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Abstract

In this paper we study an inverse problem for a quasi-linear ordinary differential equation with a monotonic weight in the half-line.
First, we find the asymptotic behavior of the singular eigenvalues, and we obtain a Weyl-type asymptotics imposing an appropriate
integrability condition on the weight. Then, we investigate the inverse problem of recovering the coefficients from nodal data. We
show that any dense subset of nodes of the eigenfunctions is enough to recover the weight.
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1. Introduction

In this work we deal with the inverse nodal problem for the following weighted singular quasi-linear ordinary
differential equation

−(|u′|p−2u′)′ = λσ(t)|u|p−2u t ≥ 0, (1)

with boundary conditions

u(0) = 0 and lim
t→+∞

u(t)
√

t
= 0, (2)

where 1 < p < ∞, λ is a real parameter, and the weight σ satisfies:

(H1) σ is a continuous, positive and monotonic function.

(H2) tpσ ∈ L1([0,∞)).

(H3)
∫ ∞

0 σ(t)1/pdt = 1.

∗Corresponding author
Email addresses: jpinasco@dm.uba.ar (Juan P. Pinasco), cscarola@dm.uba.ar (Cristian Scarola)
URL: http://mate.dm.uba.ar/∼jpinasco/ (Juan P. Pinasco)

1



/ xxx 00 (2015) 1–12 2

The eigenvalue problem (1)-(2) was studied first in the linear case p = 2 by Einar Hille in [21]. Later, the problem
appeared related to the number of negative eigenvalues of Schrodinger equations, and was studied by Bargmann,
Calogero, and Cohn among several other physicists and mathematicians, see [31] for a survey. Also, Birman and
Solomyak were interested in this problem, see [2], which appears in the theory of infinite waveguides.

For general p, the existence of a sequence of eigenvalues {λn}n≥1 was proved by Kusano and Naito in [24]. As in
the linear case, each eigenvalue is simple, and any eigenfunction un associated to λn has exactly n zeros in [0,∞). We
call X the nodal set of problem (1)-(2), which can be indexed as a double sequence

X =

{
{xn

j }n≥1,1≤ j≤n : 0 = xn
1 < · · · < xn

j < · · · < xn
n, un(xn

j ) = 0.
}
.

The monotonicity of σ is not necessary to obtain these results, and other weaker conditions can be imposed instead
of tpσ ∈ L1. However, this is the key assumption in order to prove a Weyl-type asymptotic formula for the eigenvalues.

For p = 2, the following asymptotic formula holds:

λn =

 πn∫ ∞
0

√
σdt

2

+ o(n2). (3)

Three different proofs were given of this behavior. The first one is due to Hille, who used in [21] a shooting argument.
A different proof was given in [3] and [29], and a third proof can be found in Chapter 4 of [31]. Moreover, assuming
only tσ ∈ L1([0,∞)), the eigenvalues satisfy a non Weyl-type asymptotic, namely cnα < λn < Cnα, for some positive
constants c, C, and 1 ≤ α < 2. In all of these proofs, the monotonicity of σ was needed, as well in the fourth proof
that we provide here.

In this paper we are interested in the characterization of σ in terms of the set of nodes X. This kind of inverse
problem in finite intervals was introduced first by McLaughlin in [28], and followed quickly by Hald and McLaughlin
in [18] and -with different methods- by Shen in [33]. Today, a large body of literature was developed on these
problems, see for example [16, 19, 20, 27, 34].

Let us observe that the eigenfunctions of problem (1) with the weight σ̂ = cσ does not change, and the set X
remains the same (the constant c will appear in the eigenvalue λ̂n = λn/c). Therefore, some kind of normalization
must be imposed on σ, being a local one like σ(t0) = 1, or a global one like ‖σa‖1 = 1 for some a > 0. We assume
(H3) since this integral will appear in the eigenvalue estimates, and sometimes we can simplify the notation.

