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1. Introduction

In his classical work [23], Lyapunov proved that, given a continuous periodic and 
positive function w with period L, the solution u of the ordinary differential equation 
u′′ + w(t)u = 0, in (−∞, +∞), was stable if
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L

L∫
0

w(t)dt < 4.

Then, Borg in [4] introduced the Lyapunov inequality in his proof of the stability 
criteria for sign changing weights w. He showed that the inequality

4
L

≤
L∫

0

|w(t)|dt (1.1)

must be satisfied in order to have a nontrivial solution in [0, L] ⊂ R of the problem

{
u′′ + w(t)u = 0,
u(0) = 0 = u(L).

(1.2)

Since then, it was rediscovered and generalized many times. Inequality (1.1) was 
applied in stability problems, oscillation theory, a priori estimates, other inequalities, and 
eigenvalue bounds for ordinary differential equations. Different proofs of this inequality 
have appeared in the literature: the proof of Patula [28] by direct integration, or the one 
of Nehari [24] showing the relationship with Green’s functions, among several others. See 
the survey [5] for other proofs.

In the nonlinear setting, the following inequality

2p

Lp−1 ≤
L∫

0

w(t)dt (1.3)

generalized Lyapunov inequality (1.1) to p-Laplacian problems,

{
(|u′|p−2u′)′ + w(t)|u|p−2u = 0,
u(0) = 0 = u(L).

Here, w ∈ L1 and 1 < p < ∞, for p = 2 we recover the linear problem (1.2). Several 
proofs were given in the last years, see [21,27,29,33]; although it seems to be derived first 
by Elbert [14].

Later, we extended it in [10] to nonlinear operators in Orlicz spaces generalizing the 
p-Laplacian,

−(ϕ(u′))′ = λr(t)ϕ(u), (1.4)

where ϕ(s) is a convex nondecreasing function, such that sϕ(s) satisfies the Δ2 condi-
tion. Moreover, we also extend it to systems of resonant type (see [3]) involving p- and 
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q-Laplacians in [11]. We refer the interested reader to the book [30] for a review of recent 
developments in these problems.

Beside the one dimensional case, there are few works devoted to similar inequalities 
for partial differential equations. An exception are the works of Cañada, Montero and 
Villegas [6,7], where the following problem was considered,

{
Δu + w(x)u = 0, x ∈ Ω
∂u
∂η = 0, x ∈ ∂Ω (1.5)

and a nonexistence result was obtained for general domains. The authors gives some 
bounds involving the second Neumann eigenvalue μ2. However, it is well known that μ2
fails to reflect geometric properties of Ω, and can be made arbitrarily close to zero by 
adding a slight perturbation of the domain as in [8]. Also, some results of Egorov and 
Kondriatev, included in their book [13], contain Lyapunov type inequalities for higher 
order linear differential operators.

The aim of this work is to prove a Lyapunov inequality for N -dimensional (linear and 
quasilinear) elliptic operators with zero Dirichlet boundary conditions, reflecting more 
geometric information than the measure of the domain. Our toy model is the p-Laplace 
operator, and we consider here the following problem,

{
Δpu + w(x)|u|p−2u = 0, x ∈ Ω
u = 0, x ∈ ∂Ω.

(1.6)

As usual, we denote Δpu = div(|∇u|p−2∇u) for any 1 < p < +∞, and the weight w ∈ Ls

for some s depending on p and N . We include a short appendix with some facts about 
the eigenvalues of the p-Laplace operator that we will need later.

Let us fix the following notations that will be used below: let us call rΩ the inner 
radius of Ω,

rΩ = max
x∈Ω

dΩ(x)

where

dΩ(x) = d(x,Ωc) = inf
y∈∂Ω

|x− y|

is the distance from x ∈ Ω to the boundary.
Now, let us note that the length L of the interval in inequality (1.3) can be thought 

as the measure of the interval, but it can be understood also as twice the inner radius
of the interval, by rewriting the inequality as

2
(

2
L

)p−1

≤
L∫
q(t)dt.
0
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This is our main objective here: to derive some Lyapunov type inequalities involving the 
inner radius of the domain and norms of the weight w.

We divide the paper in two main parts, in the first we cover the case p > N , and 
we prove the existence of a Lyapunov inequality involving the L1 norm of the weight 
and the inner radius of the domain. We also consider singular problems, and we need to 
prove a Morrey’s theorem for Ap weights.

In the second one we analyze the case p < N , we show that there are Lyapunov type 
inequalities involving the Ls norm for s > N/p.

We do not consider here the case p = N . For p = N = 2, we mention two interesting 
results from Osserman [26]:

Theorem 1.1. (See Osserman, [26].) Given a domain Ω ∈ R
2 of connectivity k ≥ 2, the 

first Dirichlet eigenvalue of problem
{

−Δu = λu in Ω
u = 0 on ∂Ω

satisfy

λ1 ≥ 1
k2r2

Ω
.

