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1. Introduction

Pfaffian functions, introduced by Khovanskii in the late 1970s (see [6]), are analytic 
functions that satisfy first order partial differential equation systems with polynomial 
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coefficients. A fundamental result proved by Khovanskii [7] states that a system of n
equations given by Pfaffian functions in n variables defined on a domain Ω has finitely 
many non-degenerate solutions in Ω, and this number can be bounded in terms of syn-
tactic parameters associated to the system.

From the algorithmic viewpoint, [2] presents a summary of quantitative and com-
plexity results for Pfaffian equation systems essentially based on Khovanskii’s bound. 
The known elimination procedures in the Pfaffian structure rely on the use of an ora-
cle (namely, a blackbox subroutine which always gives the right answer) to determine 
consistency for systems of equations and inequalities given by Pfaffian functions. How-
ever, for some classes of Pfaffian functions the consistency problem is algorithmically 
decidable: for instance, an algorithm for the consistency problem of systems of the 
type f1(x) ≥ 0, . . . , fk(x) ≥ 0, fk+1(x) > 0, . . . , fl(x) > 0, where x = (x1, . . . , xn), 
fi(x) = Fi(x, eh(x)) and Fi (1 ≤ i ≤ l) and h are polynomials with integer coefficients, 
is given in [16]. This result allows the design of algorithms to solve classical related geo-
metric problems (see, for example, [14]). More generally, the decidability of the theory of 
the real exponential field (i.e. the theory of the structure Rexp = 〈R; +, ·, −, 0, 1, exp, <〉) 
was proved in [8] provided Shanuel’s conjecture is true.

In this paper, we design a symbolic procedure to count the exact number of zeros in 
a real interval of a univariate Pfaffian function of the type f(x) = F (x, ϕ(x)), where 
F is a polynomial in Z[X, Y ] and ϕ is a univariate Pfaffian function of order 1 (see 
[2, Definition 2.1]). The procedure is based on the construction of a family of Sturm 
sequences associated to the given function f(x), which is done by means of polynomial 
subresultant techniques (see, for instance, [1]). As it is usual in the literature on the 
subject, we assume the existence of an oracle to determine the sign that a Pfaffian 
function takes when evaluated at a real algebraic number. Sturm sequences in the context 
of transcendental functions were first used in [13] to extend the cylindrical decomposition 
technique to non-algebraic situations. In [19], this approach was followed to count the 
number of real roots of exponential terms of the form p(x) + q(x)er(x), where p, q and 
r are real polynomials. Later in [9], the same technique is applied to treat the case of 
functions of the type F (x, ex), where F is an integer polynomial.

A function of the form

f(x) = F (x, eh(x)),

where F and h are polynomials with real coefficients, is called an E-polynomial [16]. 
For these particular functions, we give an effective symbolic algorithm solving the 
zero-counting problem with no calls to oracles. To this end, we construct a subrou-
tine to determine the sign of univariate E-polynomials at real algebraic numbers. Our 
algorithms only perform arithmetic operations and comparisons between rational num-
bers. In order to deal with real algebraic numbers, we represent them by means of 
their Thom encodings (see Section 2.2). The main result of the paper is the follow-
ing:
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Theorem 1. Let f(x) = F (x, eh(x)) be an E-polynomial defined by polynomials F ∈
Z[X, Y ] and h ∈ Z[X] with degrees bounded by d and coefficients of absolute value at 
most H, and let I = [a, b] (a, b ∈ Q) be a closed interval or I = R. There is an algorithm 
that computes the number of zeros of f in I within complexity (2dH)dO(1) .

Finally, we prove an explicit upper bound for the absolute value of the real zeros of 
an E-polynomial in terms of the degrees and absolute values of the coefficients of the 
polynomials involved. This bound could be used to separate and approximate the real 
zeros of an E-polynomial. It provides an answer to the ‘problem of the last root’ for 
this type of functions. Previously, in [18], the existence of such a bound was established 
for general exponential terms, but even though it is given by an inductive argument 
with a computable number of iterations, the bound is not explicit. Algorithms for the 
computation of upper bounds for the real roots of functions of the type P (x, ex) or, 
more generally, P (x, trans(x)), with P an integer polynomial and trans(x) = ex, ln(x)
or arctan(x) are given in [9] and [10] respectively.

The paper is organized as follows: in Section 2, we fix the notation and recall some 
basic theoretical and algorithmic results on univariate polynomials. Section 3 is devoted 
to the construction of Sturm sequences for the Pfaffian functions with which we deal. In 
Section 4, we present our general procedure for zero counting. Finally, in Section 5, we 
describe the algorithms and prove our main results on E-polynomials.

2. Preliminaries

2.1. Basic notation and results

Throughout the paper, we will deal with univariate and bivariate polynomials. For 
a polynomial F ∈ Z[X, Y ], we write degX(F ) and degY (F ) for the degrees of F in the 
variables X and Y respectively, H(F ) for its height, that is, the maximum of the absolute 
values of its coefficients in Z, and cont(F ) ∈ Z[X] for the gcd of the coefficients of F as 
a polynomial in Z[X][Y ].

Note that, if p1, p2 ∈ Z[X] are polynomials with degrees bounded by d1 and d2, and 
heights bounded by H1 and H2, then H(p1p2) ≤ (min{d1, d2} + 1)H1H2.

If f is a real univariate analytic function, we denote its derivative by f ′ and, for k > 1, 
its kth successive derivative by f (k).

For γ = (γ0, . . . , γN ) ∈ RN+1 with γi �= 0 for every 0 ≤ i ≤ N , the number of 
variations in sign of γ is the cardinality of the set {1 ≤ i ≤ N : γi−1γi < 0}. For a 
tuple γ of arbitrary real numbers, the number of variations in sign of γ is defined as the 
number of variations in sign of the tuple which is obtained from γ by removing its zero 
coordinates. Given x ∈ R and a sequence of univariate real functions f = (f0, . . . , fN )
defined at x, we write v(f , x) for the number of variations in sign of the (N + 1)-tuple 
(f0(x), . . . , fN (x)).
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We recall some well-known bounds on the size of roots of univariate polynomials (see 
[11, Proposition 2.5.9 and Theorem 2.5.11]).

Lemma 2. Let p =
∑d

j=0 ajX
j ∈ C[X], ad �= 0. Let r(p) := max{|z| : z ∈ C, p(z) = 0}. 

Then:

i) r(p) < 1 + max
{∣∣∣∣ajad

∣∣∣∣ : 0 ≤ j ≤ d− 1
}

ii) r(p) <

⎛⎝1 +
∑

0≤j≤d−1

∣∣∣∣ajad
∣∣∣∣2
⎞⎠1/2

We will also use the following lower bound for the separation of the roots of a univariate 
polynomial with integer coefficients (see [11, Theorem 2.7.2]):

Lemma 3. Let p ∈ Z[X] be a polynomial of degree d ≥ 2, and α1, . . . , αd be all the roots 
of p. Then

min{|αi − αj | : αi �= αj} > d−
d+2
2 (d + 1)

1−d
2 H(p)1−d.

A basic tool for our results is the well-known theory of subresultants for univari-
ate polynomials with coefficients in a ring and its relation with polynomial remainder 
sequences (see [1, Chapter 8]).

Let F (X, Y ) and G(X, Y ) be polynomials in Z[X, Y ] of degrees d and e in the variable 
Y respectively. Assume e < d. Following [1, Notation 8.33], for every −1 ≤ j ≤ d, let 
SResj be the jth signed subresultant of F and G considered as polynomials in Z[X][Y ]. 
By the structure theorem for subresultants (see [1, Theorem 8.34 and Proposition 8.40]), 
we have that

SRese−1 = −Remainder((−1)(d−e−1)(d−e)/2lc(G)d−e+1F,G),

where lc(G) is the leading coefficient of G and, for an index i with 1 ≤ i ≤ d such that 
SResi−1 is non-zero of degree j:

• If SResj−1 = 0, then SResi−1 = gcd(F, G) up to a factor in Z[X].
• If SResj−1 �= 0 has degree k,

sjti−1SResk−1 = −Remainder(sktj−1SResi−1, SResj−1)

and the quotient lies in Z[X][Y ]. Here, sl denotes the lth subresultant coefficient 
of F and G as defined in [1, Notation 4.22] and tl is the leading coefficient of 
SResl.
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We define a sequence of integers as follows:

• n0 = d + 1, n1 = d.
• For i ≥ 1, if SResni−1 �= 0, then ni+1 = deg(SResni−1).

