)-power-bounded clique-
width, where a dichotomy for graph classes defined by two connected induced subgraphs is (at the time of this writing)
still not known.We also characterize graph classes of power-bounded clique-width within hereditary graph classes defined
by a single forbidden induced subgraph (Theorem 6.1), thus extending the analogous characterization for graph classes of
bounded clique-width.

The rest of the paper is structured as follows. In Section 2 we review the necessary preliminaries and basic definitions.
In Section 3 we formally introduce the central notion of the paper, the power-(un)boundedness of the clique-width, obtain
initial insight into this notion, and develop results that we use in later sections. In Section 4, we construct graph classes
of power-bounded clique-width that require taking arbitrarily large powers in order to produce a graph class of bounded
clique-width. In Section 5, we prove a sufficient condition for power-bounded clique-width. Section 6 is devoted to results
about power-boundedness of the clique-width in hereditary graph classes. We conclude the paper with a discussion in
Section 7.

2. Preliminaries

All graphs in this paper are finite, simple and undirected. Graph terminology not defined here can be found in [48].
Graphs and graph classes. Given a graph G, an independent set in G is a set of pairwise non-adjacent vertices, and a clique
is a set of pairwise adjacent vertices. Given two graphs G and H , graph H is said to be an induced subgraph of G if it can be
obtained from G by a sequence of vertex deletions, a subgraph of G if it can be obtained from G by a sequence of vertex and
edge deletions, and a minor of G if it can be obtained from G by a sequence of vertex deletions, edge deletions, and edge
contractions. If an induced subgraph of G is isomorphic to a graph H , we say that G contains H (as an induced subgraph). For
a subset of vertices X ⊆ V (G), wewill denote by G−X the graph obtained from G by deleting from it the vertices in X , and by
G[X] the subgraph of G induced by X , that is, G[X] = G − (V (G)\X). For two vertices x, y in a connected graph G, we denote
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by distG(x, y) the distance between x and y, that is, the length (number of edges) of a shortest x, y-path in G. The diameter of
a connected graph G is defined as diam(G) = maxx,y∈V (G) distG(x, y), and we define the diameter of a disconnected graph
G to be the maximum diameter of a connected component of G. By Pn, Cn, and Kn, we denote the path, the cycle, and the
complete graph on n vertices, respectively. For two vertex-disjoint graphs G1 and G2, the disjoint union of G1 and G2 is the
graph (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). The disjoint union of k graphs isomorphic to a graph H will be denoted by kH . The
complement of a graph G = (V , E) is the graph G with the same vertex set as G, in which two distinct vertices are adjacent
if and only if they are non-adjacent in G. A graph is said to be co-connected if its complement is connected. The treewidth of
a graph G is denoted by tw(G). We refer to [2] for several equivalent characterizations.

A graph class is a set of graphs that is closed under isomorphism. Given a graph class G, we say that G is of bounded degree
if sup{∆(G) | G ∈ G} < ∞, and of bounded diameter if diam(G) = sup{diam(G) | G ∈ G} < ∞. For a set F of graphs, we
say that a graph G is F -free if no induced subgraph of G is isomorphic to a member of F . Similarly, for a graph H , we say
that G is H-free if it is {H}-free. The set of all F -free graphs will be denoted by Free(F ). A graph class is hereditary if it is
closed under taking induced subgraphs. A graph class G is hereditary if and only if G = Free(F ) for some set F of graphs.
An important family of hereditary graph classes is the family of minor-closed classes (i.e., graph classes closed under taking
minors). For graph classes not defined in this paper, we refer to [5].

Clique-width. [12] The clique-width of a graph G, denoted cw(G), is the minimum number of different labels needed to
construct a vertex-labeled graph isomorphic to G using the following four operations: (i) Creation of a new vertex v with
label i; (ii) Disjoint union of two labeled graphs G and H; (iii) Joining by an edge each vertex with label i to each vertex with
label j (for some pair of different labels i and j); (iv) Relabeling each vertex with label iwith label j. Every graph can be built
using the above four operations.

Given a graph class G, the clique-width of G is cw(G) = sup{cw(G) | G ∈ G} . We say that G is of bounded clique-width if
cw(G) < ∞ (and of unbounded clique-width, otherwise).

We will often make use of the following basic property of the clique-width.

Proposition 2.1 (Johansson [30], Courcelle–Olariu [14]). If H is an induced subgraph of a graph G then cw(H) ≤ cw(G).

We will make use of the following fact in Sections 4 and 6.

Proposition 2.2 (Kamiński et al. [31]). If G is a graph class of unbounded clique-width, then the class of graphs obtained from
graphs in G by applying a constant number of operations of replacing an induced subgraph of G with its complement is also of
unbounded clique-width.

Modules. A subset M of vertices in a graph G is said to be a module if every vertex v ∈ V (G)\M is either adjacent to all
vertices inM , or non-adjacent to all vertices ofM . A module is said to be trivial ifM = V or |M| ≤ 1, and a graph G is prime if
it does not contain any nontrivial module. Given a partitionΠ of the vertex set of a graph G into modules, the quotient graph
of G with respect to Π is defined as the graph obtained from G by replacing the sets in Π with single vertices and connecting
two vertices by en edge if and only if the corresponding two sets inΠ are connected by an edge inG. IfG is connected and co-
connected, then its vertex set admits a unique partition into pairwise disjoint maximal modules (see, e.g., [26]). Moreover,
the corresponding quotient graph is always prime.

Proposition 2.3 (Courcelle–Olariu [14]). For every graph G we have cw(G) = max{cw(H) | H is a prime induced subgraph
of G}.

The following proposition shows that for hereditary graph classes, the power-boundedness of the clique-width depends
only on the prime graphs in the class.

Proposition 2.4. Let G be a hereditary graph class and let G′ be the set of all prime graphs in G. Then, for every k ≥ 1, the
graph class Gk is of bounded clique-width if and only if (G′)k is of bounded clique-width. In particular, G is of power-bounded
clique-width if and only if G′ is of power-bounded clique-width.