Let us note that we are dealing here with an inverse problem for the weight in equation (1). A different problem is
to determine a potential q in the following equation:

−(|u′|p−2u′)′ + q(t)|u|p−2u = λ|u|p−2u t ≥ 0.

This problem has received a lot of attention, in both the linear (see for instance [4, 22, 25, 28, 30, 36, 38] ) and
quasilinear cases (see [8, 23, 26, 35]), always for bounded intervals.

We wish to observe that the determination of the nodes of eigenfunctions is technically possible in several cases
of interest. Historically, it goes back to experiments performed in 1680 by Robert Hooke, who obtained the nodal
lines of vibrating plates by covering them with sand and observing where the sand accumulate. Later, in 1787 Chladni
repeated and published this kind of experiments in [9], and in 1831 Faraday described the Faraday ripples or waves
which appears in the surfaces of a fluid contained in a vibrating recipient, see [13]. The vibrations of beams, strings,
cable tensors and many other structures are nowadays monitored, and the damage of the material is inferred from the
behavior of the zeros of eigenfunctions (see for instance [11]). To this end, several procedures are used: the zeros
can be determined by scanning the vibrating body with a laser and measuring the Doppler shift in the backscatter, see
[20]; another method due to Cha, Dym and Wong consists on attach a lumped mass, and whenever the mass is located
in a node, it will not be affected by the original vibrations and the mass will remain stationary, see [6].

To our knowledge, the nodal inverse problem in the half-line was not studied before, see [15] for a survey of other
spectral inverse problems in the half-line, and [7] for the classical Gelfand-Levitan-Marchenko techniques in quantum
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scattering. We believe that the reason is that nodal inverse problems were solved by using very precise estimates on
the nodal lengths and the eigenvalues. For weighted problems, the eigenvalue estimates involve the total variation
of log(σ) and hold only for weights σ which are bounded away from zero; in problem (1)-(2) this condition implies
that every solution oscillate and posses infinitely many zeros. In the determination of a potential, the length of the
nodal domains is needed, for intervals of length L these lengths are known with high precision, and they are about
jL/n + O(1/n2), a kind of estimate which seems difficult to generalize to infinite intervals.

Here we overcame this problem following the ideas recently introduced in [32]. First, we define a family of
probability measures {µn}n≥1, such that µn is uniformly spread on the zeros of the n−th. eigenfunction, and we show
that there exists a weak limit µ. Then, we characterize the limit measure in terms of the weight σ.

However, we need to solve two problems in order to carry on this idea. First, we need an estimate of the eigenvalues
like the one in equation (3), which is known only for p = 2. Second, the measures µn are defined over the half line,
so we need to prove the tightness of the sequence {µn}n≥1 in order to recover some compactness and get a probability
measure as a limit. Let us introduce this concept here, since it plays a key role in the rest of the work.

Definition 1.1. A sequence {µn}n≥1 of Borel probability measures on R is called tight if for every ε > 0 there exists a
compact set Kε and n0 such that

µn(Kε) ≥ 1 − ε

for all n ≥ n0.

In Section §2 we introduce some definitions, a short review of results for eigenvalue problems, and some auxiliary
results about convergence of measures and its distribution functions.

In Section §3 we solve one of our problems, showing that {µn}n≥1 is tigh:

Theorem 1.2. Let X be the nodal set of problem (1)-(2), with σ satisfying (H1)-(H3), and let {µn}n≥1 be the sequence
of measures defined as

µn = n−1
n∑

j=1

δxn
j

where xn
j ∈ X, and δy = δ(x − y) is the Dirac’s delta function centered at y. Then {µn}n≥1 is tight.

In Section §4 we study the asymptotic behavior of eigenvalues. We need here the constant πp defined in Section
§2, and we have the following result:

Theorem 1.3. Let {λn}n≥1 be the sequence of eigenvalues of problem (1)-(2), with σ satisfying (H1)-(H3). Then

λn = π
p
pnp + o(np) (4)

as n→ ∞.