The polynomials

Ri := SResni−1

are proportional to the polynomials in the Euclidean remainder sequence associated to 
F and G. Moreover, the following relations hold:

(−1)(d−e)(d−e+1)/2lc(G)d−e+1R0 = R1C1 −R2 (1)

sni+2tni+1−1Ri = Ri+1Ci+1 − sni+1tni−1Ri+2 for i ≥ 1 (2)

where Ci ∈ Z[X][Y ] for every i.

2.2. Algorithms and complexity

The algorithms we consider in this paper are described by arithmetic networks over Q
(see [3]). The notion of complexity of an algorithm we consider is the number of opera-
tions and comparisons in Q. The objects we deal with are polynomials with coefficients 
in Q, which are represented by the array of all their coefficients in a pre-fixed order of 
their monomials.

To estimate complexities we will use the following results (see [4]). The product of two 
polynomials in Q[X] of degrees bounded by d can be done within complexity O(M(d)), 
where M(d) = d log(d) log log(d). Interpolation of a degree d polynomial in Q[X] requires 
O(M(d) log(d)) arithmetic operations. We will use the Extended Euclidean Algorithm to 
compute the gcd of two polynomials in Q[X] of degrees bounded by d within complexity 
O(M(d) log(d)). We will compute subresultants by means of matrix determinants, which 
enables us to control both the complexity and output size (an alternative method for 
the computation of subresultants, based on the Euclidean algorithm, can be found in 
[1, Algorithm 8.21]). For a matrix in Qn×n, its determinant can be obtained within 
complexity O(nω), where ω < 2.376 (see [4, Chapter 12]).

For a polynomial in Z[X], we will need to approximate its real roots by rational num-
bers and to isolate them in disjoint intervals of pre-fixed length with rational endpoints. 
There are several known algorithms achieving these tasks (see, for instance, [15] and 
the references therein). Here we use a classical approach via Sturm sequences. The com-
plexity of the algorithm based on this approach is suboptimal. However, the complexity 
order of the procedures in which we use it as a subroutine would not change even if we 
replaced it with the one with the best known complexity bound.
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Lemma 4. Let p ∈ Z[X] be a polynomial of degree bounded by d and ε ∈ Q, ε > 0. There 
is an algorithm which computes finitely many pairwise disjoint intervals Ij = (aj , bj ]
with aj , bj ∈ Q and bj − aj ≤ ε such that each Ij contains at least one real root of p
and every real root of p lies in some Ij. The complexity of the algorithm is of order 
O(d3 log(H(p)/ε)).

Proof. The algorithm works recursively. Starting with the interval J = (−(1 +H(p)), 1 +
H(p)], which contains all the real roots of p (see Lemma 2), at each intermediate step, 
finitely many intervals are considered. Given an interval J = (a, b] with {p = 0} ∩ J �= ∅
and |J | > ε, the procedure runs as follows:

• Let c = a+b
2 and Jr = (c, b].

• If p(c) �= 0, let Jl = (a, c].
• If p(c) = 0 and c −ε > a, let I = (c −ε, c] and Jl = (a, c −ε]. If p(c) = 0 and c −ε ≤ a, 

take I = (a, c]. (Note that, in any case, I contains a real root of p and has length at 
most ε.)

• Determine, for each of the intervals Jr and Jl, whether p has a real root in that 
interval or not. Keep the intervals that contain real roots of p.

The recursion finishes when the length of all the intervals is at most ε. The output consists 
of all the intervals of length at most ε containing roots of p, including the intervals I
appearing at intermediate steps.

In order to determine whether p has a real root in a given interval, we use the Sturm 
sequence of p and p′ (see [1, Theorem 2.50]), which is computed within complexity 
O(M(d) log(d)) by means of the Euclidean Algorithm.

At each step of the recursion, we keep at most d intervals together with the number 
of variations in sign of the Sturm sequence evaluated at each of their endpoints. For each 
of these intervals, the procedure above requires at most 2d + 1 additional evaluations of 
polynomials of degrees at most d. Then, the complexity of each recursive step is of order 
O(d3).

Since the length of the intervals at the kth step is at most 1+H(p)
2k−1 , the num-

ber of steps is at most 1 + 
log(1+H(p)
ε )�. Therefore, the overall complexity is 

O(d3 log(H(p)/ε)). �
In order to deal with real algebraic numbers in a symbolic way, we will use Thom 

encodings. We recall here their definition and main properties (see [1, Chapter 2]). Given 
p ∈ R[X] and a real root α of p, the Thom encoding of α as a root of p is the sequence 
(sign(p′(α)), . . . , sign(p(deg p)(α))), where we represent the sign with an element of the 
set {0, 1, −1}. Two different real roots of p have different Thom encodings. In addition, 
given the Thom encodings of two different real roots α1 and α2 of p, it is possible to 
decide which is the smallest between α1 and α2 (see [1, Proposition 2.28]).
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For a polynomial p ∈ R[X], we will denote

Der(p) := (p, p′, . . . , p(deg p)).

A useful tool to compute Thom encodings and manipulate real algebraic numbers 
is an effective procedure for the determination of feasible sign conditions on real uni-
variate polynomials. For p1, . . . , ps ∈ R[X], a feasible sign condition for p1, . . . , ps
on a finite set Z ⊂ R is an s-tuple (σ1, . . . , σs) ∈ {=, >, <}s such that {x ∈ Z :
p1(x)σ10, . . . , ps(x)σs0} �= ∅.

Lemma 5. (See [12, Corollary 2].) Given p0, p1, . . . , ps ∈ R[X], p0 �≡ 0, deg pi ≤ d for 
i = 0, . . . , s, the feasible sign conditions for p1, . . . , ps on {p0 = 0} can be computed 
algorithmically within O(sd2 log3(d)) operations. Moreover, if p0 has m roots in R, this 
can be done within O(smd log(m) log2(d)) operations. The output of the algorithm is a 
list of s-tuples in {0, 1, −1}s, where 0 stands for =, 1 for > and −1 for <.

3. Sturm sequences and zero counting for Pfaffian functions

Following [5], we introduce the notion of a Sturm sequence for a continuous function 
in a real interval:

Definition 6. Let f0 : (a, b) → R be a continuous function of a single variable. A sequence 
of continuous functions f = (f0, . . . , fN ) on (a, b) is said to be a Sturm sequence for f0
in the interval (a, b) if the following conditions hold:

1. If f0(y) = 0, there exists ε > 0 such that f1(x) �= 0 for every x ∈ (y−ε, y+ε) ⊆ (a, b), 
x �= y, f0(x)f1(x) < 0 for y − ε < x < y and f0(x)f1(x) > 0 if y < x < y + ε.

2. For every i = 1, . . . , N − 1, if fi(x) = 0 for x ∈ (a, b), then fi−1(x)fi+1(x) < 0.
3. fN (x) �= 0 for every x ∈ (a, b).

Recalling that, for a given x ∈ R, v(f , x) denotes the number of variations in sign of 
the (N +1)-tuple (f0(x), . . . , fN (x)), we have the following analog of the classical Sturm 
theorem:

Theorem 7. (See [5, Theorem 2.1].) Let f0 : (a, b) → R be a continuous function of a 
single variable. Let f = (f0, . . . , fN ) be a Sturm sequence for f0 in the interval (a, b) and 
let a < c < d < b. Then, the number of distinct real zeros of f0 in the interval (c, d] is 
v(f , c) − v(f , d).