Proof. Since G′
⊆ G, we have (G′)k ⊆ Gk. Therefore, if Gk is of bounded clique-width, then so is (G′)k. Suppose now that

cw((G′)k) ≤ ℓ for some k ≥ 1 and ℓ ≥ 2. By induction on the number of vertices, we will prove that for every G ∈ G,
we have cw(Gk) ≤ ℓ. If G is disconnected, then so is Gk, and we can assume inductively that cw(H) ≤ ℓ holds for every
connected component H of Gk, which implies the desired inequality for Gk. If the complement of G is disconnected, then
diam(G) ≤ 2, hence Gk is complete and the result follows. Now, let G be a connected co-connected graph in G, and let Q
be the quotient graph of G with respect to the partition of V (G) into maximal modules. Then, the graph Gk is isomorphic
to the graph obtained from the graph Q k by substituting a clique of size |M| for each vertex M of Q . In particular, every
prime induced subgraph of Gk is isomorphic to an induced subgraph of Q k. Applying Proposition 2.3 twice, we obtain
cw(Gk) ≤ max{cw(H) | H is a prime induced subgraph of Q k

} = cw(Q k) ≤ ℓ , as claimed. �
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3. The definition, basic properties, and examples

In this section, we obtain some initial insight into power-(un)boundedness of the clique-width. Several of the results
developed in this section will be used in later sections.

The central notion of the paper is introduced in the following.

Definition 1. A graph class G is said to be of power-bounded clique-width if there exists a positive integer k such that Gk is
of bounded clique-width. If no such k exists, we say that G is of power-unbounded clique-width.

In other words, a graph class G is of power-bounded clique-width if there exists a pair of positive integers k and ℓ such
that for every G ∈ G, we have cw(Gk) ≤ ℓ. For a graph class G of power-bounded clique-width, we denote by π(G) the
smallest positive integer k such that Gk is of bounded clique-width. Clearly, π(G) = 1 if and only if G is of bounded clique-
width. If G is of power-unbounded clique-width, then π(G) is defined to be ∞. In some arguments in the paper, we will use
the obvious fact that if G ⊆ H , then π(G) ≤ π(H). Consequently, if G ⊆ H and H is of power-bounded clique-width, then
so is G.

In the next proposition, we collect some basic properties of the family of graph classes of power-bounded clique-width.
In particular, the family is closed under taking powers and contains all graph classes of bounded diameter.

Proposition 3.1. Let G be a graph class. Then:

1. If cw(G) ≤ ℓ for some ℓ ≥ 1, then for every k ≥ 1 we have cw(Gk) ≤ 4(k + 1)ℓ.
2. For every k ≥ 1, we have π(Gk) ≤ π(G) ≤ diam(G) .

Proof. Suppose that cw(G) ≤ ℓ for some positive integer ℓ, and let k be a positive integer. Denoting by nlcw(G) the
NLC-width of a graph G, every graph G with nlcw(G) ≤ ℓ satisfies nlcw(Gk) ≤ 2(k + 1)ℓ [46], and for every graph
G, we have nlcw(G) ≤ cw(G) ≤ 2 · nlcw(G) [30]. Therefore, if cw(G) ≤ ℓ, then nlcw(G) ≤ ℓ, and consequently
cw(Gk) ≤ 2 · nlcw(Gk) ≤ 4(k + 1)ℓ . This implies that for every G ∈ G, we have cw(Gk) ≤ 4(k + 1)ℓ, proving the first
part of the proposition.

For the second part of the proposition, we first show the inequality π(Gk) ≤ π(G). Suppose that p = π(G) is finite
(otherwise, there is nothing to show). Then, ℓ = cw(Gp) is finite. We have already proved that for every graph G ∈ Gp, we
have cw(Gk) ≤ 4(k + 1)ℓ. Consequently, for every graph G ∈ G, we have cw((Gp)k) ≤ 4(k + 1)ℓ. Observe that the graph
(Gp)k is equal to the graph Gpk, and, by symmetry, to the graph (Gk)p. This implies that for every graph G ∈ G, we have
cw((Gk)p) ≤ 4(k + 1)ℓ, and thus π(Gk) ≤ p.

Finally, we show that π(G) ≤ diam(G). Suppose that k = diam(G) is finite (otherwise, there is nothing to show). Then,
for every G ∈ G, the graph Gk is a disjoint union of complete graphs, and hence cw(Gk) ≤ 2. Consequently, cw(Gdiam(G)) ≤ 2
and the claimed inequality follows. �

We continue with the observation that for graphs of bounded degree and proper minor-closed graph classes (that is,
minor-closed graph classes excluding at least one minor), power-bounded clique-width is equivalent to bounded clique-
width and bounded treewidth. This result will be used in Section 3.1.

Proposition 3.2. Let G be a graph class that is either of bounded degree or minor closed. Then, the following are equivalent:

1. G is of power-bounded clique-width.
2. G is of bounded clique-width.
3. G is of bounded treewidth.

Proof. If G is of bounded treewidth, then it is of bounded clique-width [11], hence also of power-bounded clique-width.
Therefore, we only need to show that power-bounded clique-width implies bounded treewidth.

Assume that ∆(G) ≤ d for all G ∈ G, and that there are k, ℓ ≥ 1 such that cw(Gk) ≤ ℓ. Observe: ∆(Gk) ≤

d ·
k−1

i=0 (d − 1)i ≤ dk+1. Courcelle and Olariu showed in [14] that there exists a function f such that for every graph G,
we have tw(G) ≤ f (∆(G), cw(G)). This implies the existence of a function g that is non-decreasing in each component such
that tw(G) ≤ g(∆(G), cw(G)) holds for all graphs. Therefore, since adding edges cannot decrease the treewidth, we have
for every G ∈ G:

tw(G) ≤ tw(Gk) ≤ g(∆(Gk), cw(Gk)) ≤ g(dk+1, ℓ).

