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We consider smoothness properties of the generator of a principal Gabor space on 
the real line which is invariant under some additional translation–modulation pair. 
We prove that if a Gabor system on a lattice with rational density is a Riesz basis 
for its closed linear span, and if the closed linear span, a Gabor space, has any 
additional translation–modulation invariance, then its generator cannot decay well 
in time and in frequency simultaneously.
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1. Introduction

The Balian–Low Theorem, a key result in time–frequency analysis, expresses the fact that time–frequency 
concentration and non-redundancy are essentially incompatible. Specifically, if ϕ ∈ L2(R), Λ ⊂ Rd is a lattice 
and the system (ϕ, Λ) = {e2πiηxϕ(x − u) : (u, η) ∈ Λ} is a Riesz basis for L2(R), then ϕ satisfies

(∫
(x− a)2|ϕ(x)|2 dx

)
·
(∫

(ω − b)2|ϕ̂(ω)|2 dω
)

= ∞, a, b ∈ R. (1)
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This theorem was originally stated independently by Balian [6] and Low [23] for orthogonal systems, but 
both of their proofs contained a gap, which was later filled by Coifman et al. [11] who also generalized it 
to Riesz bases. For general references on the Balian–Low Theorem we refer the reader to [8,19]. In [8], the 
authors also state and prove the so called Amalgam Balian–Low Theorem, which states that if (ϕ, αZ ×βZ) is 
a Riesz basis for L2(R), then ϕ cannot belong to the Feichtinger algebra S0(R), a class of functions decaying 
well in time and frequency. For a definition of S0(R) see (2) below. Note that the Amalgam Balian–Low
Theorem is seemingly weaker than the Balian–Low Theorem, but is not implied by it.

We define the unitary operators, translation Tu : L2(R) −→ L2(R), Tuf(x) = f(x − u), modulation Mη :
L2(R) −→ L2(R), Mηf(x) = e2πiηxf(x), and time–frequency shift π(u, η) = MηTu, where u ∈ R and η ∈ R̂, 
the dual group of R which is isomorphic to R. For ϕ ∈ L2(R) and a lattice Λ = RZ2 ⊂ R × R̂, R ∈ R2×2, 
with density | detR |−1 if R is full rank and density 0 else, we define Gabor systems as (ϕ, Λ) = {π(λ)ϕ}λ∈Λ

and Gabor spaces as G(ϕ, Λ) = span{π(λ)ϕ}, where V denotes the closure of V in L2(R). For background 
on Gabor systems we refer to the monograph [18].

This paper addresses the question whether there may exist a μ ∈ R × R̂ \ Λ with π(μ)ϕ ∈ G(ϕ, Λ). 
Equivalently, for Λ′ being a subgroup of R × R̂ containing Λ, under which conditions on ϕ is it possible that 
G(ϕ, Λ) = G(ϕ, Λ′)?

The case that μ, Λ ⊆ R ×{0} is discussed at length in terms of shift-invariant spaces in the literature, see 
for example [1–5]. Since the Fourier transform is unitary, analogous results are implied for μ, Λ ∈ {0} × R̂. 
As we shall see in Remark 6 in Example 1, the case μ ∈ R × {0} and π(μ)ϕ ∈ G(ϕ, αZ × βZ) does not 
necessitate that π(μ)ϕ is in the shift-invariant space G(ϕ, αZ × {0}), so even the case with μ ∈ R × {0} is 
not covered in the literature.

On the other hand, the existing Balian Low type results for shift-invariant spaces only apply to principal
shift-invariant spaces, that is, spaces that can be generated by just one generator. Even though Gabor 
spaces are particular cases of shift-invariant spaces, except for the case Λ = αZ ×{0}, they are not principal 
shift-invariant spaces, so those results do not apply in the setting considered here.

To state our result, we recall that the Feichtinger algebra S0(R) is defined by

S0(R) =
{
f ∈ L2(R) : V f(t, ν) =

∫
f(x)e−(x−t)2e2πixν dx ∈ L1(t, ν)

}
. (2)

Note that V f(t, ν) ∈ L2(t, ν) ∩L∞(t, ν) for all f ∈ L2(R) and the requirement V f(t, ν) ∈ L1(t, ν) essentially 
necessitates L1 decay of f and of its Fourier transform f̂ . For details on the Feichtinger algebra see [13,15,18].