The aim of this section is to build Sturm sequences for a particular class of Pfaffian 
functions we introduce below. For the definition of Pfaffian functions in full generality 
and the basic properties of these functions see, for instance, [2].
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Given a polynomial Φ ∈ Z[X, Y ] with degY (Φ) > 0, let ϕ be a function satisfying the 
differential equation

ϕ′(x) = Φ(x, ϕ(x)). (3)

Note that ϕ is analytic on its domain, which may be a proper subset of R.
We are going to work with Pfaffian functions of the type

f(x) = F (x, ϕ(x)),

where F ∈ Z[X, Y ].
Taking into account that the first derivative of such a function is

∂F

∂X
(x, ϕ(x)) + ∂F

∂Y
(x, ϕ(x)).Φ(x, ϕ(x)),

we define, for any F ∈ Z[X, Y ], the polynomial F̃ ∈ Z[X, Y ] (associated with Φ) as 
follows:

F̃ (X,Y ) = ∂F

∂X
(X,Y ) + ∂F

∂Y
(X,Y )Φ(X,Y ). (4)

Thus, we have that

f ′(x) = F̃ (x, ϕ(x)).

Due to the following result, in order to count the number of real zeros of a 
function f as above, we will assume from now on, without loss of generality, that 
ResY (F, F̃ ) �= 0.

Lemma 8. Let Φ, ϕ be as in equation (3) and let F ∈ Z[X, Y ] with degY (F ) > 0. There 
exists a polynomial P ∈ Z[X, Y ] such that ResY (P, P̃ ) �= 0 and P (x, ϕ(x)) has the same 
real zeros as F (x, ϕ(x)). Moreover, the polynomial P can be effectively computed from F
and Φ.

Proof. Without loss of generality, we may assume that F is square-free. Suppose that 
ResY (F, F̃ ) = 0. Write F = cont(F ) F0. Then, ResY (F0, F̃0) = 0 and so, the greatest 
common divisor of F0 and F̃0 is a polynomial S ∈ Z[X, Y ] of positive degree in Y . If

F0 = S U and F̃0 = S V

for U, V ∈ Z[X, Y ], we have that

f0(x) = F0(x, ϕ(x)) = S(x, ϕ(x))U(x, ϕ(x)),

f ′
0(x) = F̃0(x, ϕ(x)) = S(x, ϕ(x))V (x, ϕ(x)),
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which implies that a zero ξ of f0 which is not a zero of U(x, ϕ(x)) satisfies that 
mult(ξ, f0) = mult(ξ, S(x, ϕ(x))) ≤ mult(ξ, f ′

0), leading to a contradiction. Then, f0

and U(x, ϕ(x)) have the same zero set in R. As

F̃0 = (̃S U) = S̃ U + S Ũ,

it follows that, if T ∈ Z[X, Y ] is a common factor of U and Ũ with positive degree in Y , 
then T divides F̃0 = S V . Since U and V are relatively prime polynomials, then T divides 
S and, therefore T 2 divides F0, contradicting the fact that F0 is square-free.

The lemma follows considering the polynomial P = cont(F ) U . �
We will apply the theory of subresultants introduced in Section 2 in order to get 

Sturm sequences for f .
Let

F1 = Remainder(lc(F )DF̃ , F ) ∈ Z[X][Y ],

where D is the smallest even integer greater than or equal to 1 + degY (F̃ ) − degY (F ).

Notation 9. Following Section 2.1, for i = 0, . . . , N , let Ri := SResni−1 ∈ Z[X][Y ] be 
the (ni − 1)th subresultant polynomial associated to F and F1, τi := tni−1 ∈ Z[X] be 
the leading coefficient of Ri and, for i = 2, . . . , N + 1, let ρi := sni

∈ Z[X] be the nith 
subresultant coefficient of F and F1.

Definition 10. For an interval I = (a, b) containing no root of the polynomials τi for 
i = 0, . . . , N or ρi for i = 2, . . . , N + 1, we define inductively a sequence (σI,i)0≤i≤N ∈
{1, −1}N+1 as follows:

• σI,0 = σI,1 = 1,
• σI,2 = (−1) 1

2 (degY (F )−degY (F1))(degY (F )−degY (F1)+1)sgI(lc(F1))degY (F )−degY (F1)+1,
• σI,i+2 = sgI(ρi+2τi+1ρi+1τi)σI,i,

where, for a continuous function g of a single variable with no zeros in I, sgI(g) denotes 
the (constant) sign of g in I. For i = 0, . . . , N , we define

FI,i = σI,iRi ∈ Z[X,Y ].

Finally, if I is contained in the domain of ϕ, we introduce the sequence of Pfaffian 
functions fI = (fI,i)0≤i≤N defined by

fI,i(x) = FI,i(x, ϕ(x)).
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Proposition 11. Let F ∈ Z[X, Y ], degY (F ) > 0, and let ϕ be a Pfaffian function satisfying 
ϕ′(x) = Φ(x, ϕ(x)), where Φ ∈ Z[X, Y ] with degY (Φ) > 0. Consider the function f(x) =
F (x, ϕ(x)). Let F̃ ∈ Z[X, Y ] be defined as in (4). Assume that the resultant ResY (F, F̃ ) ∈
Z[X] is not zero. With the notation and assumptions of Definition 10, the sequence of 
Pfaffian functions fI = (fI,i)0≤i≤N is a Sturm sequence for f in I = (a, b).

Proof. For simplicity, as the interval I is fixed, the subindex I will be omitted throughout 
the proof.

First we prove that f0 and f1 do not have common zeros in I. Suppose α ∈ I is 
a common zero of f0 and f1. Then F (α, ϕ(α)) = 0 and F1(α, ϕ(α)) = 0; therefore, 
ρN+1(α) = ResY (F, F1)(α) = 0, contradicting the assumptions on I.

From this fact, taking into account that f0 = f , and f1 has the same sign as f ′ at 
any zero of f lying in I, condition 1 of Definition 6 follows.

To prove that condition 2 holds, first note that if fj(α) = 0 and fj+1(α) = 0 for some 
α ∈ I, since ρi and τi do not have zeros in I, by identities (1) and (2), α is a common 
zero of all fis, contradicting the fact that f0 and f1 do not have common zeros in I. 
Then, condition 2 in Definition 6 follows from the definition of the signs σi and identities 
(1) and (2).

Condition 3 follows from the assumption that τN , which equals fN up to a sign, does 
not have zeros in I. �

In order to count the number of zeros of a Pfaffian function in an open interval, 
provided that the function is defined in its endpoints, we introduce the following:

Notation 12. Let f : J → R be a non-zero analytic function defined in an open interval 
J ⊂ R and let c ∈ J . We denote

sg(f, c+) =
{ sign(f(c)) if f(c) �= 0

sign(f (r)(c)) if mult(c, f) = r

and

sg(f, c−) =
{ sign(f(c)) if f(c) �= 0

sign((−1)rf (r)(c)) if mult(c, f) = r

where mult(c, f) is the multiplicity of c as a zero of f .
For a sequence of non-zero analytic functions f = (f0, . . . , fN ) defined in J , we write 

v(f , c+) for the number of variations in sign in (sg(f0, c+), . . . , sg(fN , c+)) and v(f , c−)
for the number of variations in sign in (sg(f0, c−), . . . , sg(fN , c−)).

Note that sg(f, c+) is the sign that f takes in (c, c + ε) and sg(f, c−) is the sign that 
f takes in (c − ε, c) for a sufficiently small ε > 0. Then, by Theorem 7, we have:
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Proposition 13. With the assumptions and notation of Proposition 11, if, in addition, the 
closed interval [a, b] is contained in the domain of ϕ, the number of zeros of the function 
f in the open interval I = (a, b) equals v(fI , a+) − v(fI , b−).