Theorem 1.2. (See Osserman, [26].) Let Ω ∈ R
2, and Ωε the domain obtained by removing 

from Ω a finite number of disjoint disks of radius ε centered at a fixed set E of points 
in Ω. Then,

lim
ε→0

λ1(Ωε) = λ1(Ω).

Clearly, both results are enough to conclude that we cannot expect a general inequal-
ity involving the inner radius of the domain when p = N , although it would be very 
interesting to find a related inequality.

Finally, we show the optimality of the bounds, and we apply them to eigenvalue 
problems. We compare them with Sturmian and isoperimetric bounds. Also, we consider 
some related inequalities of Anane [1] and Cuesta [9], which involves the measure of the 
set Ω.

2. Statement of the results and organization of the paper

Let us state precisely our results in this section.
In Section 3, we consider the case p > N and we prove first:

Theorem 2.1. Let Ω ⊂ R
N be an open set, let w ∈ L1(Ω) be a non-negative weight, and 

let u ∈ W 1,p
0 (Ω) with p > N be a nontrivial solution of
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{
−Δpu = w(x)|u|p−2u in Ω

u = 0 on ∂Ω.

Then,

C

rp−N
Ω

≤ ‖w‖L1(Ω) (2.7)

where C is an universal constant depending only on p and N .

Let us note that the constant C is the same for any Ω ⊂ R
N , since it is related to the 

constant given by Morrey’s Theorem; we believe that it can be improved for particular 
domains. However, the power of the inner radius is optimal.

Then, we consider the following problem

−div(v(x)|∇u|p−2∇u) = w(x)|u|p−2u

where now v is a singular or degenerate weight, typically a power of the distance to 
the boundary or powers of |x| (as in Henon equations, and Caffarelli–Kohn–Nirenberg 
inequalities).

Here, the problem is more subtle since we need the density of continuous functions in 
the weighted Sobolev space

W 1,p
0 (RN , v, w) := {u ∈ L1

loc(RN ) : w1/pu ∈ Lp(RN ) and v1/p∇u ∈ [Lp(RN )]N}

where ∇u is a distributional gradient in the sense of Schwartz.
Following [20], this is true when v = w belong to the Muckenhoupt class Ap, that is, 

v is a nonnegative function in L1
loc(RN ), and there exists a constant cp,v such that

⎛
⎝∫

B

v(x)dx

⎞
⎠

⎛
⎝∫

B

v(x)−
1

p−1 dx

⎞
⎠

p−1

≤ cp,v|B| (2.8)

for every ball B ∈ R
N .

The same argument applies for different weights v, w in Ap, as we will show in 
Lemma 3.3 below. So, we will restrict ourselves to weights v, w ∈ At with t < p/N , 
and in this case we prove the following Lyapunov type inequality:

Theorem 2.2. Let Ω ⊂ R
N , and let v ∈ At(RN ), with t < p/N , and v ≥ 0. Let us define

g(rΩ) = sup
x∈Ω

∫
v−

1
t−1 (x)dx.
B(x,rΩ)
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Let u ∈ W 1,p
0 (Ω) be a nontrivial solution of

{
−div(v(x)|∇u|p−2∇u) = w(x)|u|p−2u in Ω

u = 0 on ∂Ω.

Then, we have the following Lyapunov-type inequality

1 ≤ C(p, t,N) rp−tN
Ω g(rΩ)t−1

∫
Ω

w(z)dz (2.9)

where the constant C(p, t, N) depends only on p, t, and N .

Theorem 2.2 is based on the fact that At ⊂ Ap whenever t < p. Briefly, we will bound 
u by the fractional integral (or Riesz potential) of its gradient, and after adding the 
corresponding power of the coefficient, we wish to use Holder’s inequality with exponents 
p in the gradient, and an exponent close to p′ in | · |1−N .

Remark 2.3. This theorem can be thought as a Morrey’s embedding with Ap weights. 
To our knowledge, no such result was proved before for the case p > N . For p < N , we 
refer the interested reader to the book of Turesson [32].

Although the terms in the Lyapunov inequality (2.9) seems difficult to compute, in 
certain interesting case are rather simple to compute. We choose as an example a coef-
ficient which is a power of the distance to the boundary, v(x) = dγΩ(x), and in this case 
we obtain a very clean bound,

1 ≤ C rp−N−γ
Ω

∫
Ω

w(z)dz,

where C depends only on N , p, and γ. Of course, γ is restricted by the At condition, let 
us recall that dγΩ(x) ∈ At for −1 < γ < t − 1, see [25].