Thus, G is of bounded treewidth.
Finally, let G be aminor-closed graph class of power-bounded clique-width. Since the class of n×n grids (see Section 3.1

for the definition) is of unbounded treewidth (see, e.g., [2, Corollary 89]), the above implies that the class of grids is also of
power-unbounded clique-width. Therefore, G excludes some grid G. Since G is minor closed, no graph in G has a minor
isomorphic to G. Since every graph class excluding a fixed planar graph as a minor is of bounded treewidth [44], the
conclusion follows. �
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Fig. 1. The first two graphs, from left to right, are B6 and G3 . The rightmost figure shows that G3 is an induced subgraph of B2
6 (for the sake of clarity, we

do not draw all the edges of B2
6).

3.1. Examples of graph classes of power-unbounded clique-width

For an integer n ≥ 1, the n × n grid is the graph with vertex set {1, . . . , n}2, in which two vertices (i, j) and (k, ℓ) are
adjacent if and only if |i − k| + |j − ℓ| = 1.

Example 1. For every k ≥ 1, the set of graphs obtained from grids by replacing each edge with a path with k edges is of
power-unbounded clique-width.

Indeed, let Gn,k be the graph obtained from the n×n grid by replacing each edge with a path with k edges. Since the n×n
grid Gn,1 is a minor of Gn,k, and n× n grids are of unbounded treewidth, the set of graphs {Gn,k | n ≥ 1} is also of unbounded
treewidth. (It is well known that if H is a minor of G, then tw(H) ≤ tw(G), see, e.g., [2, Lemma 16].) The conclusion now
follows from Proposition 3.2.

The girth of a graph G is defined as the shortest length of a cycle in G (or infinity if G is acyclic). The next example
immediately follows as a consequence of Example 1.

Example 2. For every k ≥ 3, the class of graphs of girth at least k is of power-unbounded clique-width.

In the next proposition, we show that bipartite permutation graphs, path powers, unit interval graphs, and hypercube
graphs are of power-unbounded clique-width. A graph G is a bipartite permutation graph if it is both bipartite and
permutation, where a graph G = (V , E) is bipartite if its vertex set can be partitioned into two independent sets, and
permutation if there exists a permutation π = (π1, . . . , πn) of the set {1, . . . , n} where V = {v1, . . . , vn} such that vivj ∈ E
if and only if (πi − πj)(i − j) < 0. The class of path powers is defined as P +

= {(Pn)k | n ≥ 1, k ≥ 1}. A graph G is a unit
interval graph if it is the intersection graph of a collection of unit intervals on the real line. Bipartite permutation graphs and
unit interval graphs were shown by Lozin [35] to be minimal graph classes of unbounded clique-width (in the sense that
every proper hereditary subclass of either unit interval or bipartite permutation graphs is of bounded clique-width). For an
integer d ≥ 1, the d-dimensional hypercube graph is the graph Qd with vertex set given by all 2d binary sequences of length
d, in which two vertices are adjacent if and only their sequences differ in exactly one coordinate.

Proposition 3.3. Each of the following graph classes is of power-unbounded clique-width: bipartite permutation graphs, path
powers, unit interval graphs, hypercube graphs.

Proof. First, we consider bipartite permutation graphs. Let Bn be the graph whose set of vertices is defined by V (Bn) =

{(i, j) | 0 ≤ i, j ≤ n − 1} and whose set of edges is defined by E(Bn) = {(i1, j), (i2, j + 1) | 0 ≤ j ≤ n − 2, 1 ≤ i1 ≤

n − 1, 0 ≤ i2 ≤ i1 − 1} (see Fig. 1). It follows from [7, Theorem 1] that Bn is a bipartite permutation graph.
We denote by Gn the graph obtained from Bn by adding an edge between every two vertices that agree in the second

coordinate (see Fig. 1 for G3). Fix an integer k ≥ 2. The subgraph of Bk
k(n−1)+2 induced by {(ik + 1, jk) | 0 ≤ i, j ≤ n − 1} is

isomorphic to Gn; in fact, (ik + 1, jk) → (i, j) is an isomorphism between the two graphs. Since it was proved in [23] that
cw(Gn) ≥ n, Proposition 2.1 implies that cw(Bk

k(n−1)+2) ≥ n for every n ≥ 1 and k ≥ 2. This proves that the class of bipartite
permutation graphs is of power-unbounded clique-width.

Now, consider the class of path powers. It was proved in [28] that for each positive integer s and each n ≥ (s + 1)2, we
have cw(P s

n) = s+ 2. Therefore, for each pair of positive integers k and N , there exist two positive integers j and n such that
the kth power of the graph P j

n ∈ P + has clique-width more than N . Indeed, we can take j = N and n = (Nk+ 1)2, obtaining
cw((P j

n)
k) = cw(PNk

(Nk+1)2
) = Nk + 2 > N .

Path powers are unit interval graphs [34, Theorem 9(ii)].
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Fig. 2. From left to right, graphs S, S8 and S7 .

Finally, consider the hypercube graphs. We will show that for every two positive integers k and d, there exists an integer
d′ such that the kth power of the d′-dimensional hypercube Q k

d′ contains the d-dimensional hypercube Qd as an induced
subgraph. This will imply the desired conclusion, since hypercube graphs are of unbounded clique-width, which follows
from the known facts that the hypercube graphs are of unbounded treewidth [8] and do not contain K3,3 as a subgraph, and
the inequality tw(G) ≤ 3(t − 1)cw(G) − 1, which holds for every graph G that does not contain Kt,t as a subgraph [24].