As a consequence, we get a formula for the number of zeros of the Pfaffian function f
in any bounded interval:

Theorem 14. Let f(x) = F (x, ϕ(x)), where F ∈ Z[X, Y ], degY (F ) > 0, and ϕ is 
a Pfaffian function satisfying ϕ′(x) = Φ(x, ϕ(x)) for a polynomial Φ ∈ Z[X, Y ] with 
degY (Φ) > 0. Assume ResY (F, F̃ ) �= 0. Consider a bounded open interval (α, β) ⊂ R
such that [α, β] is contained in the domain of ϕ.

Let ρi and τi be the polynomials in Z[X] introduced in Notation 9. If α1 < α2 <

· · · < αk are all the roots in (α, β) of ρi and τi, the number of zeros of f in [α, β]
equals

#{0 ≤ j ≤ k + 1 : f(αj) = 0} +
k∑

j=0
v(fIj , α+

j ) − v(fIj , α−
j+1),

where α0 = α, αk+1 = β and, for every 0 ≤ j ≤ k, Ij = (αj , αj+1) and fIj is the 
sequence of functions introduced in Definition 10.

4. Algorithmic approach

Let ϕ be a Pfaffian function satisfying

ϕ′(x) = Φ(x, ϕ(x))

for a polynomial Φ ∈ Z[X, Y ]. Let δY := degY (Φ) > 0 and δX := degX(Φ).
In this section, we describe an algorithm for counting the number of zeros in a bounded 

interval contained in the domain of ϕ of a function of the type

f(x) = F (x, ϕ(x)),

where F ∈ Z[X, Y ] with degY (F ) > 0.
To estimate the complexity of the algorithm, we need an upper bound for the multi-

plicity of a zero of a function of this type. Here, we present a bound in our particular 
setting which takes into account the degrees in each of the variables X and Y of the 
polynomials involved in the definition of the functions. A general upper bound on the 
multiplicity of Pfaffian intersections depending on the total degrees of the polynomials 
can be found in [2, Theorem 4.3]. Even though both bounds are of the same order, our 
bound may be smaller when the total degrees are greater than the degrees with respect 
to each variable.
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Lemma 15. With the previous notation, let g(x) = G(x, ϕ(x)) with G ∈ Z[X, Y ], 
degY (G) > 0, be a nonzero Pfaffian function. For every α ∈ R such that g(α) = 0, 
we have

mult(α, g) ≤ 2 degX(G) degY (G) + degX(G)(δY − 1) + (δX + 1) degY (G).

Proof. Assume first that G is irreducible in Z[X, Y ]. If g(α) = 0, then mult(α, g) >
mult(α, g′). As g′(x) = G̃(x, ϕ(x)), then G does not divide G̃ and, therefore, R :=
ResY (G, G̃) �= 0. Let S, T ∈ Z[X, Y ] be such that R = SG + TG̃. We have that

R(x) = S(x, ϕ(x)). g(x) + T (x, ϕ(x)). g′(x).

If α is a multiple root of g, the previous identity implies that mult(α, g) ≤ mult(α, R) +
1 ≤ deg(R) +1. Taking into account that deg(R) ≤ degX(G) degY (G̃) +degX(G̃) degY (G), 
degX(G̃) ≤ degX(G) + δX and degY (G̃) ≤ degY (G) − 1 + δY , we conclude that

mult(α, g) ≤ 2 degX(G) degY (G) + degX(G)(δY − 1) + δX degY (G) + 1.

In the general case, write G = c(X) 
∏

1≤i≤t Gi(X, Y )mi , where c(X) = cont(G) and 
G1, . . . , Gt ∈ Z[X, Y ] are irreducible polynomials. For every i, let gi(x) = Gi(x, ϕ(x)). 
From the previous bound, we deduce

mult(α, g) = mult(α, c) +
∑

1≤i≤t

mi mult(α, gi) ≤ degX(c)

+
∑

1≤i≤t

mi (2 degX(Gi) degY (Gi) + degX(Gi)(δY − 1) + δX degY (Gi) + 1)

≤ 2 degX(G) degY (G) + degX(G)(δY − 1) + (δX + 1) degY (G). �
The theoretical results in the previous section enable us to construct the following 

algorithm for zero counting for a function f(x) = F (x, ϕ(x)), where F ∈ Z[X, Y ]. By 
Lemma 8, we will assume that ResY (F, F̃ ) �= 0.

Algorithm ZeroCounting

INPUT: A function ϕ satisfying a differential equation ϕ′(x) = Φ(x, ϕ(x)), a polynomial 
F ∈ Z[X, Y ] such that ResY (F, F̃ ) �= 0, and a closed interval [α, β] ⊂ Dom(ϕ) with 
α, β ∈ Q.

OUTPUT: The number of zeros of f(x) = F (x, ϕ(x)) in [α, β].

1. Let F1(X, Y ) :=
{
F̃ (X,Y ) if degY (F̃ ) < degY (F )
Remainder(lc(F )DF̃ , F ) otherwise

, where D is 

the smallest even integer greater than or equal to 1 + degY (F̃ ) − degY (F ).
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2. Compute the polynomials Ri and τi, for 0 ≤ i ≤ N , and ρi, for 2 ≤ i ≤ N + 1, 
associated to F and F1 as in Notation 9.

3. Determine and order all the real roots α1 < α2 < · · · < αk lying in the interval (a, b)
of the polynomials τi, for 0 ≤ i ≤ N , and ρi, for 2 ≤ i ≤ N + 1.

4. For every 0 ≤ j ≤ k, compute the Sturm sequence fIj = (fIj ,i)0≤i≤N for f in 
Ij = (αj , αj+1) as in Definition 10, where α0 = α and αk+1 = β.

5. Decide whether f(αj) = 0 for every 0 ≤ j ≤ k + 1 and count the number of zeros.
6. For every 0 ≤ j ≤ k, compute vj := v(fIj , α+

j ) − v(fIj , α−
j+1).

7. Compute #{0 ≤ j ≤ k + 1 : f(αj) = 0} +
k∑

j=1
vj .

Complexity analysis:

Let dX := degX(F ), dY := degY (F ) and, as before, δX := degX(Φ), δY := degY (Φ).

Step 1. Note that degY (F1) < dY . In the case when degY (F̃ ) ≥ dY , in order to 
bound degX(F1), notice that degX(lc(F )DF̃ ) ≤ D deg(lc(F )) + dX + δX . Then, 
the polynomial F1 can be obtained by means of at most D successive steps, 
each consisting of subtracting a multiple of F with degree in X bounded by 
(D − i) degX(lc(F )) + (i + 1)dX + δX from a polynomial whose degree in X is 
bounded by (D−i +1) degX(lc(F )) +i dX +δX . Then, degX(F1) ≤ (D+1)dX +δX ≤
(δY + 2)dX + δX .
In order to perform the computations (as polynomials in the variable Y ) avoiding 
division of coefficients (which are polynomials in X), we do not expand the product 
of the coefficients of F̃ times lc(F )D at the beginning, and at the ith step, we write 
each coefficient of the remainder as a multiple of lc(F )D−i. Thus, at each step, we 
compute at most dY + δY polynomials in X: for the first dY of them, we compute 
the difference of two products of a coefficient of F (whose degree is at most dX) by a 
polynomial of degree bounded by (i +1)dX +δX , and for the other ones, the product 
of the leading coefficient of F by a polynomial of degree bounded by (i +1)dX + δX . 
Then, the overall complexity of this step is O((dY + δY )dXδY (δY dX + δX)).