For 1 < p < N , a similar inequality cannot hold for arbitrary domains, as we mention 
in the Introduction. Perhaps the easiest way to understand why is to remove a discrete 
set of points with zero capacity from a ball, and the first eigenvalue remains the same.

So, in Section 4, we prove the following weaker inequality:

Theorem 2.4. Let Ω ⊂ R
N be a smooth domain, Np < s, and w ∈ Ls(Ω). Let u ∈ W 1,p

0 (Ω)
be a nontrivial solution of

{
−Δpu = w(x)|u|p−2u in Ω

u = 0 on ∂Ω
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Then, we have the following Lyapunov inequality

C

r
sp−N

s

≤ ‖w‖Ls(Ω). (2.10)

The constant C depends on p, N , and the capacity of RN \ Ω.

The proof of this theorem is based on the Sobolev immersion with critical exponent 
and Hardy’s inequality, and for this reason the p-capacity of RN \ Ω appears on the 
constant. Although the constant is domain-dependent, for certain classes of sets we can 
give an uniform constant, i.e., for Lipschitz or convex domains, we have an explicit 
constant depending only on p and N (see the details below at the end of Section 4).

Remark 2.5. We do not consider singular problems when p < N . Similar results as in 
Section 3 can be obtained by combining the results in [32] with Hardy-type inequali-
ties involving Ap weights, see the book of Opic and Kufner [25], following the proof of 
Theorem 2.4.

Let us note that we have the following lower bounds for the first eigenvalue of the 
p-Laplacian with zero Dirichlet boundary conditions:

Corollary 2.6. Let λ1 be the first eigenvalue of

−Δpu = λw(x)|u|p−2u,

in Ω with zero Dirichlet boundary conditions in ∂Ω. Then,

• for p > N and w as in Theorem 2.1, we have

C

rp−N
Ω ‖w(x)‖1

≤ λ1,

• for p < N and w as in Theorem 2.4,

C

r
sp−N

s

Ω ‖w(x)‖s
≤ λ1.

This corollary follows directly from Theorems 2.1 and 2.4, by replacing w with λ1w.
In Section 5, we apply the bounds of Corollary 2.6 to eigenvalue problems.
First, we show that the powers of the inner radius appearing in Theorems 2.1 and 2.4

are optimal:
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Proposition 2.7. Let B(0, R) be the ball of radius R centered at the origin, and let

γ =

⎧⎨
⎩

p−N if p > N

sp−N

s
if p < N.

• Let R > 1. For any β < γ, and C fixed, there exists a non-negative weight w, and a 
solution uβ ∈ W 1,p

0 (B(0, R)) of

{
−Δpu = w(x)|u|p−2u in B(0, R)

u = 0 on ∂B(0, R)

such that the inequality

C

Rβ
≤ ‖w‖L1(B(0,R)

does not hold.
• Let R < 1. For any β > γ, and C fixed, there exists a non-negative weight w, and 

uβ ∈ W 1,p
0 (B(0, R)) a solution of

{
−Δpu = w(x)|u|p−2u in B(0, R)

u = 0 on ∂B(0, R)

such that the inequality

C

Rβ
≤ ‖w‖L1(B(0,R)

does not hold.

The result follows by computing a bound of the first eigenvalue of the p-Laplacian on 
a ball with a radial weight restricted to a small ball of radius ε for a suitable ε.

Finally, we compare the lower bounds for the first eigenvalue of the p-Laplacian in 
Corollary 2.6 with the ones obtained with other techniques.

A classical tool for problems without weights is the Faber–Krahn inequality,

λ1(B) ≤ λ1(Ω),

where B is the ball with Lebesgue measure |B| = |Ω|. Several proofs of this inequality for 
the p-Laplacian appeared in the literature, and they are based on the ideas of Talenti. 
Some improvements involving measures of the asymmetry of the domain Ω are known, 
see [2,17].
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For bounded weights, a Sturmian comparison argument combined with the variational 
characterization of the first eigenvalue (see equation (A.2) in the Appendix), enable us 
to replace w with the norm ‖w‖L∞ , obtaining now lower bounds for λ1.

For arbitrary weights, there are few inequalities involving their norms and the measure 
of the domain, namely the works of Anane [1] and Cuesta [9].

We show that for certain domains and weights, the bounds given by Lyapunov in-
equality are better.

We close the paper with a short Appendix where we include some basic facts about 
p-Laplacian eigenvalues.

3. Lyapunov’s inequality for p > N

Let us recall first Morrey inequality:

Theorem 3.1 (Morrey). If p > n, there exists a constant C(N, p) such that for all u ∈
W 1,p

0 (Ω),

|u(x) − u(y)| ≤ C(n, p) ‖∇u‖Lp |x− y|α

for all x, y ∈ Ω, and α = 1 − N
p .