The integer d′ can be defined as d′
= dk. For x ∈ V (Qd) = {0, 1}d, define [x]k as the extension of x, replacing each

coordinate of x by k consecutive coordinates of the same value. We will argue that for all x, y ∈ V (Qd), we have

xy ∈ E(Qd) ⇐⇒ [x]k[y]k ∈ E((Qdk)
k),

which proves the claimed result. Suppose first that xy ∈ E(Qd). This means that x and y differ in exactly one coordinate.
Hence, [x]k and [y]k differ in exactly k coordinates, and therefore [x]k[y]k ∈ E((Qdk)

k). Conversely, suppose that x and y are
vertices of Qd such that [x]k[y]k ∈ E((Qdk)

k). Then, [x]k and [y]k differ in at most k coordinates. On the other hand, since [x]k
and [y]k are distinct vertices of Qdk, they differ in at least k coordinates. Hence, they differ in exactly k coordinates, which
implies that x and y differ in exactly one coordinate and therefore xy ∈ E(Qd). �

4. Graph classes with arbitrary finite value of π(G)

In this section, we construct graph classes of power-bounded clique-width that require taking arbitrarily large powers
in order to produce a graph class of bounded clique-width. More specifically, we will show that the value of π(G) can be an
arbitrary positive integer. Recall that for a class G of power-bounded clique-width, we denote by π(G) the smallest positive
integer k such that Gk is of bounded clique-width.

Our constructions are based on the class of split graphs. A split graph is a graph S that has a split partition, that is, a pair
(K , I) such that K is a clique, I is an independent set, K ∪ I = V (S), and K ∩ I = ∅. In what follows, we will only consider
split partitions (K , I) such that K is a maximal clique in S.

Let S be a split graph with a split partition (K , I), and let k ≥ 3. We define Sk to be the graph constructed as follows. Let
K = {w1, . . . , wr} and I = {v1, . . . , vs}.

• Case 1: k ≥ 4 is even.

In this case, Sk is the graph obtained from S by making I a clique, adding, for each vertex vi ∈ I , a path Pi of length k/2
having (new) vertices vi = v0

i , v
1
i , . . . , v

k/2
i , and adding, for each vertex wj ∈ K , a path Qj of length k/2− 2 having (new)

vertices wj = w0
j , w

1
j , . . . , w

k/2−2
j . (See Fig. 2 for an example.)

• Case 2: k ≥ 3 is odd.

In this case, Sk is the graph obtained from S by adding a new vertex v and making it adjacent to every vertex in I , adding,
for each vertex vi ∈ I , a path Pi of length (k − 1)/2 having (new) vertices vi = v0

i , v
1
i , . . . , v

(k−1)/2
i , and adding, for each

vertexwj ∈ K , a path Qj of length (k−3)/2 having (new) verticeswj = w0
j , w

1
j , . . . , w

(k−3)/2
j . (See Fig. 2 for an example.)

Note that since we assumed that K is a maximal clique in S, the graph Sk does not depend on the choice of a particular
split partition. A complete split graph is a split graph with a split partition (K , I) such that every vertex in K is adjacent to
every vertex in I .

Lemma 4.1. For every split graph S, every k ≥ 3 and every h ≥ 1, we have:

1. If h ≥ k, then (Sk)h is a complete split graph.
2. If h < k, then (Sk)h contains S as induced subgraph.
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Proof. Assume the notation used in the definition of Sk.
We analyze two cases depending on the parity of k. Suppose first that k ≥ 4 is even. For 0 ≤ ℓ ≤ k/2, let

Iℓ = {vℓ
i | 1 ≤ i ≤ s}. For 0 ≤ ℓ ≤ k/2 − 2, let Kℓ = {wℓ

j | 1 ≤ j ≤ r}. Let I ′ = Ik/2 and K ′
= V (Gk)\I ′. The

vertices of I ′ are mutually at distance k+ 1 in Sk, so they form an independent set in (Sk)k. The vertices of K ′ are mutually at
distance atmost k in Sk, so they form a clique in (Sk)k. The vertices of I ′ are at distance atmost k from the vertices of K ′ in Sk. It
follows that the graph (Sk)k is a complete split graph. This settles the case h = k. If h > k then (Sk)h is a complete (and thus a
complete split) graph. For h < k, let us first consider the case when h is even. Then Ih/2 is an independent set in (Sk)h, Kh/2−1

is a clique in (Sk)h, and v
h/2
i is adjacent to w

h/2−1
j in (Sk)h if and only if v0

i is adjacent to w0
j in S. Thus, (Sk)h[Ih/2 ∪ Kh/2−1] is

isomorphic to S. Consider now the case when h is odd, h > 1. In this case, I(h+1)/2 is an independent set in (Sk)h, K(h−3)/2 is a
clique in (Sk)h, and v

(h+1)/2
i is adjacent tow

(h−3)/2
j in (Sk)h if and only if v0

i is adjacent tow0
j in S. Thus, (Sk)h[I(h+1)/2∪K(h−3)/2]

is isomorphic to S.
Suppose now that k ≥ 3 is odd. The sets Iℓ and Kℓ are defined analogously as in the case when k is even (for appropriate

ranges of ℓ). Similarly as above, it can be verified that for every h ≥ k, the graph (Sk)h is a complete split graph. For h < k,
we have that the graph (Sk)h[Iℓ ∪ Kℓ′ ] is isomorphic to S for a suitable choice of ℓ and ℓ′, namely for (ℓ, ℓ′) = (h/2, h/2− 1)
if h ∈ {1, . . . , k − 1} is even, and (ℓ, ℓ′) = ((h − 1)/2, (h − 1)/2) if h ∈ {1, . . . , k − 1} is odd. �

For k ≥ 3, let Σk = {Sk | S is a split graph}.

Theorem 4.2. For every k ≥ 3, π(Σk) = k.

Proof. This is an immediate consequence of Lemma 4.1, the fact that split graphs are of unbounded clique-width [39], and
the fact that every complete split graph is a cograph and hence of clique-width at most 2 [14]. �

Corollary 4.3. For every k ≥ 1, there exists a graph class G with π(G) = k.