Step 2. Each subresultant of F and F1 is a polynomial in the variable Y whose coef-
ficients are polynomials of degree bounded by (dY − 1)dX + dY ((δY + 2)dX + δX)
in the variable X. We compute it by means of interpolation: for sufficiently many 
interpolation points, we evaluate the coefficients of F and F1, we compute the cor-
responding determinant (which is a polynomial in Y with constant coefficients) and, 
finally we interpolate to obtain each coefficient.
For each interpolation point, the evaluation of the coefficients of F and F1 can be per-
formed within complexity O(dY dX+(dY −1)((δY +2)dX+δX)) = O(dY (δY dX+δX)). 
Then, we compute at most 2dY − 1 determinants of matrices of size bounded by 
2dY − 2 within complexity O(dω+1

Y ), we multiply them by the polynomials Y jF

or Y jF1 evaluated at the point and we add the results in order to obtain the 
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specialization of the subresultant at the point, which does not modify the com-
plexity order. This is repeated for dY ((δY + 3)dX + δX) points. Finally, each of the 
at most dY coefficients of the subresultant polynomial is computed by interpola-
tion from the results obtained. Each polynomial interpolation can be done within 
complexity O(M(dY (δY dX + δX)) log(dY (δY dX + δX))). Then, the computation of 
the at most dY coefficients of each subresultant can be achieved within complexity 
O((dY (δY dX + δX) + dω+1

Y )dY (δY dX + δX) + dY M(dY (δY dX + δX)) log(dY (δY dX +
δX))) = O(dω+2

Y (δY dX + δX)2).
As we have to compute at most dY subresultants, the overall complexity of the 
computation of all the required subresultants is of order O(dω+3

Y (δY dX + δX)2).
Note that we may compute successively only the polynomials Ri = SResni−1. The 
index ni+1 indicating the next subresultant to be computed is the degree of Ri, and 
the polynomial τi is its leading coefficient. Finally, the polynomials ρi ∈ Z[X] are 
subresultant coefficients of F and F1, which are also computed by interpolation. The 
complexity of these computations does not modify the order of the overall complexity 
of this step.

Step 3. Consider the polynomial

L(X) =
∏

0≤i≤N

τi
∏

3≤i≤N+1
ρi. (5)

Note that ρ2 = (−1) 1
2 (degY (F )−degY (F1))(degY (F )−degY (F1)+1)lc(F1)degY (F )−degY (F1); 

so, it has the same zeros as τ1 = lc(F1).
We determine the Thom encodings of the roots of L in the interval (a, b) by com-
puting the realizable sign conditions on Der(L), X − α, β − X, where Der(L) =
(L, L′, . . . , Ldeg(L)).
The degree of L is bounded by (2d2

Y − dY )((δY + 3)dX + δX). We compute its 
coefficients by interpolation: the specialization of L at a point can be computed within 
O(d2

Y (δY dX + δX)) operations by specializing its factors and multiplying, and this is 
done for deg(L) +1 points; then, the total complexity of evaluation and interpolation 
is of order O(d4

Y (δY dX + δX)2). The complexity of computing the realizable sign 
conditions is of order O(d6

Y (δY dX + δX)3 log3(d2
Y (δY dX + δX))) (see Lemma 5). 

Finally, we can order the roots of L in (α, β) by comparing their Thom encodings 
(see [1, Proposition 2.28]) within complexity O(d4

Y (δY dX+δX)2 log(d2
Y (δY dX+δX)))

using a sorting algorithm.
The overall complexity of this step is of order O(d6

Y (δY dX + δX)3 log3(d2
Y (δY dX +

δX))).
Step 4. The Sturm sequences (fIj )0≤j≤k are obtained by multiplying the polynomials 

(Ri)0≤i≤N by the corresponding signs (σIj ,i)0≤i≤N as stated in Definition 10. Note 
that if p is a univariate polynomial having a constant sign in Ij = (αj , αj+1), to 
determine this sign it suffices to determine sg(p, α+

j ) or sg(p, α−
j+1), which can be 
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obtained from the signs of p and its successive derivatives at αj or αj+1 respectively.
Then, in order to compute the required signs, we compute the realizable sign condi-
tions on the family

Der(L), X − α, β −X,Der(ρi)3≤i≤N ,Der(τi)1≤i≤N−1

which consists of O(d2
Y (δY dX + δX)) polynomials of degrees bounded by (2d2

Y −
dY )((δY +3)dX + δX). The complexity of this computation is of order O(d6

Y (δY dX +
δX)3 log3(d2

Y (δY dX + δX))). Going through the list of realizable sign conditions, we 
determine the signs σIj ,i and, from them, the Sturm sequences fIj within the same 
complexity order.
The overall complexity of Steps 1–4 is of order O(d6

Y (δY dX + δX)3 log3(d2
Y (δY dX +

δX))).
Steps 5 and 6. These steps require the determination of the sign of Pfaffian functions of 

the type G(x, ϕ(x)), with G ∈ Z[X, Y ], at real algebraic numbers given by their Thom 
encodings (more precisely, at the real roots αj of L lying on (α, β) and at the end-
points α and β of the given interval). We assume an oracle is given to achieve this task.
At Step 5, we need k + 2 ≤ deg(L) + 2 = O(d2

Y (δY dX + δX)) calls to the oracle for 
the Pfaffian function defined by the polynomial F , having degrees degX(F ) = dX
and degY (F ) = dY .
At Step 6, we use the oracle for Pfaffian functions defined by polynomials with de-
grees in X bounded by dY ((δY + 3)dX + δX) and degrees in Y bounded by dY . 
Taking into account the bound for the multiplicity of a zero of such a function given 
by Lemma 15, it follows that the determination of sg(fIj ,i, α+

� ) and sg(fIj ,i, α−
� )

requires at most O(dY (dY + δY )(δY dX + δX)) calls to the oracle. Then, the oracle 
is used at most O(d4

Y (dY + δY )(δY dX + δX)2) times.

Therefore, we have the following:

Proposition 16. Let f(x) = F (x, ϕ(x)) be defined from a polynomial F ∈ Z[X, Y ] with 
degY (F ) > 0, and a Pfaffian function ϕ satisfying ϕ′(x) = Φ(x, ϕ(x)), where Φ ∈ Z[X, Y ]
with degY (Φ) > 0. Let dX := degX(F ), dY := degY (F ), δX := degX(Φ) and δY :=
degY (Φ). Then, Algorithm ZeroCounting computes the number of zeros of f in a closed 
interval [α, β] ⊂ Dom(ϕ) (α, β ∈ Q) within O(d6

Y (δY dX + δX)3 log3(d2
Y (δY dX + δX)))

arithmetic operations and comparisons, and using at most O(d4
Y (dY +δY )(δY dX +δX)2)

calls to an oracle for determining the signs of Pfaffian functions of the type G(x, ϕ(x)), 
with G ∈ Z[X, Y ], at real algebraic numbers.

As a consequence of the previous algorithm we deduce an upper bound for the number 
of zeros of the Pfaffian functions under consideration in a bounded interval:

Corollary 17. Let f(x) = F (x, ϕ(x)) be defined from a polynomial F ∈ Z[X, Y ] and a 
Pfaffian function ϕ satisfying ϕ′(x) = Φ(x, ϕ(x)), where Φ ∈ Z[X, Y ] with degY (Φ) > 0. 



564 M.L. Barbagallo et al. / Journal of Algebra 452 (2016) 549–573
Let dX := degX(F ), dY := degY (F ), δX := degX(Φ) and δY := degY (Φ). Then, for any 
open interval I ⊂ Dom(ϕ), the number of zeros of f in I is at most (dY + 1)(2d2

Y −
dY )((δY + 3)dX + δX).

An alternative bound can be obtained from Khovanskii’s upper bounds for the number 
of non-degenerate zeros of univariate Pfaffian functions and for the multiplicity of an 
arbitrary zero of these functions (see [2]). Keeping our previous notation, for a polynomial 
F ∈ Z[X, Y ] with deg(F ) = d, if deg(Φ) = δ, using Khovanskii’s bounds, it follows that 
both the number of non-degenerate zeros and the multiplicity of an arbitrary zero of 
f(x) = F (x, ϕ(x)) are at most d(δ+d). We can get an upper bound for the total number 
of zeros of f by bounding the number of non-degenerate zeros of f and of its successive 
derivatives of order at most d(δ + d) − 1.

Following (4), we have that f ′ is defined by a polynomial of degree at most d + δ − 1
and so, for every k ∈ N, f (k) is given by a polynomial of degree at most d + k(δ − 1). 
Then, the total number of zeros of f is at most

d(δ+d)−1∑
k=0

(d + k(δ − 1))(δ + d + k(δ − 1)) ≤ 1
2d

3δ2(δ + d)3.