The proof of Theorem 1.3 is simpler than the ones in [3, 21, 29, 31], and it is based only on the Sturm’s comparison
theorem. The proof in [3, 29] relies on Hilbert space techniques which are not available here, the original one of Hille
using Prufer’s transformation needs σ ∈ C1([0,∞)), and the one in [31] recover the result as a corollary of a precise
estimate of the spectral counting function.

Let us remark that hypotheses (H3) is not necessary here, and without assuming it we get

λn =

 πpn∫ ∞
0 σ1/pdt

p

+ o(np).

The proof of this general case follows easily by normalizing σ in the equation, and rescaling the eigenvalues.

From Theorem 1.2 and Helly’s selection theorem (see Section §2), we obtain a convergent subsequence of {µn}n≥1.
In Section §5 we show that the full sequence converges and we characterize the limit measure:
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Theorem 1.4. Let {µn}n≥1 be the sequence of measures defined in Theorem 1.2. Then, µn converge weakly to µ, where

µ([a, b]) =

∫ b

a
σ1/pdt

for any [a, b] ⊂ [0,∞).

At first sight, it seems that all the zeros of any subsequence of eigenfunctions are needed to determine σ. However,
there are a lot of redundant information in the full set X, and in Section §6 we show that any dense subset of nodes is
enough to characterize the weight σ. Previously, we will show in a short Lemma that X is dense in the half-line.

Theorem 1.5 (Uniqueness given a dense subset of X). Let S = {xn
j(n)} ⊂ X be any dense subset of zeros of eigen-

functions of problem (1)-(2). Then, there exists a unique weight σ satisfying (H1)-(H3) such that xn
j(n) is the j(n)−th.

zero of the n−th. eigenfunction.

Our proof is partially based on the ideas of Hald and McLaughlin in [19], although we avoided the use of the
delicate estimates of the lengths of the nodal domains which require high regularity of the weight. We wish to stress
that this result is new even for p = 2 and finite intervals [a, b], since Hald and McLaughlin proved the uniqueness of
the weight given a dense subset only for smooth weights (namely σ′′ ∈ L1([a, b])).

For weights σ ∈ BV([a, b]), a twin dense set was required in [20, 32], that is, if a nodal point xn
j belongs to the

subset S , then also xn
j−1 or xn

j+1 belongs to S . The proof of Theorem 1.5 can be extended to include nodal inverse
problems for Sturm-Liouville operators in finite intervals with weightsσ1/p ∈ BV , without the monotonicity condition.

2. Preparatory results

Let us collect some results from measure theory and quasilinear eigenvalue problems.

2.1. Probability measures and Helly’s theorem
We need the following definitions and results concerning probability measures.

Definition 2.1. A sequence {µn}n≥1 of Borel probability measures on R converges weakly to a measure µ if∫
R

f dµn →

∫
R

f dµ

for every f ∈ Cb(R).

Prokhorov’s theorem states that a sequence {µn}n≥1 of Borel probability measures on R is tight if and only if its
closure is weakly compact. A stronger result is due to Helly, and we state it in terms of the distribution functions

Fn(x) = µn(−∞, x]

Theorem 2.2 (Helly’s selection theorem). Let {Fn}n≥1 be a sequence of non-decreasing real functions on R satisfy-
ing 0 ≤ Fn(x) ≤ 1 for all x ∈ R and n ≥ 1. Then, there exists a subsequence {Fn j } converging pointwise to a real
function F. If the limit function F is continuous, then this convergence is uniform on compact sets of R.