We establish the following theorem.

Theorem 1. If (ϕ, Λ) is a Riesz basis for its closed linear span G(ϕ, Λ) with ϕ ∈ S0(R) and the density of 
the lattice Λ is rational, then π(u, η)ϕ /∈ G(ϕ, Λ) for all (u, η) /∈ Λ.

In the case Λ = αZ × βZ, then the condition ϕ ∈ S0(R) can be replaced with the weaker condition that 
Zαϕ(x, ω) =

∑
n∈Z

f(x + nα)e−2πiωnα is continuous on R × R̂.

Theorem 1 generalizes the Amalgam Balian–Low Theorem stated above. Indeed, (ϕ, Λ) being a Riesz 
basis for L2(R) implies that the density of Λ equals 1, that is, (αβ)−1 = 1 ∈ Q in case Λ = αZ × βZ, 
and G(ϕ, Λ) = L2(R) implies that π(u, η)ϕ ∈ G(ϕ, Λ) for all (u, η) ∈ R × R̂, so Theorem 1 implies that 
ϕ /∈ S0(R).

Remark 2. The question of whether the condition ϕ ∈ S0(R) in Theorem 1 can be replaced with having 
a finite uncertainty product (1) is left for further exploration. Similarly, we do not discuss the case of Λ
having irrational density in this paper.
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To generalize our proof of Theorem 1 to a higher dimensional setting, that is, ϕ ∈ L2(Rd) and Λ ⊂ R2d, 
requires a restriction to Λ being a so-called symplectic lattices in order to use intertwining operators to 
reduce the general problem to lattices of the form α1Z × . . .× αdZ × β1Z × . . .× β1Z [18].

Our investigation is motivated in part by the following. In orthogonal frequency division multiplexing, 
short, OFDM, information in form of a coefficient sequence {ck,�}k∈Z,�∈I is transmitted through a channel 
using the signal

F{ck,�} =
∑
k∈Z

∑
�∈I

ck,�TkαM�βϕ.

The index set I depends on the for transmission available frequency band and is therefore finite in most 
OFDM applications. For F to be boundedly invertible, ϕ is chosen so that (ϕ, αZ × βZ) is a Riesz basis for 
its closed linear span. Moreover, to utilize a communications channel efficiently, it is beneficial to choose ϕ
with good decay in time and in frequency, that is, ϕ ∈ S0(R), or better, ϕ is a Schwartz class function.

Theorem 1 then implies that under these conditions, π(u, η)ϕ /∈ G(ϕ, αZ ×βZ) whenever (u, η) /∈ αZ ×βZ. 
Unfortunately, distortions that the signal undergoes are time-shifts (delays of the signal) in case of time-
invariant channels, or time–frequency shifts in case of mobile, time-varying communications channels. 
Theorem 1 shows that we cannot choose ϕ ∈ S0(R) so that the transmission space G(ϕ, αZ × βZ) is 
invariant under perturbations π(u, η) for (u, η) /∈ αZ × βZ.

In some cases, the leakage out of G(ϕ, αZ ×βZ) can be used to identify an unknown channel operator H, 
in particular, if H is well approximated by a single time–frequency shift π(u, η) [21,24,25]. Unfortunately, 
π(u, η)ϕ /∈ G(ϕ, Λ) for all (u, η) /∈ Λ and (ϕ, Λ) is a Riesz sequence for G(ϕ, Λ) does not imply that there 
is no f ∈ G(ϕ, Λ) with π(u, η)f ∈ G(ϕ, Λ), so a receiver would not be able to know whether π(u, η)f
was transmitted through the identity operator, or f was transmitted and then perturbed by the operator 
π(u, η).1

Related work Aldroubi, Sun and Wang showed that if a principal shift-invariant space on the real line is also 
translation-invariant, that is, invariant under every translation operator, then any of its Riesz generators are 
non-integrable. Moreover, if the generator of the shift-invariant space is also invariant under the translate 
by 1

n , n ∈ N \ {1}, then 
∫
|x|1+ε|ϕ(x)|2 dx = ∞ for all ε > 0 [5].