Note that the bound from Corollary 17 is of lower order than this one.

5. E-polynomials

In this section, we will deal with the particular case of E-polynomials, namely when 
ϕ(x) = eh(x) for a polynomial h ∈ Z[X] of positive degree. We will first show how to 
perform steps 5 and 6 of Algorithm ZeroCounting (that is, we will give an algorithmic 
procedure to replace the calls to an oracle). Finally, we will prove a bound for the absolute 
value of the zeros of an E-polynomial.

5.1. Sign determination

The main goal of this section is to design a symbolic algorithm which determines the 
sign that an E-polynomial takes when evaluated at a real algebraic number given by its 
Thom encoding. To do this, we will use two subroutines. The first one, which follows [16, 
Lemma 15], determines the sign of an expression of the form eβ − α for real algebraic 
numbers α and β. The second one allows us to locate a real number of the form eh(α), 
for a real algebraic number α, between two consecutive real roots of a given polynomial.

Algorithm SignExpAlg

INPUT: Real algebraic numbers α and β given by their Thom encodings σP1(α) and 
σP2(β) with respect to polynomials P1, P2 ∈ Z[X] such that deg(P1), deg(P2) ≤ d (d ≥ 2)
and H(P ), H(P ) ≤ H.
1 2
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OUTPUT: The sign s := sign(eβ − α).

1. Let c := (2d+1(d + 1)H)−241d6(5d+4�log(H)�).
2. Compute w ∈ Q such that |eβ − w| < c as follows:

(a) Compute w1 ∈ Q such that |β − w1| <
c

2. 3H+2

(b) Compute w ∈ Q such that |ew1 − w| < c

2
3. Compute s = sign(w − α).

Proof of correctness and complexity analysis:

Step 1. We will show that, for the chosen value of c, the inequality |eβ − α| > c holds.
As shown in [17], if α and β are algebraic numbers of degrees bounded by θ and 
heights bounded by ν, then

|eβ − α| > e−242θ6 ln(ν+ee)(ln(ν)+ln ln(ν)).

Note that

e242θ6 ln(ν+ee)(ln(ν)+ln ln(ν)) ≤ (ν + 16)2
42θ6(ln(ν)+ln ln(ν)) ≤ (ν + 16)2

43θ6 ln(ν).

It is clear that the degree of an algebraic number is bounded by the degree of any 
polynomial which vanishes at that number. With respect to the height, by [1, Propo-
sitions 10.8 and 10.9], we have

H(α) ≤ 2d||P1|| ≤ 2d(d + 1)1/2H,

and, similarly, it follows that the same bound holds for H(β). Here, ||P1|| stands for 
the norm 2 of the vector of the coefficients of P1.
The required inequality is deduced by taking θ = d, ν = 2d(d + 1)1/2H, and using 
the bounds

2d(d + 1)1/2H + 16 ≤ 2d+1(d + 1)H and ln(2d(d + 1)1/2H) ≤ 5
4d + 
log(H)�.

Step 2.(a) Applying the algorithm from Lemma 4 to the polynomial P2 with ε = c

3H+3 , 
we get intervals Ij = (aj , bj ] with aj , bj ∈ Q and bj − aj < ε (1 ≤ j ≤ κ) such 
that β ∈ Ij0 for some j0. We determine the index j0 by computing the feasible 
sign conditions for Der(P2), X − a1, X − b1, . . . , X − aκ, X − bκ. Finally, we take 
w1 = bj0 . The complexity of this step is of order O(d3(log(H.3H+3.c−1) +log3(d))) =
O(d3H + d9(d + log(H))2).
By the mean value theorem, the inequality |β − w1| <

c

2. 3H+2 implies that |eβ −

ew1 | < c .
2
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Step 2.(b) Following [16, Lemma 14], in order to obtain w, we compute the Taylor 
polynomial centered at 0 of the function ex of order t := 8(
log(2/c)� + 1 + H)
specialized in w1. The complexity of this step is bounded by O(d7(d +log(H))2 +H).

Step 3. The fact that sign(w − α) = sign(eβ − α) is a consequence of the inequalities 
|eβ−α| > c and |eβ−w| < c. In order to determine this sign, we compute the feasible 
sign conditions on Der(P1), X − w and look for the one which corresponds to the 
Thom encoding of α. The complexity of this step is of order O(d3 log3(d)).

The overall complexity of this subroutine is O(d3H + d9(d + log(H))2).
The second subroutine is the following:

Algorithm RootBox

INPUT: A polynomial h ∈ Z[X], an algebraic number α ∈ R such that h(α) �= 0, given 
by its Thom encoding as a root of a polynomial L ∈ Z[X], and a polynomial M ∈ Z[X]
together with the ordered list of Thom encodings of all its real roots λ1 < λ2 < · · · < λm.

OUTPUT: The index i0, 0 ≤ i0 ≤ m, such that λi0 < eh(α) < λi0+1, where λ0 = −∞
and λm+1 = +∞.

1. Compute S(T ) := ResX(L(X), T − h(X)).

2. Compute the feasible sign conditions on Der(L), S(h), S′(h), . . . , S(deg(S))(h) and the 

Thom encoding of h(α) as a root of S.
3. Compute sign(eh(α) − λi) applying Algorithm SignExpAlg, for i = 1, . . . , m, until 

the first negative sign is obtained for i0 + 1. If all the signs are positive, i0 = m.

Proof of correctness and complexity analysis:

Note that h(α) is a root of the polynomial S ∈ Z[T ] computed in Step 1. Therefore, 
in Step 2, the sign condition on Der(L), S(h), S′(h), . . . , S(deg(S))(h) having the Thom 
encoding of α as a root of L in the first coordinates has the Thom encoding of h(α) as 
a root of S in the last ones.

Assume that deg(L) ≤ �, deg(h) ≤ δ and deg(M) ≤ η.
The resultant computation in Step 1 can be done within complexity O(�(� + δ)ω) by 

interpolation, noticing that deg(S) ≤ �. Applying Lemma 5, the complexity of Step 2 is 
O(�3δ log(�) log2(�δ)). Finally, taking into account that H(S) ≤ (� + δ)! H(L)δ(2H(h))�, 
defining

H := max{H(M), (� + δ)!H(L)δ(2H(h))�},

the complexity of Step 3 is O
(
m max{η, �}3

(
H + max{η, �}6(max{η, �} + log(H))2

))
.

The overall complexity of the algorithm is of the same order as the complexity of 
Step 3.
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Now we are ready to introduce the main algorithm of this section.

Algorithm E-SignDetermination

INPUT: Polynomials G ∈ Z[X, Y ], h ∈ Z[X], deg(h) > 0, L ∈ Z[X] and Thom encodings 
σL(α1), . . . , σL(αt) of real roots α1, . . . , αt of L.

OUTPUT: The signs of G(αj , eh(αj)) for 1 ≤ j ≤ t.

1. For every 1 ≤ j ≤ t, determine whether G(αj , Y ) ≡ 0. If this is the case, the sign of 
G(αj , eh(αj)) is 0.

2. Compute R = gcd(L, h) and the list of realizable sign conditions on Der(L), R, 
G(X, 1). Going through the list, determine the sign of G(αj , eh(αj)) = G(αj , 1) for 
every j such that G(αj , Y ) �≡ 0 and R(αj) = 0.

3. Compute M(Y ) := ResX(L(X), G(X, Y )).
4. Compute the Thom encodings of the real roots of M and order them: λ1 < · · · < λm.
5. For every 1 ≤ j ≤ t such that G(αj , Y ) �≡ 0 and R(αj) �= 0:

(a) Determine the index 0 ≤ ij ≤ m such that λij < eh(αj) < λij+1 by applying 
subroutine RootBox, where λ0 := −∞ and λm+1 := +∞.

(b) Find wj ∈ Q ∩ (λij , λij+1).
(c) Compute the sign of the polynomial G(X, wj) at X = αj . This is the sign of 

G(αj , eh(αj)).