For a proof, see Billingsley [1]. In particular, when Fn are associated to a tight sequence of measures which
converges weakly to µ and the distribution function of µ is continuous, the convergence is uniform in R. The key
point is that there are no loss of mass at infinity:

Lemma 2.3. Let {Fn}n≥1 be a sequence of distribution functions associated to a tight sequence of probability mea-
sures {µn}n≥1 supported on R, and suppose that {Fn}n≥1 converges pointwise to a continuous function F which is the
distribution function of some probability measure µ. Then, {Fn}n≥1 converges uniformly to F.
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Proof. Let us fix some ε > 0. Since {µn}n≥1 is tight, there exists T > 0 and n0 such that µn([−T,T ]) = Fn(T ) −
Fn(−T ) > 1 − ε for n > n0. Hence, we have

F(T ) − F(−T ) ≥ 1 − ε.

We choose δ > 0 such that |F(x)− F(y)| ≤ ε whenever x, y ∈ [−T,T ] and |x− y| ≤ δ. We choose a family of points
−T = y1 < y2 < · · · < yk = T , satisfying |y j − y j+1| = δ. Hence,

|F(y j) − Fn(y j)| < ε

for any n ≥ n1 due to the pointwise convergence to F. Now, for x ∈ (y j, y j+1), and using the monotonicity of Fn,

F(x) − Fn(x) ≤ F(x) − Fn(y j)
≤ |F(x) − F(y j)| + |F(y j) − Fn(y j)|
< 2ε.

F(x) − Fn(x) ≥ F(x) − Fn(y j+1)
= F(x) − F(y j+1) + F(y j+1) − Fn(y j+1)
> −2ε,

and thus |F(x) − Fn(x)| < 2ε for n ≥ max{n0, n1} and x ∈ [−T,T ].

For x > T , since |Fn(T ) − F(T )| < ε, we have F(T ) > 1 − 2ε, and the monotonicity of F, which is a distribution
function of some measure, implies that F(x) − F(T ) < 2ε. Hence,

|Fn(x) − F(x)| ≤ |Fn(x) − Fn(T )| + |Fn(T ) − F(T )| + |F(T ) − F(x)| < 4ε.

A similar inequality holds for x < −T , and the result is proved. �

2.2. Quasilinear eigenvalue problems
The p-Laplacian eigenvalue problem in bounded intervals was thoroughly studied in recent years. We will state

without proofs several results, see the book [12] for details.
Two key result which will be needed are the following ones:

Theorem 2.4. [Sturm’s comparison and oscillation theorem] Let σ(t) ≤ ρ(t) be two positive continuous functions,
and let u, v be solutions of the following problems:

−(|u′|p−2u′)′ = σ(t)|u|p−2u,
−(|v′|p−2v′)′ = ρ(t)|v|p−2v.

Then, between two zeros of a solution u, any solution v has at least one zero. Moreover, given two solutions u1, u2 of
the first equation, their zeros alternate.

Also, the eigenvalues of the following problems in [a, b]

−(|u′|p−2u′)′ = λσ(t)|u|p−2u, u(a) = u(b) = 0
−(|v′|p−2v′)′ = µρ(t)|v|p−2v, v(a) = v(b) = 0

satisfy µk(ρ) ≤ λk(σ) for any k ≥ 1,with strict inequalities if σ . ρ.

Theorem 2.5. [Domain monotonicity of the eigenvalues] Let a < b < c, and let ρ be a positive continuous function.
Then the eigenvalues of the following problems

−(|u′|p−2u′)′ = λρ(t)|u|p−2u, u(a) = u(b) = 0
−(|v′|p−2v′)′ = µρ(t)|v|p−2v, v(a) = v(c) = 0

satisfy µk ≤ λk for any k ≥ 1.
5
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When σ is a constant, the eigenvalues and eigenfunctions can be computed explicitly in terms of generalized
trigonometric functions. We call sinp(x) the solution of the initial value problem

−(|u′|p−2u′)′ = (p − 1)|u|p−2u, u(0) = 0, u′(0) = 1,

and let π̂p the first zero of sinp(t), given by

π̂p = 2
∫ 1

0

dt
p√1 − tp

.