Gabardo and Han showed that if Λ = αZ ×βZ has integer density (αβ)−1 ≥ 2 and G(ϕ, αZ ×βZ) 	= L2(R), 
then (1) holds. In the reciprocal case, they show that if αβ ∈ N \{1} and (ϕ, αZ ×βZ) is not a Riesz system 
for its closed linear span, then again (1) holds. Note that both cases do not represent the generic case [16].

Gröchenig, Han, Heil, and Kutyniok show that if (ϕ, Λ) and (ϕ̃, Λ) are biorthogonal Riesz basis for 
G(g, Λ), then (1) holds for either ϕ or ϕ̃ [17].

For general Balian Low type results, we refer the reader to [7–10,12,14,20].

Organization of the paper In Section 2 we discuss our main tool, the Zak transform. We then proceed to 
prove Theorem 1 in Section 3; and in Section 4 we construct functions that generate Gabor spaces containing 
additional shifts of the generator.

2. The Zak transform

The analysis offered below is based on the Zak transform which is densely defined on L2(R) by

1 For example, if g is a Gaussian, we have (g, Z × 3
2Z) is a Riesz basis for G(g, Z × 3

2Z) since the density of Z × 3
2Z is 2

3 < 1, see 
[19] and references therein. It is then not difficult to construct f �= 0 such that f, π( 1

2 , 0)f ∈ G(g, Z × 3
2Z).
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Zαf(x, ω) =
∑
k∈Z

f(x + αk) e−2πiαkω, (x, ω) ∈ R× R̂,

where α > 0. We write Zf(x, ω) = Z1f(x, ω).
It is easily observed that

Zf(x + n, ω) = e2πinωZf(x, ω), Zf(x, ω + m) = Zf(x, ω),

in short, Zf is quasiperiodic. Not only does Zf on [0, 1] × [0, 1] fully describe f , but we have 
‖Zf‖L2([0,1]×[0,1]) = ‖f‖L2(R), that is, Z is a unitary map onto the space of quasiperiodic functions on 
R × R̂ where the latter is equipped with the L2([0, 1] × [0, 1]) norm.

We shall utilize the fact that with π(u, η) = MηTu we have(
Zπ(u, η)f

)
(x, ω) =

∑
k∈Z

(
π(u, η)f

)
(x + k) e−2πikω

=
∑
k∈Z

e2πi(x+k)ηf(x + k − u) e−2πikω

= e2πixη
∑
k∈Z

f(x− u + k) e−2πik(ω−η)

= e2πiηxZf(x− u, ω − η).

In particular, we have for k, � ∈ Z that(
Zπ(k, �)f

)
(x, ω) = e2πi�xZf(x− k, ω − �) = e2πi(�x+kω)Zf(x, ω),

where we used the quasiperiodicity of the Zak transform.
Note that S0(R) is invariant under the Fourier transform, so ϕ ∈ S0(R) if and only if ϕ̂ ∈ S0(R). The 

key property of S0(R) that we use is that ϕ ∈ S0(R) implies Zϕ continuous. Indeed, if ϕ is in the Wiener 
Amalgam space

W (C(R), l1(Z)) = {f ∈ L2(R) continuous with
∑
k∈Z

‖f‖L∞([k,k+1]) < ∞} ⊃ S0(R),

then the sum defining the Zak transform converges uniformly, so the given continuity of ϕ ∈ S0(R) implies 
continuity of its Zak transform. Note that ϕ ∈ W (C(R), l1(Z)) is not necessary for the Zak transform to be 
continuous. In Theorem 1 we therefore offer the two conditions ϕ ∈ S0(R) and, if Λ = αZ ×βZ, more gener-
ally, the scaled Zak transform Zαϕ, that is, the Zak transform adjusted to the lattice αZ ×βZ, is continuous.

3. Proof of Theorem 1

The proof is by contradiction. Let Λ ∈ R × R̂ be a discrete subgroup of rational density. Assume there 
exists ϕ ∈ S0(R), such that (ϕ, Λ) is a Riesz basis for its closed linear span G(ϕ, Λ), and assume further 
that there is an element (u, η) ∈ R × R̂ \ Λ with π(u, η)ϕ ∈ G(ϕ, Λ).