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let u ∈ W 1,p
0 (Ω) be a nontrivial solution of

−Δpu = w(x)|u|p−2u

with Dirichlet boundary conditions. Multiplying by u and integrating by parts, we obtain∫
Ω

|∇u|p =
∫
Ω

w(x)|u|p.

Since p > N , u is continuous and let us choose c ∈ Ω a the point of Ω where |u(x)|
achieves its maximum. Then, for y = c and x ∈ ∂Ω we have that

|u(c)| ≤ C(N, p)

⎛
⎝∫

Ω

|∇u|pdx

⎞
⎠

1
p

|x− c|α.

By using that |x − c| ≤ rΩ, the inner radius of Ω, we get

|u(c)| ≤ C(N, p)

⎛
⎝∫

w(x)|u|p dx

⎞
⎠

1
p

rαΩ.
Ω
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Hence,

|u(c)| ≤ C(N, p)|u(c)|

⎛
⎝∫

Ω

w(x)dx

⎞
⎠

1
p

rαΩ

and canceling out |u(c)| we have the Lyapunov inequality

1
rαΩ

≤ C(N, p)

⎛
⎝∫

Ω

w(x)dx

⎞
⎠

1
p

,

with α = 1 − N
p .

The proof is finished. �
Remark 3.2. In particular, let λ1 be the first eigenvalue of

−Δpu = λw(x)|u|p−2u

in Ω with zero Dirichlet boundary conditions in ∂Ω. We have

C(N, p)−p

rp−N
Ω ‖w(x)‖1

≤ λ1, (3.11)

which gives the lower bound for λ1 in Corollary 2.6.

3.1. Singular and degenerate weights

The following lemma extend the results in [20] for different weights in the function 
and its distributional gradient:

Lemma 3.3. For v, w ∈ Ap, the space W 1,p
0 (RN , v, w) is the completion of C∞

0 (RN ) with 
the norm

‖ · ‖p,v,w := (‖∇ · ‖p[Lp(RN ,v)]N + ‖ · ‖p
Lp(RN ,w))

1/p.

Proof. The proof follows by taking u ∈ W 1,p
0 (RN , v, w) and regularizing it by convolution 

with a mollifier ηj . Now, from Lemma 1.5 in [20],

ηj ∗ u → u in Lp(RN , w)

∇(ηj ∗ u) = ηj ∗ ∇u → ∇u in [Lp(RN , v)]N

that is, ηj ∗ u → u in W 1,p
0 (RN , v, w). �
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We are ready to prove Theorem 2.2.

Proof. Thanks to Lemma 3.3, we can choose a smooth function u. Now, given x, y ∈ Ω̄, 
such that r = |x − y| ≤ rΩ, let us call A = B(x, r) ∩B(y, r). Hence,

|u(x) − u(y)| ≤ 1
|A|

∫
A

|u(x) − u(z)|dz + 1
|A|

∫
A

|u(y) − u(z)|dz

≤ C

∫
B(x,r)

|∇u(z)|
|x− z|N−1 dz + C

∫
B(y,r)

|∇u(z)|
|y − z|N−1 dz

= I1 + I2

where the constant C depends only on N , see for instance, Evans [15].
Let us bound now I1. We need to include the coefficient v appearing in the equation, 

and let us call B = B(x, r). By using Holder’s inequality:

I1 = C

∫
B

|∇u(z)|
|x− z|N−1 v

1
p v−

1
p dz

≤ C

⎛
⎝∫

B

v|∇u(z)|pdz

⎞
⎠

1
p
⎛
⎝∫

B

1
|x− z|q(N−1) dz

⎞
⎠

1
q
⎛
⎝∫

B

v−
s
p dz

⎞
⎠

1
s

where

1
p

+ 1
q

+ 1
s

= 1,

s = p

t− 1 .

Now, we have following bounds:
∫
B

v(z)|∇u(z)|pdz ≤
∫
Ω

w(z)|u(z)|pdz, (3.12)

∫
B

1
|x− z|q(N−1) dz ≤ crq−qN+N

Ω , (3.13)

∫
B

v−
s
p (z)dz ≤ g(rΩ). (3.14)

We have used that v is positive, and by integrating by parts the equation multiplied 
by u in Ω, we get the first inequality. The second one follows by integrating in polar 
coordinates in a bigger ball of radius rΩ, the constant c can be computed explicitly and 
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depends only on N , p and q. The last one was defined in this way in the hypotheses of 
the theorem.