Let us note that there are alternative definitions of sinp and πp, depending on the presence or not of the factor p − 1 in
the equation. It is convenient to introduce

πp =
p
√

p − 1π̂p,

and now we have following characterization of the spectrum:

Theorem 2.6. Let {λn}n≥1, {vn}n≥1 be the eigenvalues and eigenfunctions of

−(|v′|p−2v′)′ = λ|v|p−2v, v(a) = v(b) = 0.

Then

λn =

( πpn
b − a

)p
, vn(t) = sinp

(
π̂pnt
b − a

)
.

Moreover, the n−th. eigenvalue is simple, and the associated eigenfunction vn has n nodal domains, that is, vn has
n + 1 simple zeros in [a, b].

See, for instance, Del Pino, Drabek and Manasevich [10]. There exist similar formula for eigenvalues {νn}n≥0
corresponding to the Neumann boundary condition u′(a) = u′(b) = 0, and eigenvalues {ηn}n≥1 corresponding to the
mixed boundary condition u(a) = u′(b) = 0 or u′(a) = u(b) = 0, namely

νn =

(
πp(n − 1)

b − a

)p

, ηn =

(
πpn

2(b − a)

)p

.

On the other hand, there are no explicit expressions for weighted problems, and there are several bounds available,
see [31]. We state the main result for the weighted problem that we will need later:

Theorem 2.7. [Section §5 in [39], and Theorem 1.6 in [14]] Let σ ∈ L1([a, b]) be a positive function, and let {λn}n≥1,
{vn}n≥1 be the eigenvalues and eigenfunctions of

−(|v′|p−2v′)′ = λσ(t)|v|p−2u v(a) = v(b) = 0. (5)

Then the n−th. eigenvalue is simple, and the associated eigenfunction vn has n nodal domains, that is, vn has n + 1
simple zeros in [a, b]. Moreover, the asymptotic behavior of the eigenvalues is given by

λn =
π

p
pnp( ∫ b

a σ1/p(t)dt
)p + o(np) (6)

as n goes to infinity.

Finally, we will need the following bound which goes back to Nehari, Calogero and Cohn in the linear case p = 2:

Theorem 2.8. [Theorem 1.1 in [5]] Let σ ∈ L1([a, b]) be a non negative monotonic function, and let λ1 be the first
eigenvalue of

−(|u′|p−2u′)′ = λσ(t)|u|p−2u u(a) = u(b) = 0. (7)

Then
πp

2
≤ λ

1/p
1

∫ b

a
σ1/p(t)dt. (8)
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3. Tightness of the sequence of measures

The following upper bound of λn will be used in the proofs of Theorems 1.2 and 1.3.

Lemma 3.1. Let {λn}n≥1 be the sequence of eigenvalues of problem (1)-(2), with σ satisfying (H1)-(H3). Suppose
that un has a zero greater than t0 ∈ (0,∞). Then

λn ≤
π

p
pnp

tp
0σ(t0)

(9)

Proof. Let us consider the following eigenvalue problem,

−(|v′|p−2v′)′ = λ̂σ(t0)|v|p−2v t ∈ (0, t0)
v(0) = 0
v(t0) = 0,

(10)

the eigenvalues are given by λ̂n = π
p
pnp/σ(t0).

By the Sturm’s comparison theorem 2.4, since σ(t0) ≤ σ in [0, t0], and un has less than n zeros in [0, t0], we have

λn ≤ λ̂n =
π

p
pnp

tp
0σ(t0)

,

and the proof is finished. �

Proof of Theorem 1.2. Let ε > 0 be fixed. From (H3), we can choose T > 1 such that∫ ∞

T
σ1/p(t)dt < ε.

Let n0 such that un has at least two zeros greater than T if n ≥ n0. Let yn
1 < · · · < yn

k(n) be the zeros of un in [T,∞),
and let us find an upper bound for k(n).