Proof. For k ≥ 3, the result follows from Theorem 4.2. For k = 1, take G to be any graph class of bounded clique-width.
For k = 2, take G to be any graph class of graphs of diameter 2 of unbounded clique-width (for example, the class of graphs
obtained from the class of grids by adding to each grid a universal vertex). �

5. A sufficient condition for power-bounded clique-width

By Proposition 3.1, every graph class of bounded diameter is of power-bounded clique-width. We now generalize this
observation by giving a sufficient condition for power-boundedness of the clique-width that is also applicable to graph
classes of unbounded diameter.

Theorem 5.1. For every two positive integers k and d and every class G of graphs of diameter at most d, the class of graphs
obtained from graphs in G by replacing each of a set of at most k edges with a path of length at least 1 is of power-bounded
clique-width.

To prove this theorem, we first state and prove a technical lemma. Recall that two vertices u and v in a graph G are said
to be twins if N(u)\{v} = N(v)\{u}. It is easy to see (and well known) that the twin relation is an equivalence relation on
V (G), every equivalence class is either a clique or an independent set, and for every two equivalence classes, there are either
all edges or no edges between them. Thus, each equivalence class is a module, and the quotient graph of G with respect to
the partition of V (G) into twin classes is well defined. A 2-path in a graph G is an induced path in G all the vertices of which
are of degree 2 in G.

Lemma 5.2. For positive integers k and d, let G(k, d) be the set of all graphs G that contain a set P of at most k 2-paths such
that the diameter of G − ∪P∈P V (P) is at most d. Then, for every pair of positive integers k and d, the graph class G(k, d) is of
power-bounded clique-width.

Proof. Let G ∈ G(k, d) and let P be a set of r 2-paths in G such that r ≤ k the diameter of the graph G − X is at most d,
where X := ∪P∈P V (P). We will show that cw(Gd) ≤ p for some integer p depending only on k and d, but not on G. We may
assume that G is connected, that X ≠ ∅ (otherwise G is of bounded diameter, and Proposition 3.1 applies), and that G− X is
non-empty (since paths are of clique-width at most 3). Let C1, . . . , Cm denote the vertex sets of the components of G − X .
Since G is connected and G[X] has at most k components, each of which has neighbors in at most two components of G− X ,
we have m ≤ k + 1.

Let us analyze the structure of Gd. First, the assumption on the diameter implies that the subgraph of Gd induced by each
Ci is complete. For a vertex x ∈ G − X and an endpoint w of a component (path) in G[X], let us define

f (x, w) =


distG(x, w), if distG(x, w) ≤ d;
d + 1, otherwise.

Moreover, let F(x) denote the array of values f (x, w) for all endpointsw of components ofG[X] (in some fixed order). Clearly,
this assignment of arrays to vertices in G − X results in at most (d + 1)2k different arrays. Let us now define on each set
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Ci an equivalence relation ∼i by the rule x∼i y if and only if F(x) = F(y). Every such relation will have at most (d + 1)2k
equivalence classes. Moreover, for every i, every two vertices x, y ∈ Ci such that x∼i y satisfy NGd [x] = NGd [y]; in particular,
x and y are twins in Gd. This can be proved by observing that for every vertex z ∈ V (G)\Ci, every shortest path from x to z
goes through at least one endpointw of a path in P , and using the fact that if distG(x, z) ≤ d then distG(x, w) = distG(y, w).

Proposition 2.3 implies that cw(Gd) = max{cw(H) | H is a prime induced subgraph of Gd
}. In particular, since no prime

induced subgraph ofGd with at least three vertices contains a pair of twin vertices (as theywould form a non-trivialmodule),
this implies that the clique-width of Gd equals the clique-width of the quotient graph G′ of Gd with respect to the partition
of V (Gd) into twin classes. Hence, it is sufficient to show that the clique-width of G′ is bounded.

Let U denote the set of vertices in X that are in G at distance at least d + 1 from V (G − X). Let Y ′ denote the set of twin
classes of Gd not containing any vertex of U . Previous considerations imply that |Y ′

| ≤ (k + 1) · (d + 1)2k + 2kd. We may
therefore assume that U is non-empty (since otherwise V (G′) = Y ′ is of bounded size, and we are done). Note that every
vertex u ∈ U has no neighbors in Gd in G − X , and also no neighbors in any component of G[X] other than the component
of G[X] containing u. This implies that the subgraph Gd induced by U is the dth power of a disjoint union of paths. Since
cw(Q ) = d+ 2 if Q is the dth power of a path with at least (d+ 1)2 vertices [28], this implies that the clique-width of G[U],
and hence also of G′

− Y ′, is bounded from above by a function of d.
To complete the proof, recall that there exists a function g such that for every graph H and every subset W ⊆ V (H), we

have cw(H) ≤ g(cw(H −W ), |W |) [3]. Since |Y ′
| is bounded, this result implies that the clique-width of G′ is also bounded

by a function of d and k. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let k and d be two positive integers, and let G be a graph such that there exists a graph H with the
following properties:

(i) Every connected component of H is of diameter at most d, and
(ii) There exists a set F ⊆ E(H) with |F | ≤ k such that G is the graph obtained from H by replacing each edge e ∈ F with a

path of length at least 2.

Then, the graph H ′
= H − F is of diameter at most (k + 1)d [45]. Thus, G ∈ G(k, (k + 1)d) and the conclusion follows from

Lemma 5.2. �

Note that the result of Theorem 5.1 is sharp, in the sense that neither of the two boundedness conditions can be dropped.
There exist graphs of unbounded diameter that are of power-unbounded clique-width, for example the class of grids.
Moreover, if the number of subdivided edges is unbounded, then the resulting graph class can be of power-unbounded
clique-width. Indeed, for every k ≥ 1, let Gn,k be the graph obtained from the complete graph Kn by attaching to it

 n
2


chordless paths of length 2k, each connecting a different pair of vertices of Kn. Then, the kth power of Gn,k contains the graph
K ∗
n as an induced subgraph, where K ∗

n denotes the graph obtained from a complete graph on n vertices by gluing a triangle
on every edge. As shown in [39], the clique-width of graphs K ∗

n is unbounded. Hence, for every k ≥ 1, the family of graphs
{Gn,k | n ≥ 2} is of power-unbounded clique-width.