The bound for I2 is almost identical, although we need first to impose some extra 
condition on u. Since we are working in W 1,p

0 , we can extend any function by zero 
outside Ω, and we can take a smooth function u supported in Ω. So, we can integrate 
only over B(y, r) ∩ Ω in the first inequality (3.12), and we get

|u(x) − u(y)| ≤ C r
1−N+N

q

Ω g(rΩ) 1
s

⎛
⎝∫

Ω

w(z)|u(z)|pdz

⎞
⎠

1
p

where C is a universal constant depending only on N , p and q.
We are able to choose yet the points x and y, and this is the last step of the proof. Let 

x be the point where |u| is maximized, and y one of the points in ∂Ω which minimizes 
|x − y|. So, u(y) = 0 and |x − y| < rΩ.

After bounding |u(z)| ≤ |u(x)| at the right hand side, and canceling out with the one 
in the left hand side, we get

1 ≤ C(p, t,N) rp−pN+ pN
q

Ω g(rΩ)
p
s

∫
Ω

w(z)dz.

Finally, let us observe that the relationship between Holder’s exponent implies that
p

q
= p− t,

p

s
= t− 1.

The proof is finished. �
Remark 3.4. Let us note that inequality (3.13) holds when q − qN + N > 0, and q ≥ p′

in Holder’s inequality. That is,

p

p− 1 < q <
N

N − 1

which makes sense because p > N > 1.
On the other hand, the bigger is q, the bigger is s. When q → N

N−1 , we have that 
s → pN

p−N , and the integral in inequality (3.14) is well defined when v ∈ At with

t < p/N.

As an application of Theorem 2.2 we have the following result for quasilinear problems 
involving the distance to the boundary.

Proposition 3.5. Let Ω ∈ R
N a bounded open set, p > N , and u ∈ W 1,p

0 (Ω, dγ , w) a 
nontrivial solution of

−div(dγΩ(x)|∇u|p−2∇u) = w(x)|u|p−2u
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in Ω with zero Dirichlet boundary conditions in ∂Ω, where dΩ(x) is the distance to the 
boundary. Then,

1 ≤ C rp−N−γ
Ω

∫
Ω

w(z)dz,

where C depends only on N , p, and γ.

In order to prove this proposition, we can repeat the previous proof, although only 
inequality (3.14) depends on dγΩ. So, we will improve this bound by integrating in 
B(x, dΩ(x)) instead of B(x, rΩ).

Proof. We divide the proof in two cases, depending on the sign of γ.
First, we consider γ < 0.
Given z ∈ Ω, we choose y ∈ ∂Ω with r = |x − y| = dΩ(x), clearly we have r ≤ rΩ. 

After a translation if necessary, we can suppose that y = 0, and we have dΩ(z) ≤ |z|. 
Then,

d
− sγ

p

Ω (z) ≤ |z|−
sγ
p .

Hence, we can estimate g(rΩ) by computing
∫

B(x,r)

d
− sγ

p

Ω (z) ≤
∫

B(x,r)

|z|−
sγ
p dz = rN− sγ

p

∫
B(x/r,1)

|η|−
sγ
p dη ≤ Cr

N− sγ
p

Ω ,

where in the last step we changed variables, η = z/r.
So, we can bound

∫
B(x,r)

d
− sγ

p

Ω (z) ≤ C r
N− sγ

p

Ω .

Let us consider now γ > 0.
Given z ∈ Ω and y ∈ ∂Ω with r = |x − y| = dΩ(x) ≤ rΩ as before, clearly we 

have r ≤ rΩ. After a translation if necessary, we can suppose that x = 0, and we have 
dΩ(z) ≥ d∂B(0,r)(z), the distance to the boundary of the ball.

Then, since γ > 0,

d
− sγ

p

Ω (z) ≤ d
− sγ

p

∂B(0,r)(z),

and ∫
d
− sγ

p

Ω (z) ≤
∫

(r − |z|)−
sγ
p dz
B(0,r) B(0,r)
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= cN

r∫
0

(r − ρ)−
sγ
p ρN−1dρ

= cNrN− sγ
p

1∫
0

(1 − ρ̂)−
sγ
p ρ̂N−1dρ̂

= C rN− sγ
p .

Again, we have the bound

∫
B(0,r)

d
− sγ

p

Ω (z) ≤ C r
N− sγ

p

Ω .

The last step is to replace this bound instead of the power of g(rΩ) in Lyapunov’s 
inequality given by Theorem 2.1. By using that p/s = t − 1, we have

1 ≤ C rp−N−γ
Ω

∫
Ω

w(z)dz

and the proof is finished. �
4. Lyapunov-type inequality for p < N

Let us prove now Theorem 2.4.