Applying inequality (8) between two consecutive zeros, and using that the first eigenvalue between two zeros
coincides with λn, we get

k(n) − 1 ≤
2
πp

k(n)−1∑
j=1

λ
1/p
n

∫ yn
j+1

yn
j

σ1/p(t)dt

≤
2λ1/p

n

πp

∫ ∞

T
σ1/p(t)dt

≤
ε2λ1/p

n

πp
.

Using Theorem 2.5 and Lemma 3.1, we can bound λn ≤ λ̂n, the n-th. eigenvalue of problem (10) with x0 = 1, and
from the explicit formula for the eigenvalues in Theorem 2.6, we obtain

k(n) ≤
ε2λ̂1/p

n

πp
+ 1 ≤

ε2n
σ(1)1/p + 1.

Now,

µn([T,∞)) =
#{ j : xn

j ∈ [T,∞)}

n
=

k(n)
n
≤

2ε
σ(1)1/p +

1
n
,

and therefore the sequence {µn}n≥1 is tight. The theorem is proved. �

Remark 3.2. Observe that the monotonicity of σ is needed since the proof depends on Theorem 2.8. With little extra
effort, the proof can be extended for functions σ which are decreasing in [x0,∞)] for some x0. We only need to take
T > x0, and in the last step of the proof we can consider any interval [x0, x0 + δ] instead of [0, 1].
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4. Asymptotic behavior of Eigenvalues

Proof of Theorem 1.3. In order to prove that λn = π
p
pnp + o(np), it is enough to show that

lim
n→∞

λn

π
p
pnp

= 1. (11)

Let ε > 0 be fixed. As before, there exists T > 0 such that∫ ∞

T
σ1/p(t)dt < ε. (12)

Let us compare the eigenvalues of problem (1)-(2) with {λ̂n}n≥1, the eigenvalues of

−(|v′|p−2v′)′ = λ̂σ(t)|v|p−2v v(0) = v(T ) = 0, (13)

Let us recall that the eigenvalues satisfy

λ̂n =
π

p
pnp( ∫ T

0 σ1/p(t)dt
)p + o(np),

and we fix some n0 satisfying two conditions. We need first that the absolute value of the error term o(n) in the
previous formula is bounded above by εnp. The second condition will be imposed below.

We claim that λn ≤ λ̂n for any n ≥ 1. If not, from Sturm’s comparison theorem 2.4, un has at least n zeros in (0,T ),
but also un(0) = 0, and un has only n zeros, a contradiction. Hence,

λn ≤ λ̂n ≤
π

p
pnp

(1 − ε)p + εnp = π
p
pnp +

(1 − (1 − ε)p

(1 − ε)p + ε
)
np (14)

for n ≥ n0 due to (H3) and the bound (12). Let us call

Cε :=
1 − (1 − ε)p

(1 − ε)p + ε,

and observe that Cε = O(ε) as ε→ 0+.
In order to obtain a lower bound for λn, we estimate the number of zeros of un in [0,T ] and [T,∞). As in the proof

of Theorem 1.2 in Section §3, we call k(n) the number of zeros of un in (T,∞), and we have

k(n) ≤
ε2λ1/p

n

πp
+ 1 ≤ εn

2(πp
p + Cε)1/p

πp(1 − ε)
+ 1,

the last inequality due to the previous bound obtained in (14). For brevity, let us call

Dε :=
2(πp

p + Cε)1/p

πp(1 − ε)

and let us note that Dε → 2 as ε→ 0+.
Thus, un has at least n − k(n) ≥ n(1 − εDε) − 1 zeros in [0,T ], and let us define

m =

⌊
n(1 − εDε) − 1

⌋
− 1,

where bxc denotes the integer part of x. Here we impose the second condition on n0: we need m ≥ n0 in order to use
again the bound on the error term in the asymptotic formula of the eigenvalues.