6. Hereditary graph classes of power-(un)bounded clique-width

In this section, we develop several results related to power-boundedness of the clique-width in hereditary graph classes.
We start with a characterization for graph classes defined by a single forbidden induced subgraph.

Theorem 6.1. For every graph H, the class of H-free graphs is of power-bounded clique-width if and only if H is a disjoint union
of paths.

Proof. If H has a cycle, then its girth is finite. Let k be the girth of H . Then, every graph with girth at least k+ 1 is H-free. By
Example 2, the class of graphs of girth at least k+ 1 is of power-unbounded clique-width, hence the same holds also for the
larger class of H-free graphs.

If H is acyclic and ∆(H) ≥ 3, then H contains a claw as an induced subgraph. Hence the class of claw-free graphs, and
in particular, the class of unit interval graphs, is a subclass of H-free graphs. The power-unboundedness of the clique-width
now follows from Proposition 3.3.

If H is acyclic and ∆(H) ≤ 2 then H is the disjoint union of paths, thus an induced subgraph of a path. Hence, the H-free
graphs are of bounded diameter, and of power-bounded clique-width due to Proposition 3.1. �

The case of forbidding two induced subgraphs instead of one turns out to be significantly more difficult. In the rest of the
section, we develop a complete characterization of the graph classes of the form Free({H,H ′

}) that are of power-bounded
clique-width, where H and H ′ are connected graphs. This is done in Section 6.2, using results developed in Section 5 and in
the next subsection.
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Fig. 3. Graphs Hi .

Fig. 4. Graphs Si,j,k (left) and Ti,j,k (right).

6.1. A sufficient condition for power-unbounded clique-width in hereditary classes

In this section, we adapt the approach from [1,36,37] to the notion of power-bounded clique-width. For i ≥ 1, let Hi
denote the graph depicted in Fig. 3.

For k ≥ 3, let us denote Sk := Free({K1,4, C3, . . . , Ck,H1, . . . ,Hk}), and let S :=


k≥3 Sk. Note that a graph is in S if and
only if every connected component of G is of the form Si,j,k represented on the left in Fig. 4 (where the values of i, j, k ≥ 0
may depend on component).

Denote the class of line graphs of graphs in Sk by Tk.

Proposition 6.2. For every k ≥ 3, Sk and Tk are of power-unbounded clique-width.

Proof. The class Sk is of unbounded clique-width and of unbounded treewidth [38]. Since graphs in Sk are {C3, K1,4}-free,
every graph in Sk is of maximum degree at most 3. Hence, Proposition 3.2 applies, showing that Sk is of power-unbounded
clique-width.

Gurski and Wanke [25] showed that for every graph G and its line graph L(G), we have (tw(G) + 1)/4 ≤ cw(L(G)) ≤

2tw(G) + 2. This implies that Tk is of unbounded clique-width. Since every graph in Sk is of maximum degree at most 3,
every graph in Tk is of maximum degree at most 5. Hence, Proposition 3.2 implies that the class Tk is of power-unbounded
clique-width. �

To extend Proposition 6.2 to arbitrary hereditary graph classes, let us recall the following two parameters, introduced
in [37]:

• κ(G) is the maximum k such that G ∈ Sk. If G belongs to no class Sk, we define κ(G) to be 0, and if G belongs to all classes
Sk, then κ(G) is defined to be ∞. Also, for a set of graphs G, we define κ(G) = sup{κ(G) | G ∈ G}.

• λ(G) is the maximum ℓ such that G ∈ Tℓ. If G belongs to no class Tℓ, then λ(G) := 0, and if G belongs to every Tℓ, then
λ(G) := ∞. For a set of graphs G, we define λ(G) = sup{λ(G) | G ∈ G}.

According to the definition, in order for κ(G) to be infinite, G must belong to every class Sk, that is, G ∈ S. Moreover,
λ(G) = ∞ if and only if G is the line graph of a graph in S. Let us denote the class of all such graphs by T . In other words, T
is the class of graphs every connected component of which has the form Ti,j,k represented on the right in Fig. 4 (where the
values of i, j, k ≥ 0 may depend on component).

The following result is implicit in the proofs of Theorems 2 and 6 in [37].

Lemma 6.3. Let F be a set of graphs. If κ(F ) < ∞, then there is an integer k such that Sk ⊆ Free(F ). If λ(F ) < ∞, then
there is an integer k such that Tk ⊆ Free(F ).

Proposition 6.2 and Lemma 6.3 imply the following.

Theorem 6.4. Let F be a set of graphs. If κ(F ) < ∞ or λ(F ) < ∞, then the class of F -free graphs is of power-unbounded
clique-width.
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6.2. Graph classes defined by two connected forbidden induced subgraphs

In this section, we prove our main result: a complete characterization of graph classes of power-bounded clique-width
within hereditary graph classes defined by two connected forbidden induced subgraphs.

Theorem 6.5. Let A and B be two connected graphs, and let G be the class of {A, B}-free graphs. Then G is of power-bounded
clique-width if and only if either one of A and B is a path, or one of A and B is isomorphic to some S1,j,k, and the other one to some
T1,j′,k′ (represented in Fig. 4).

We remark that Theorem 6.5 implies the existence of classes of {A, B}-free graphs of power-bounded clique-width that
are of unbounded diameter and of unbounded clique-width. An example of such a class is given by the class of {claw, bull}-
free graphs (where the claw is the graph S1,1,1, and the bull is the graph T1,2,2).1

Theorem 6.5 will be derived from the following two lemmas. It might be useful at this point to remind the reader of the
simple observation that S ∩ T equals the set of all disjoint unions of paths.