Proof. Let us define

q = αp + (1 − α)p∗,

where p∗ is the Sobolev conjugate exponent, and α ∈ (0, 1) which will be chosen later.
Then, we have

1
rαpΩ

∫
Ω

|u|q dx ≤
∫
Ω

|u|q
d(x)αp dx,

where d(x) is the distance from x to the boundary. Now, Holder’s inequality with expo-
nents 1/α and (1/α)′ = 1/(α− 1) gives

∫ |u|αp|u|(1−α)p∗

d(x)αp dx ≤

⎛
⎝∫ |u|p

d(x)p dx

⎞
⎠

α ⎛
⎝∫

|u|p∗
dx

⎞
⎠

1−α

. (4.15)

Ω Ω Ω
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Let us recall Hardy and Sobolev inequalities,∫
Ω

|u|p
d(x)p dx ≤ Ch

∫
Ω

|∇u|p dx,

∫
Ω

|u|p∗
dx ≤ Cs

⎛
⎝∫

Ω

|∇u|p dx

⎞
⎠

p∗/p

and by using them in equation (4.15), we get

⎛
⎝∫

Ω

|u|p
d(x)p dx

⎞
⎠

α ⎛
⎝∫

Ω

|u|p∗
dx

⎞
⎠

1−α

≤ Chs

⎛
⎝∫

Ω

|∇u|p dx

⎞
⎠

α+(1−α)p∗/p

where Chs is a constant depending only on Ch and Cs, the constants involved in Hardy 
and Sobolev inequalities.

Hence, by using the weak formulation for equation −Δpu = w(x)|u|p−2u, and applying 
again Holder’s inequality with exponents s and s′ we obtain

⎛
⎝∫

Ω

|∇u|p dx

⎞
⎠

αp+(1−α)p∗
p

=

⎛
⎝∫

Ω

w(x)|u|p dx

⎞
⎠

αp+(1−α)p∗
p

≤

⎛
⎝∫

Ω

w(x)s
⎞
⎠

αp+(1−α)p∗
ps

⎛
⎝∫

Ω

|u|ps′ dx

⎞
⎠

αp+(1−α)p∗
ps′

.

We choose now α such that ps′ = q. Let us observe that

αp + (1 − α)p∗

ps′
= 1,

αp + (1 − α)p∗

ps
= s′

s
,

and

α = p∗ − ps′

p∗ − p
.

Finally, we get

1
rαpΩ

∫
Ω

|u|q dx ≤ ‖w‖s′Ls

∫
Ω

|u|q dx,

and the theorem is proved. �
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Remark 4.1. A tedious computation shows that

αp

s′
= p

s′
p∗ − ps′

p∗ − p
= sp−N

s
.

Since s > N/p, the exponent is positive.

Remark 4.2. The constant C depends on the constant H appearing on the Hardy in-
equality. When Ω is convex, we have H =

(
p

N−p

)p

; for other domains, the constant 
depends on the capacity of RN \ Ω; for Lipschitz domains the constant is close to 1/2, 
see [19,22] for details.

Remark 4.3. In particular, let λ1 be the first eigenvalue of

−Δpu = λw(x)|u|p−2u

in Ω with zero Dirichlet boundary conditions in ∂Ω. We have

C

r
sp−N

s

Ω ‖w(x)‖s
≤ λ1, (4.16)

which gives the lower bound for λ1 in Corollary 2.6.

5. Some applications to eigenvalue problems

We close the paper with a discussion about the optimality of the lower bounds and 
its application to eigenvalue problems. We show that in certain cases the new bounds 
are better than the known ones.

5.1. Optimality of the bounds

Let us show the optimality of the power of the inner radius appearing in the inequality.

Proof of Proposition 2.7. For brevity, we will consider only the case p > N , R > 1 since 
the remaining ones follow exactly in the same way.

Fix R > 1, and let us show that the bound (3.11) from Remark 3.2 cannot hold for 
some power β < p −N and

w(r) = χ[0,ε](r)r1−N ,

where χ[0,ε](r) is the characteristic function of [0, ε].
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Clearly, ‖w‖1 = ωN−1ε, where ωN−1 is the surface measure of the unit ball, since

∫
B(0,R)

χ[0,ε](|x|)|x|1−Ndx =
∫

ωN−1

ε∫
0

r1−NrN−1drdθ.

Let λ(R)
1 and λ(ε)

1 be the first eigenvalues of the p-Laplacian problem

−Δpu = λw(x)|u|p−2u

with Dirichlet boundary conditions in B(0, R) and B(0, ε) respectively. We have λ(R)
1 <

λ
(ε)
1 , since extending the functions by zero, we have W 1,p

0 (B(0, ε)) ⊂ W 1,p
0 (B(0, R)), and 

the inequality follows by using the variational characterization,

λ
(R)
1 = inf

{u∈W 1,p
0 (B(0,R)):u �≡0}

∫
B(0,R) |∇u|pdx∫

B(0,R) χ[0,ε](|x|)|x|1−Ndx

λ
(ε)
1 = inf

{u∈W 1,p
0 (B(0,ε)):u �≡0}

∫
B(0,ε) |∇u|pdx∫
B(0,ε) |x|1−Ndx

.