Proof of correctness and complexity analysis:

Assume that degX(G) ≤ dX , degY (G) ≤ dY , deg(L) ≤ � and deg(h) ≤ δ.
Due to Lindemann’s theorem, if α ∈ R is an algebraic number and h(α) �= 0, then 

eh(α) is transcendental over Q. Therefore, for an algebraic number α ∈ R, G(α, eh(α)) = 0
if and only if either G(α, Y ) ≡ 0 or h(α) = 0 and G(α, 1) = 0. Then, Steps 1 and 2 enable 
us to determine all the indices j such that G(αj , eh(αj)) = 0.

Step 1. Compute cont(G), the gcd of the coefficients of G, by applying successively the 
fast Euclidean algorithm [4, Algorithm 11.4] within complexity O(dY M(dX) log(dX)). 
Then, determine the realizable sign conditions on Der(L), cont(G) within
O(�2 max{�, dX} log(�) log2(max{�, dX})) arithmetic operations.

Step 2. The complexity of the computation of R is of order O(M(max{�, δ}) log(max{�,
δ})) and the realizable sign conditions on Der(L), R, G(X, 1) can be found within 
complexity O(�2 max{�, dX} log(�) log2(max{�, dX})).

Step 3. In order to compute M(Y ), evaluate G(X, y) at sufficiently many values y, 
compute the corresponding determinants and interpolate. Taking into account 
that deg(M) ≤ �dY , the total cost of this step is of order O(�dY (dX + �)ω +
M(�dY ) log(�dY )).
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Step 4. The computation of the Thom encodings of the real roots of M can be done 
within O((�dY )3 log3(�dY )) operations. Then, we order the real roots of M by means 
of their Thom encodings within complexity of order O((�dY )2 log(�dY )).

Step 5. Following the proof of [1, Proposition 8.15], it follows that H(M) ≤ (� +
dX)!((dY + 1)H(G))�H(L)dX . Recall that deg(M) ≤ �dY .
(a) The complexity of this step is O((�dY )4(H + (�dY )6(�dY + log(H))2)), where 

H = max{(� + δ)!H(L)δ(2H(h))�, (� + dX)!H(L)dX ((dY + 1)H(G))�}.
(b) By applying Lemma 4 to the polynomial M and a lower bound ε for the minimum 

distance between two different roots of M , we obtain pairwise disjoint intervals 
(ai, bi] with rational endpoints such that λi ∈ (ai, bi] for i = 1, . . . , m. Following 

Lemma 3, we can take ε = (�dY )−
�dY +2

2 (�dY + 1)
1−�dY

2 ((� + dX)! H(L)dX ((dY +
1)H(G))�)1−�dY . Let wj := bij .
The complexity of this step is O((�dY )4((� + dX) log(� + dX) + �(log(H(G)) +
log(dY )) + dX log(H(L)))).

(c) We compute the coefficients of G(X, wj) within complexity O(dXdY ). Then, we 
compute the feasible sign conditions of Der(L), G(X, wj), which enable us to de-
termine the sign of G(αj , wj), within O(�2 max{�, dX} log(�) log2(max{�, dX})))
additional operations.

The overall complexity of the algorithm is O(t(�dY )4(H + (�dY )6(�dY + log(H))2)).
The previous complexity analysis leads to:

Proposition 18. Given polynomials G ∈ Z[X, Y ], h ∈ Z[X], deg(h) > 0, L ∈ Z[X] with 
degrees bounded by d and height bounded by H, and Thom encodings σL(α1), . . . , σL(αt)
of real roots α1, . . . , αt of L, we can determine #{1 ≤ j ≤ t : G(αj , eh(αj)) = 0} within 
complexity O(d3 log3(d)). Moreover, the signs of G(αj , eh(αj)), for 1 ≤ j ≤ t, can be 
computed within complexity O(t 8dd3d+8H2d).

5.2. Zero counting for E-polynomials

Here, we will apply Algorithm E-SignDetermination from the previous section as a 
subroutine in Algorithm ZeroCounting described in Section 4 to obtain a zero counting 
algorithm for E-polynomials with no calls to oracles.

In order to estimate complexities we will need upper bounds for the degrees and 
heights of polynomials defining the successive derivatives of an E-polynomial.

Remark 19. For a Pfaffian function g(x) = G(x, eh(x)), given by a polynomial G ∈
Z[X, Y ], we have that g′(x) = G̃(x, eh(x)) is given by the polynomial G̃ := ∂G

∂X
+

h′(X)Y ∂G

∂Y
. If degX(G) = dX , degY (G) = dY and deg(h) = δ, we have that

degX(G̃) ≤ δ − 1 + dX , degY (G̃) = dY
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H(G̃) ≤ H(G)(dX + dY δ
2H(h)).

Applying these bounds recursively, we get that the successive derivatives of g can be 
obtained as

g(ν)(x) = νG̃(x, eh(x))

for polynomials νG̃ ∈ Z[X, Y ] such that

degX(νG̃) ≤ ν(δ − 1) + dX , degY (νG̃) = dY

H(νG̃) ≤ H(G)
ν−1∏
j=0

(j(δ − 1) + dX + dY δ
2H(h)).

Now, we can state the main result of this section.

Theorem 20. Let f(x) = F (x, eh(x)) be an E-polynomial defined by F ∈ Z[X, Y ] and 
h ∈ Z[X] with deg(F ), deg(h) ≤ d and H(F ), H(h) ≤ H, and let [a, b] (a, b ∈ Q) be a 
closed interval. Assume that ResY (F, F̃ ) �= 0. There is an algorithm that computes the 
number of zeros of f in [a, b] within complexity (2dH)O(d6).

Proof. In order to prove the theorem, we adapt Algorithm ZeroCounting introduced 
in Section 4 to count the number of zeros of an E-polynomial with no call to oracles. 
It suffices to show how to perform Steps 5 and 6 of the algorithm and estimate the 
complexity of the procedure.

Step 5 can be achieved by means of Steps 1 and 2 of Algorithm E-SignDetermination. 
As in this case deg(L) ≤ 10d3, the complexity is of order O(d9 log3(d)).

To achieve Step 6 of the algorithm, we apply the algorithm E-SignDetermination
to the polynomials defining the functions fIj ,i and their successive derivatives, for 0 ≤
i ≤ N . These functions are defined, up to signs, by the polynomials Ri introduced in 
Notation 9, and νR̃i, 0 ≤ i ≤ N , ν ∈ N.

Since degY (F̃ ) = degY (F ), then F1 = lc(F )2.F̃ − lc(F̃ )lc(F )F and so, degX(F1) ≤
4d − 1 and H(F1) ≤ 4d(d + 1)H3(d + d3H) ≤ 8(d + 1)d4H4. Taking into account the 
determinantal formula for the subresultants, it follows that for every k, degX(SResk) ≤
5d2−2d and H(SResk) ≤ (2d −1)!25d−2(d +1)2d−2d5d−1H5d−1 ≤ 32d−125d−2d9d−3H5d−1, 
which are therefore, upper bounds for degX(Ri) and H(Ri) for all i. Finally, recalling that 
L is the product of at most 2d polynomials of degrees at most 5d2−2d that are coefficients 
of the subresultants SResk, we have that H(L) ≤ (5d2)2d−1(32d−125d−2d9d−3H5d−1)2d ≤
34d2210d2−2dd18d2−2d−2H10d2−2d.

Taking into account the bound for the multiplicity of a zero of a Pfaffian function 
from Lemma 15, we will apply the algorithm E-SignDetermination to the polynomials 
Ri (0 ≤ i ≤ N) and νR̃i for ν ≤ 10d3 − 3d2, to determine the signs of the correspond-
ing Pfaffian functions at the zeros of L. The bounds from Remark 19 applied to the 
polynomials Ri imply that, for ν ≤ 10d3 − 3d2,
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degX(νR̃i) ≤ (10d3 − 3d2)(d− 1) + 5d2 − 2d ≤ 10d4 − 5d3

H(νR̃i) ≤ H(Ri)(10d4 + (H − 5)d3)10d
3−3d2

.