Let vm the eigenfunction corresponding to λ̂m in problem (13). Comparing the number of zeros in [0,T ] of un and
vm, Sturm’s comparison theorem 2.4 implies

λ̂m ≤ λn.
8
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Using the asymptotic formula for λ̂m, and recalling (H3), we get

λn ≥ λ̂m ≥ π
p
pmp − εmp ≥ (πp

p − ε)
(
n(1 − εDε) − 3

)p
,

namely

λn ≥ π
p
pnp

(πp
p − ε

π
p
p

)(
1 − εDε −

3
n

)p
. (15)

Finally, from bounds (14) and (15), we get(πp
p − ε

π
p
p

)(
1 − εDε −

3
n

)p
≤

λn

π
p
pnp
≤ 1 + Cε,

and the desired limit (11) follows. The proof is finished �

5. The nodal inverse problem

We prove now that µn → µ, and we characterize the limit measure in terms of the weight σ.

Proof of Theorem 1.4. Let {Fn}n≥1 be the sequence of distribution functions associated to the measures {µn}n≥1. From
Helly’s selection theorem 2.2, there exists a converging subsequence {Fn j } j≥1 and also a limit function F. Observe
that Prokhorov’s theorem implies that there exists a probability measure µ = dF, and∫ ∞

0
f (x)dµn j →

∫ ∞

0
f (x)dµ,

for any f ∈ Cb(R), which in turns implies that µn([a, b])→ µ([a, b]).

Let us show that, for any x > 0, we have

lim
n→∞

Fn(x) =

∫ x

0
σ1/p(t)dt. (16)

Let us fix ε > 0. Now, being {µn}n≥1 a tight sequence, there exists T > 0 such that µn([0,T ]) > 1 − ε/2, and then
we have Fn(T ) > 1 − ε/2. Moreover, we can take T big enough such that, once again,∫ ∞

T
σ1/p(t)dt <

ε

2
. (17)

First, we consider x ≤ T . We subdivide the interval [0, x] in M subintervals of length h = x/M. The length h is
small enough in order to have

0 ≤ S 1/p
i − s1/p

i <
ε

4T
for 1 ≤ i ≤ M, where

si = inf{σ(t) : t ∈ [(i − 1)h, ih)},
S i = sup{σ(t) : t ∈ [(i − 1)h, ih)}.

Since σ is continuous, is Riemann integrable in [0,T ] and

M∑
i=1

hs1/p
i ≤

∫ x

0
σ1/p(t)dt ≤

M∑
i=1

hS 1/p
i . (18)

Moreover, we have chosen h in order to have

M∑
i=1

hS 1/p
i −

M∑
i=1

hs1/p
i <

M∑
i=1

εh
4T

<
ε

4
. (19)

9
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Let us approximate the measures µn in each interval. Let kn
i be the number of zeros of un in the intervals [(i−1)h, ih),

with 1 ≤ i ≤ M (we take the last one as closed, i.e., [(M − 1)h,Mh]). Hence,

1
n

M∑
i=1

kn
i = Fn(x).

We can estimate each kn
i by using the Sturm’s comparison theorem 2.4. Since si ≤ σ ≤ S i in [(i − 1)h, ih), comparing

with the explicit solution sinp(t) for constant coefficient problems we obtain

λ
1/p
n s1/p

i h
πp

− 1 ≤ kn
i ≤

λ
1/p
n S 1/p

i h
πp

+ 1.

Thus,
λ

1/p
n

nπp

M∑
i=1

s1/p
i h −

M
n
≤ Fn(x) ≤

λ
1/p
n

nπp

M∑
i=1

S 1/p
i h +

M
n
. (20)

Therefore, from inequalities (18), (19) and (20), we get

Fn(x) −
∫ x

0
σ1/p(t)dt ≤

λ
1/p
n

nπp

M∑
i=1

S 1/p
i h +

M
n
−

M∑
i=1

hs1/p
i

≤
λ

1/p
n

nπp

M∑
i=1

(
S 1/p

i h − hs1/p
i

)
+

M
n

+

(
λ

1/p
n

nπp
− 1

) M∑
i=1

s1/p
i h

≤
ελ

1/p
n

4nπp
+

M
n

+

∣∣∣∣∣∣λ1/p
n

nπp
− 1

∣∣∣∣∣∣
= O(ε),

for n big enough, from Theorem 1.3, and using that M is fixed.