Since the first eigenfunction in a ball is radial,

λ
(R)
1 ≤ λ

(ε)
1 = inf

{u∈W 1,p(0,ε):u(ε)=0,u �≡0}}

∫ ε

0 rN−1|u′|pdr∫ ε

0 |u|pdr

≤ εN−1π
p
p

εp
.

Then,

C

Rβ
≤ λ1ωN−1ε.

Let ε = Rα, and if we can choose α < 1 such that β − α(p − N) < 0, we reach a 
contradiction:

Rα(p−N) ≤ cRβ .

However, this is equivalent to find α satisfying

0 <
β

p−N
< α < 1,

and we can find it if
β

p−N
< 1,

which holds exactly when β < p −N . �



2012 P.L. de Nápoli, J.P. Pinasco / Journal of Functional Analysis 270 (2016) 1995–2018
Remark 5.1. Clearly, β > γ is of no interest when the inner radius is greater than 1, 
since we get a worse bound instead of an improvement. Similar observations hold for the 
remaining cases.

5.2. Comparison with other estimates

Let us consider the following eigenvalue problem:
{

−Δpu = λw(x)|u|p−2u, x ∈ Ω
u = 0, x ∈ ∂Ω

(5.17)

There are few ways to obtain lower bounds for the eigenvalues of the p-Laplacian. 
In the constant coefficient case, we can use symmetrization and then compare with the 
first eigenvalue of a ball with the same measure as Ω, since the Faber–Krahn inequality 
implies

λ1(B) ≤ λ1(Ω).

For weighted problems, a Sturmian-type comparison theorem is available, that is, if 
w1(x) ≤ w2(x), then

λk(w2) ≤ λk(w1),

since the eigenvalues are computed with the Rayleigh quotient. Also, Anane and Cuesta 
obtained some inequalities that we will review below.

In the rest of the section we compare those bounds with the one obtained from Corol-
lary 2.6 when p > N and, N = 2. Similar results hold for p < N , and higher dimensions.

Faber–Krahn. In order to compare Faber–Krahn inequality and Lyapunov inequality 
(2.7), we can expect that the former will be worse in thin domains. So, let us take the 
following family of domains in R2

ΩR = {(x, y) ∈ R
2 : 0 ≤ x ≤ R, 0 ≤ y ≤ 1/R}

with 0 < R ≤ 1.
Since |ΩR| = 1, Faber–Krahn gives a fixed lower bound for any ΩR. However, Lya-

punov inequality (with w ≡ 1) implies

C(2, p)−p

rp−2
ΩR

‖w(x)‖1
≤ C(2, p)−p

(R/2)p−2 = C

Rp−2 ≤ λ1.

Now, from equations (A.3), when R → 0,

λ̂1 =
πp
p

p
+ πp

pR
p = O

(
πp
p

p

)
,

R R
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and by using (A.6) from Appendix,

λ1 = O

(
πp
p

Rp

)
.

Lyapunov inequality is better for R small, although it is not optimal in this family of 
sets.

Faber–Krahn inequality can be improved as in [2,17]. Following Fusco, Maggi and 
Pratelli,

λ1(Ω) ≥ λ1(B)
{

1 + A(Ω)2+p

C(N, p)

}
,

where C(N, p) is a fixed constant, and A(E) is the Fraenkel asymmetry of a set E with 
finite measure,

A(E) := inf
{
|EΔ(x0 + rB(0, 1))|

|E| : x0 ∈ R
N , rN |B(0, 1)| = |E|

}
.

Since A is bounded above by 2, the maximum constant that can be involved in the lower 
bound is independent of R for the previous family of sets.

Sturm type bounds. Intuitively, this kind of bounds can be improved because by 
adding a highly concentrated spike with very low mass in a given weight we can change 
slightly the eigenvalue, and the supremum norm of the weight can be made arbitrarily 
big. The proof follows easily by using the eigenfunction of the unperturbed weight as a 
test function.

However, the improvement can be better, even for domains with an inner radius of the 
same order than the diameter of the domain. Suppose that 0 ≤ w ≤ M , Ω = [0, R] ×[0, R], 
and R  1, with 

∫
Ω w(x) = 1. The variational characterization of the first eigenvalue, 

together with (A.3) and (A.6) implies

2πp
p

MRp
≤ λ1.

Now, Lyapunov inequality gives the bound

C

Rp−2 ≤ λ1.

Let us observe that the difference between them not depend only on M , but on a factor 
MR2. Indeed, we always have

Rp−2
∫

wdx ≤ RpM.
Ω
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Bounds involving norms of the weights. For arbitrary weights, there are few estimates 
involving their norms and the measure of the domain.