Then, the complexity of applying the algorithm to each of these polynomials is of order

O(d19(H + d24(d4 + logH)2))

where

H ≤ (10d4 + 5d3)!H(L)10d
4−5d3

((d + 1)32d−125d−2d9d−3H5d−1

× (10d4 + (H − 5)d3)10d
3−3d2

)10d
3

= (2dH)O(d6).

This sign computation is done for at most d(10d3 − 3d2) polynomials. Finally, for 
each interval Ij , the signs sg(fIj ,i, α+

j ) and sg(fIj ,i, α−
j+1) are obtained easily following 

Definition 10.
Therefore, the overall complexity of the algorithm is of order

(2dH)O(d6). �
The previous procedure can be slightly modified to count algorithmically the to-

tal number of real zeros of an E-polynomial. To do this, we consider the signs of 
E-polynomials at +∞ and −∞.

Let g(x) = G(x, eh(x)) be an E-polynomial. Assume G(X, Y ) =
∑dY

j=0 aj(X)Y j with 
adY

�= 0 and let j0 = min{j : aj �= 0}. We define

sg(g,+∞) =
{ sign(lc(aj0)) if lc(h) < 0

sign(lc(adY
)) if lc(h) > 0

and

sg(g,−∞) =
{

sign((−1)deg(aj0 )lc(aj0)) if (−1)deg(h)lc(h) < 0
sign((−1)deg(adY

)lc(adY
)) if (−1)deg(h)lc(h) > 0.

For a sequence of E-polynomials f = (f0, . . . , fN ), we write v(f , +∞) for the number 
of variations in sign in (sg(f0, +∞), . . . , sg(fN , +∞)) and v(f , −∞) for the number of 
variations in sign in (sg(f0, −∞), . . . , sg(fN , −∞)).

Remark 21. Following Notation 9 and Definition 10, let fI+∞ and fI−∞ be Sturm se-
quences for f(x) = F (x, eh(x)) in the intervals I+∞ = (M, +∞) and I−∞ = (−∞, −M)
where M is an upper bound for the absolute values of the roots of τi for i = 0, . . . , N
and ρi for i = 2, . . . , N + 1.

Then, the number of zeros of f in I+∞ equals v(f , M+) − v(f , +∞) and the number 
of zeros of f in I−∞ equals v(f , −∞) − v(f , −M−).



M.L. Barbagallo et al. / Journal of Algebra 452 (2016) 549–573 571
By applying this remark, we conclude that the total number of zeros of an 
E-polynomial in R can be determined within the same complexity order as in Theo-
rem 20.

Remark 22. The assumption ResY (F, F̃ ) �= 0 in Theorem 20 can be removed by using 
the construction in the proof of Lemma 8. Taking into account the increase of height and 
degree, it follows that the overall complexity of the root counting algorithm is of order 
(2dH)dO(1) as stated in Theorem 1.

5.3. Bound for the size of roots

The following proposition provides an interval which contains all the zeros of an 
E-polynomial and whose endpoints are determined by the degrees and heights of the 
polynomials involved in its definition. Using this bound, applying successively our al-
gorithm for zero counting, it is possible to separate and approximate the roots of an 
E-polynomial.

Proposition 23. Let f(x) = F (x, eh(x)) be an E-polynomial defined by F ∈ Z[X, Y ] and 
h ∈ Z[X] such that deg(F ) ≤ d, deg(h) = δ > 0 and H(F ), H(h) ≤ H. Then, for every 
zero α ∈ R of f , we have that

|α| ≤ M(d, δ,H) := 1 + (d + 1)H2 max
{

(d + 1)(1 + 2H2), 2�2d
δ

+ 1�!
}
.

Proof. Let F (X, Y ) =
∑dY

j=0 aj(X)Y j ∈ Z[X, Y ] with deg(aj) ≤ dX for every 0 ≤ j ≤ dY
and adY

�= 0.
Let α ∈ R be a zero of f . If adY

(α) = 0, then |α| ≤ r(adY
) < 1 + H (see Lemma 2) 

and so, the bound in the statement holds. Similarly, if a0(α) = 0, the bound holds.
Assume now that adY

(α) �= 0 and a0(α) �= 0. Then eh(α) is a root of F (α, Y ) ∈ R[Y ]
and e−h(α) is a root of Y dY F (α, Y −1) ∈ R[Y ]. By Lemma 2, it follows that

e2h(α) < 1 +
∑

0≤j≤dY −1

(
aj(α)
adY

(α)

)2

and e−2h(α) < 1 +
∑

1≤j≤dY

(
aj(α)
a0(α)

)2

.

We are going to prove that, for α > M(d, δ, H), one of the previous inequalities fails 
to hold.

Note that in both cases, the right hand side of the inequality is given by a rational 
function, ∑

0≤j≤dY
aj(X)2

adY
(X)2 and

∑
0≤j≤dY

aj(X)2

a0(X)2

respectively, where the numerator and the denominator are integer polynomials of de-
grees at most 2dX and coefficients of size bounded by (dY + 1)(dX + 1)H(F )2 and 
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(dX + 1)H(F )2 respectively. Moreover, the degree of the denominator is less than or 
equal to the degree of the numerator.

First, assume that the leading coefficient of h is positive.
Let p(X) =

∑
0≤j≤dY

a2
j (X) and q(X) = a2

dY
(X) so that

p(X)
q(X) = 1 +

∑
0≤j≤dY −1

(
aj(X)
adY

(X)

)2

,

and let C > 0 be the quotient of the leading coefficients of p and q. Note that |C| ≤
(dY + 1)H(F )2.

If deg(p) = deg(q), for every x > max{r(q), r(p −(C+1)q)}, we have that p(x)
q(x) < C+1. 

On the other hand, for x > r(2h − ln(C + 1)), we have that e2h(x) > C + 1. We conclude 

that, for x > max{r(q), r(p − (C + 1)q), r(2h − ln(C + 1)}, the inequality e2h(x) >
p(x)
q(x)

holds.
If deg(p) > deg(q), let d0 := deg(p) − deg(q). For x > max{r(q), r(p − 2CXd0q)}, 

we have that p(x)
q(x) < 2Cxd0 . Note that e2h(x) > ex

δ for x > r(2h − Xδ). As 

ex
δ

>
∑� d0

δ +1�
k=0

1
k!x

δk > 2Cxd0 for x > r(
∑� d0

δ +1�
k=0

1
k!X

δk − 2CXd0), it follows that 
p(x)
q(x) < e2h(x) for x > max{r(q), r(p − 2CXd0q), r(

∑� d0
δ +1�

k=0
1
k!X

δk − 2CXd0)}. Using 

again Lemma 2, we obtain:

• r(q) < 1 + (dX + 1)H(F )2
• r(p − (C + 1)q)) < 1 + (dX + 1)H(F )2(dY + (dY + 1)H(F )2)
• r(2h − ln(C + 1)) < 1 + H(h) + 1

2 ln((dY + 1)H(F )2 + 1)
• r(p − 2CXd0q) < 1 + (dX + 1)(dY + 1)H(F )2(1 + 2H(F )2)
• r(2h −Xδ) < 1 + 2H(h)
• r

(∑� d0
δ +1�

k=0
1
k!X

δk − 2CXd0
)
< 1 + 2� 2dX

δ + 1�!(dY + 1)H(F )2

and, therefore, we conclude that, for α > M(d, δ, H), the following inequality holds

e2h(α) > 1 +
∑

0≤j≤dY −1

(
aj(α)
adY

(α)

)2

.

If the leading coefficient of h is negative, applying the previous argument to −h, we 
have that, for α > M(d, δ, H), the following inequality holds

e−2h(α) > 1 +
∑ (

aj(α)
a0(α)

)2

.

1≤j≤dY
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Finally, noticing that α is a zero of F (x, eh(x)) if and only if −α is a zero of 
F (−x, eh(−x)) we conclude that every zero α of f satisfies α ≥ −M(d, δ, H). �
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