Lemma 6.6. Let A and B be two graphs, and let G be the class of {A, B}-free graphs. Then, the following holds:

(i) If {A, B} ∩ S = ∅ or {A, B} ∩ T = ∅, then G is of power-unbounded clique-width.
(ii) If A ∈ S\T , B ∈ T \S and A contains an induced S2,2,2, then G is of power-unbounded clique-width.
(iii) If A ∈ S\T , B ∈ T \S and B contains an induced T2,2,2, then G is of power-unbounded clique-width.

Proof. (i) Suppose that {A, B} ∩ S = ∅ or {A, B} ∩ T = ∅. Then κ({A, B}) < ∞ or λ({A, B}) < ∞, and by Theorem 6.4, G is
of power-unbounded clique-width.

(ii) If A ∈ S\T , B ∈ T \S and A contains an induced S2,2,2, then the class of {A, B}-free graphs contains the class
of {S2,2,2, T1,1,1}-free graphs, which in turn contains the class of bipartite permutation graphs (see, e.g., [19,20,29]). By
Proposition 3.3, G is of power-unbounded clique-width.

(iii) If A ∈ S\T , B ∈ T \S and B contains an induced T2,2,2, then the class of {A, B}-free graphs contains the class of
{S1,1,1, T2,2,2}-free graphs, which in turn contains the class of unit interval graphs [43]. By Proposition 3.3, G is of power-
unbounded clique-width. �

Lemma 6.7. For k ≥ 3, let G be a prime {S1,k,k, T1,k,k}-free graph. Then, G is obtained by subdividing a single edge in a graph of
bounded diameter.

Proof. Let G be a prime {S1,k,k, T1,k,k}-free graph. In particular, G is connected.

Claim 1. Let u and v be two vertices in G with distG(u, v) ≥ 2k, let P be a shortest u, v-path in G, and let Q be the subpath of
P induced by all vertices at distance at least k from each of the two endpoints of P. Then, for every vertex w ∈ NG(Q )\V (P), the
neighborhood of w in P consists either of three consecutive vertices, or of two vertices at distance two.

Proof of Claim. Let w ∈ NG(Q )\V (P). Due to the minimality of P , vertex w cannot have two neighbors on P at distance
more than two. Due to the S1,k,k-freeness, vertexw cannot have a single neighbor on P (such a neighbor would belong to Q ).
Due to the T1,k,k-freeness, vertex w cannot have only two consecutive neighbors on P . Together, these observations prove
the claim. �

Claim 2. Let u, v be a vertex pair with distG(u, v) = 2k + 4, and let x be a vertex with distG(u, x) = distG(v, x) = k + 2. Then,
dG(x) = 2.

Proof of Claim. Suppose for a contradiction that dG(x) ≥ 3. Let P be a shortest u, v-path containing x, and let x′ be a neighbor
of x outside P . By Claim 1, vertex x′ has two neighbors on P at distance 2, say y and z. By symmetry, we may assume that
distG(u, y) < distG(u, z). Note that at least one of y and z is in NG[x], which implies that each of y and z is at distance at
least k from each of u, v. Let A denote the set of common neighbors of y and z in G. Then, |A| ≥ 2. Since G is prime, there
exists a vertex, say w, in V (G)\A, that has both a neighbor, say a, and a non-neighbor, say b, in A. Since w ∉ A, vertex w is
non-adjacent to either y or z. Applying Claim 1 to the shortest u, v-path, say P̃ , induced by (V (P)\(NG(y) ∩ NG(z))) ∪ {a},
we infer that w has a unique neighbor on P̃ at distance two from a. Call this neighbor y′. Suppose first that y′ is a neighbor
of y. Then, w is not adjacent to z. But now, (V (P̃) ∪ {b, w})\{y} induces a copy of S1,k1,k2 (centered at z) such that k1, k2 ≥ k,
contradiction to the S1,k,k-freeness of G. The case when y′ is a neighbor of z, can be handled similarly. �

We split the rest of the proof into two cases.
Case 1: There exist two vertices, say u and v, such that dG(u) ≥ 3, dG(v) ≥ 3 and distG(u, v) > 7k + 10.

Let P be a shortest u, v-path.

1 The fact that the class of claw-free bull-free graphs is of unbounded clique-width follows from the fact that it contains all complements of triangle-free
graphs (in particular, all complements of grids), hence Proposition 2.2 applies.
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Claim 3. For every x ∈ V (G)\V (P), we have distG(x, {u, v}) ≤ 2k + 2.

Proof of Claim. Suppose for a contradiction that there exists a vertex x ∈ V (G)\V (P) such that distG(x, {u, v}) = 2k + 3.
Without loss of generality, we may assume that d(x, u) ≤ d(x, v). Let u′ be the vertex of P at distance 2k + 3 from u. Let

P ′
= (x = v0, v1, . . . , vr = u′) be a shortest x, u′-path in G and let u′′

= vi be the vertex in V (P ′) ∩ V (P) minimizing i.
We first show that distG(u, u′′) ≤ k+1. Suppose for a contradiction distG(u, u′′) ≥ k+2. Since u′′ has degree at least 3 in

G, Claim 2 ensures that u′′ is at distance at most k + 1 from v. The length ℓ(P ′) of P ′ can be bounded from above as follows:

ℓ(P ′) = distG(x, u′) ≤ distG(x, u) + distG(u, u′) = 2k + 3 + 2k + 3 = 4k + 6.