First, Anane obtained in [1] the following estimate:

C

|Ω|σ||w||∞
≤ λ,

where

σ = p/N if 1 < p ≤ N,

σ = 1/2 if N < p.

Also, Cuesta proved in [9] the following inequality:

C

|Ω| sp−N
sN ||w||s

≤ λ,

where

s > N/p if 1 < p ≤ N,

s = 1 if N < p.

Clearly, they are Lyapunov type inequalities, involving the measure of the domain instead 
of the inner radius. Those inequalities were widely used to show that the first eigenvalue 
is isolated, since any other eigenfunction has at least two nodal domains, and one of 
them must shrink, but the inequality implies that the first eigenvalue of the shrinking 
domain cannot converge to the first eigenvalue of the full domain.

Let us observe that

|Ω|1/N ≥ CrΩ

with equality only when Ω is a ball, so Corollary 2.6 gives better bounds, except in 
Anane’s bound for p > N , which is better when w � cte, |Ω| � rNΩ , and the measure of 
Ω is small enough.
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Appendix A. Eigenvalues of the p-Laplacian

We say that a function u is an eigenfunction of problem

{
−Δpu = λw(x)|u|p−2u, x ∈ Ω
u = 0, x ∈ ∂Ω

(A.1)

corresponding to the eigenvalue λ if

∫
Ω

|∇u|p−2∇u∇ϕ dx = λ

∫
Ω

w(x)|u|p−2uϕdx

for any test-function ϕ ∈ W 1,p
0 (Ω). The existence of infinitely many eigenvalues was 

proved by Garcia Azorero and Peral Alonso in [18] by using the critical point theory 
of Ljusternik–Schnirelmann, and the variational characterization given by the Rayleigh 
quotient,

λk = inf
C∈Ck

sup
u∈C

∫
Ω |∇u|p dx∫

Ω w(x)|u|pdx, (A.2)

where Ck is the class of compact symmetric (C = −C) subsets of W 1,p
0 (Ω) of Krasnoselskii 

genus greater or equal that k, see [31] for details.
It is well known that the first eigenfunction is positive and simple, see for in-

stance [1]. Indeed, this result holds for more general operators, including the so-called 
pseudo-p-Laplacian operator,

−Δ̂pv := −
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂v∂xi

∣∣∣∣
p−2

∂v

∂xi

)
,

and the proof is exactly the same, the simplicity follows by a Picone type identity, and 
the positivity by considering |u1| as a test function, where u1 is the first eigenfunction.

We will use the pseudo-p-Laplacian in order to control the eigenvalues of the 
p-Laplacian. The equivalence of norms in RN , |x|q ≤ Cp,q|x|p enable us to compare 
the first eigenvalue of each problem, since both can be defined

λ̂1 = inf
u∈B

‖|∇u|p‖pp; λ1 = inf
u∈B

‖|∇u|2‖pp,

where

B = {u ∈ W 1,p
0 (Ω) :

∫
w(x)|u|p dx}
Ω
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Clearly,

λ̂1 ≤ λ1 ≤ N (p−2)/2λ̂1 if 2 < p,

N (p−2)/2λ̂1 ≤ λ1 ≤ λ̂1 if p < 2. (A.3)

The first eigenvalue of the one dimensional problem with w ≡ 1
{

−(|u′|p−2u′)′ = λ|u|p−2u in (0, L)
u(0) = u(L) = 0

(A.4)

can be computed explicitly with the help of the function sinp(x), defined implicitly as

x =
sinp(x)∫

0

( p− 1
1 − tp

)1/p
dt,

and its first zero πp

πp = 2
1∫

0

( p− 1
1 − tp

)1/p
dt.

We have

λ1 =
πp
p

LP
.

Also, for the mixed boundary condition u′(0) = u(L) = 0, the first eigenvalue is given 
by

λ1 =
2pπp

p

LP
.

We refer the interested reader to the work of Del Pino, Drabek and Manasevich, [12] for 
more details about the one dimensional case.

Finally, for w ≡ 1 the first eigenvalue λ̂1 and the corresponding eigenfunction û1
of the pseudo-p-Laplacian in a cube Q = [0, L]N ⊂ R

N can be computed explicitly. 
Following [16], we have

λ̂1 =
πp
pN

Lp
, û1(x) =

N∏
j=1

sinp

(πpxj

L

)
, (A.5)

which combined with inequalities (A.3) gives upper and lower bounds for the first eigen-
value of the p-Laplacian in Q with w(x) ≡ 1.
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A similar computation gives, for Ω =
∏N

j=1[0, Li],

λ̂1 =
N∑
j=1

πp
p

Lp
j

, û1(x) =
N∏
j=1

sinp

(
πpxj

Lj

)
(A.6)
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