A lower bound can be found in much the same way, and the limit (16) is proved for x ≤ T since ε is arbitrary.
Finally, for x > T and n big enough, we have∣∣∣∣Fn(x) −

∫ x

0
σ1/p(t)dt

∣∣∣∣ ≤ |Fn(x) − Fn(T )|+

+
∣∣∣∣Fn(T ) −

∫ T

0
σ1/p(t)dt

∣∣∣∣
+
∣∣∣∣ ∫ T

0
σ1/p(t)dt −

∫ x

0
σ1/p(t)dt

∣∣∣∣
<

ε

2
+ ε +

ε

2
,

and the theorem is proved. �

6. Uniqueness given any dense subset of nodes

The following Lemma shows that X is dense in the half-line.

Lemma 6.1. Let X be the nodal set of problem (1)-(2), with σ satisfying (H1)-(H3). Then X is dense in [0,∞).
10
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Proof. It is enough to show that (a, b) ∩ X , ∅ for any subinterval (a, b) ⊂ [0,∞).
Let us consider the Dirichlet eigenvalue problem

(|v′|p−2v′)′ = µσ(t)|v|p−2v, v(a) = v(b) = 0,

and let µ1 be the first eigenvalue.
Let λk be an eigenvalue of problem (1)-(2) greater that µ1. Thus, Theorem 2.4 implies that the associated eigen-

function uk has at least a zero in (a, b). The proof is finished.

We are ready to prove that any dense set of nodes characterize the weight.

Proof of Theorem 1.5. Let {Fn}n≥1, {Gn}n≥1 be the distribution functions of the measures {µn}n≥1, {µ̂n}n≥1 correspond-
ing to the zeros of problem (1)-(2) with weights σ and ρ respectively, both satisfying (H1)-(H3).

Let us assume that there are some dense subset of zeros S = {xn
j(n)} ⊂ X such that

Fn(xn
j(n)) = Gn(xn

j(n)).

.
We know from Theorem 1.4 and Lemma 2.3 that {Fn}n≥1 and {Gn}n≥1 converge uniformly to F and G, where

F(x) =

∫ x

0
σ1/p(t)dt, G(x) =

∫ x

0
ρ1/p(t)dt.

Let us fix some ε > 0. Let us recall that the uniform convergence implies that there exists some n0 such that, for
n ≥ n0, we have

‖Fn − F‖∞ + ‖Gn −G‖∞ < ε/2.

Moreover, from the proof of Lemma 2.3, we know that there exists some δ > 0 such that

|F(x) − F(y)| + |G(x) −G(y)| < ε/2

whenever |x − y| < δ.
Let x ∈ [0,∞), and we want to show that |F(x) −G(x)| < ε. Since S is dense, we can choose some zero yn

j(n) ∈ S
satisfying |x − yn

j(n)| < δ and n ≥ n0. Now,

|F(x) −G(x)| ≤ |F(x) − F(yn
j(n))| + |F(yn

j(n)) − Fn(yn
j(n))|

+|Fn(yn
j(n)) −Gn(yn

j(n))|

+|Gn(yn
j(n)) −G(yn

j(n))| + |G(yn
j(n)) −G(x)|

< ε
2 + ε

2 ,

and we obtain the desired bound.
Since ε is arbitrary, we have F(x) = G(x) for any x, and the continuity of the weights together with the Funda-

mental Theorem of Calculus implies σ = ρ. The proof is finished. �

Remark 6.2. The results obtained in [18, 19] for p = 2 in finite intervals require a dense set of twin nodes. The
previous proof can be easily extended to these problems assuming only that the weight σ is continuous at right, and
√
σ ∈ BV([0, 1]), combined with the results in [32].
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