Consequently, the length ℓ(P) of P can be bounded from above as follows:

ℓ(P) ≤ distG(u, u′) + distG(u′, u′′) + distG(u′′, v) ≤ 2k + 3 + ℓ(P ′) + k + 1 ≤ 7k + 10,

a contradiction.
We claim that u′′ is at distance more than k + 1 from each endpoint of P ′. Indeed,

distG(u′′, x) ≥ distG(u, x) − distG(u, u′′) ≥ 2k + 3 − (k + 1) = k + 2

and

distG(u′′, u′) ≥ distG(u, u′) − distG(u, u′′) ≥ 2k + 3 − (k + 1) = k + 2.

Now, since P ′ is a shortest x, u′-path, Claim 2 implies that the degree of u′′ in G is equal to 2, which contradicts the definition
of u′′.

Note that here we have used the assumption of Case 1 which guarantees that u, and hence also u′′, is of degree at
least 3. �

Let A denote the set of vertices at distance at most 2k+2 from {u, v}. Claim 3 implies that G−A is a path. Moreover, since
G − A is a subpath of P , every internal vertex of G − A is of degree 2 in G, and G can be obtained from a graph of bounded
diameter by subdividing one of its edges, as desired.
Case 2: Every two vertices in G of degree at least 3 are at distance at most 7k + 10 from each other.

If every vertex of G has degree atmost 2, G is a path or a cycle and hence G is of clique-width atmost 4. Sowemay assume
that G has a vertex, say u, of degree at least 3.

Let B be the set of vertices in G at distance at most 8k+11 from u. Then, Bwill contain all vertices of G of degree at least 3,
together with all vertices that are at distance at most k+1 from some vertex of degree at least 3. In particular, the subgraph
F of G induced by V (G)\A consists only of vertices of degree at most 2 in G; in particular, F is a disjoint union of paths.

We claim that F is connected. Suppose for a contradiction that F is disconnected. Let s and t be two vertices in different
components of F . Then, any shortest path P between s and t must pass through B, and since B induces a connected graph, P
will contain a vertex, say x, of degree at least 3. However, this is a contradiction to Claim 2.

Thus, G can be obtained from a graph of bounded diameter by subdividing one of its edges. �

Proof of Theorem 6.5. Let A and B be two connected graphs, and let G be the class of {A, B}-free graphs. Suppose that G is
of power-bounded clique-width. By Lemma 6.6(i), we have A ∈ S and B ∈ T . We may assume that neither of A and B is a
path (otherwise, we are done). Since A and B are connected, A is of the form Si,j,k (for some i, j, k ≥ 1), and B is of the form
Ti′,j′,k′ (for some i′, j′, k′

≥ 1). By Lemma 6.6(ii), we have that A is of the form S1,j,k (for some j, k). Similarly, Lemma 6.6(iii)
implies that B is of the form T1,j′,k′ (for some j′, k′).

Suppose now that either one of A and B is a path, or one of A and B is isomorphic to some S1,j,k, and the other one to some
T1,j,k. If one of A and B is a path, thenG is of power-bounded clique-width by Theorem 6.1. Otherwise, A is {S2,2,2, 2S1,1,1}-free
and B is {T2,2,2, 2T1,1,1}-free. Since A is S2,2,2-free and B is T2,2,2-free, there exists a positive integer k such that A is an induced
subgraph of S1,k,k and B is an induced subgraph of T1,k,k. Thus, every graph in G is {S1,k,k, T1,k,k}-free. By Lemma 6.7, every
prime graph in G is obtained from a graph of bounded diameter by subdividing a single edge. Consequently, Theorem 5.1
implies that the set of prime graphs in G is of power-bounded clique-width, and hence G is of power-bounded clique-width,
by Proposition 2.4. �

7. Discussion

We conclude the paper by mentioning several possibilities for future investigations related to the topics of this paper.
A main direction for future research is to perform a systematic study of graph classes (k, ℓ)-, (k, ∗)-, and (∗, ℓ)-power-

bounded clique-width. Clearly, a graph class of (∗, ℓ)-power bounded clique-width is also of (∗, ℓ + 1)-power bounded
clique-width. The converse fails in general, for instance for ℓ = 1 (trivially) and also for ℓ = 2 (for instance, the class of
paths is (1, 3)-power-bounded but not (∗, 2)-power-bounded). Theorem 4.2 implies that (k + 1, ∗)-power-boundedness
does not imply (k, ∗)-power-boundedness, for any value of k ≥ 1. We do not know whether (k, ∗)-power-boundedness
implies (k + 1, ∗)-power-boundedness.

Let us say that a graph class G of power-bounded clique-width is of strongly power-bounded clique-width if for every
positive integer k ≥ π(G), the classGk is of bounded clique-width. Proposition 3.1 implies that every graph class of bounded
clique-width is of strongly power-bounded clique-width.
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Problem 1. Is it true that every graph class of power-bounded clique-width is also of strongly power-bounded clique-
width?

A positive answer to the above question would follow from a positive answer to the following one.

Problem 2. Is there a function f such that for every graph G and every positive integer k, we have cw(Gk+1) ≤ f (cw(Gk))?

On the other hand, a positive resolution to Problem 1 would imply a positive answer to the following problem.

Problem 3. Is it true that every graph class G of power-bounded clique-width has only finitely many powers of unbounded
clique-width?

Note that Proposition 3.1 implies that for every positive integer a, a graph class of (k, ∗)-power-bounded clique-width is
also of (ak, ∗)-power-bounded clique-width. Furthermore, for every graph classG forwhichwe proved power-boundedness
of the clique-width, our proofs in fact show that G has only finitely many powers of unbounded clique-width.

Since many interesting graph classes are hereditary, a closer understanding of the relation between the above notions
and hereditary graph classes seems worth of study. For instance, given a hereditary graph class G of power-bounded
clique-width, one could try to determine all pairs of integers (k, ℓ) such that G is of (k, ℓ)-power-bounded clique-width.
Furthermore, what are the properties of the hereditary graph classes Ck,ℓ for k ≥ 1 and ℓ ≥ 1, defined by

Ck,ℓ = {G | cw(Hk) ≤ ℓ for each induced subgraph H of G} ?
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