Step 1. Without loss of generality Λ = 1
QZ × PZ with P, Q ∈ N Clearly, any generic full rank lattice Λ

of density P
Q can be written as Λ = A( 1

QZ × PZ) with A ∈ R2×2, detA = 1. Since any A ∈ R2×2 with 
detA = 1 is element of the symplectic group, there exists a so-called metaplectic operator U = U(A) with 
U∗π(mQ , nP )U = π(A(mQ , nP )T ) [18]. The metaplectic operator U is unitary, hence, (ϕ, Λ) is a Riesz basis 
for its closed linear span G(ϕ, Λ) if and only if (Uϕ, 1QZ × PZ) is a Riesz basis for its closed linear span 
G(Uϕ, 1 Z × PZ). Moreover, π(u, η)ϕ ∈ G(ϕ, Λ) implies for some sequence {cλ} ∈ �2(Λ)
Q



C. Cabrelli et al. / Appl. Comput. Harmon. Anal. 41 (2016) 677–691 681
U∗π(A−1(u, η)T )Uϕ = π(AA−1(u, η)T )ϕ = π(u, η)ϕ =
∑
λ∈Λ

cλπ(λ)ϕ

=
∑

m,n∈Z

cm,nπ(A(mQ , nP )T )ϕ =
∑

m,n∈Z

cm,nU
∗π(mQ , nP )Uϕ.

We summarize that with (ũ, ̃v) = A−1(u, η)T /∈ 1
QZ × PZ since (u, η) /∈ Λ, and ϕ̃ = Uϕ ∈ S0(R) by 

invariance of S0(R) under metaplectic operators [18], we have π(ũ, ̃η)ϕ̃ ∈ G(ϕ̃, 1QZ × PZ).
If density Λ = 0, then we can increase Λ to a full rank lattice, maintaining the property that (ϕ, Λ) is a 

Riesz sequence for its closed linear span. The argument above is then applicable.

Step 2. Without loss of generality, we can choose u and η to be rational Clearly, this is equivalent to the 
existence of R ∈ N with R · (u, η) ∈ 1

QZ × PZ.
We proceed by showing that if there exists (u, η) ∈ R × R̂ with π(u, η)ϕ ∈ G(ϕ, 1QZ × PZ), then exists 

also a rational pair (ũ, ̃η) ∈ R × R̂ with π(ũ, ̃η)ϕ ∈ G(ϕ, 1QZ × PZ).
First, observe that π(u, η)ϕ ∈ G(ϕ, 1QZ ×PZ) implies that G(ϕ, 1QZ ×PZ) is invariant under both, π(u, η)

and π(mQ , nP ), m, n ∈ Z, and therefore, G(ϕ, 1QZ × PZ) is invariant under π(λ) where λ is in the group Λ̃
generated by (u, η) and 1

QZ × PZ. Moreover, we have π(λ)ϕ ∈ G(ϕ, Λ) for all λ ∈ closure Λ̃ ⊆ R × R̂.
If, u is irrational, then closure Λ̃ contains R × {η} and we can replace (u, η) /∈ 1

QZ × PZ by (ũ, η) ∈
closure Λ̃ \ 1

QZ × PZ with ũ ∈ Q. With the same argument, we are able to replace an irrational η with a 
rational number η̃ /∈ PZ.

Step 3. The case Q = 1 Choose R ∈ N with (Ru, Rη) ∈ Z ×PZ. Set M2 = Ru and M1 = Rη, by increasing 
R we can assume that M2η/2 is an integer and P divides M1.

We have π(u, η)ϕ ∈ G(ϕ, Z × PZ) if and only if

e2πiηxZϕ(x− u, ω − η) =
(
Zπ(u, η)ϕ

)
(x, ω) ∈ ZG(ϕ,Z× PZ).

But

ZG(ϕ,Z× PZ) = span{Zπ(λ)ϕ, λ ∈ Z× PZ}
= span{e2πi(P�x+kω)Zϕ(x, ω), (k, �) ∈ Z× Z}.

So π(u, η)ϕ ∈ G(ϕ, Z × PZ) if and only if there exist a sequence c = (ck,�) ∈ �2(Z2) with

e2πiηxZϕ(x− u, ω − η) =
∑
k,�∈Z

ck,� e
2πi(P�x+kω)Zϕ(x, ω)

= h(x, ω)Zϕ(x, ω), (x, ω) ∈ R× R̂,

where

h(x, ω) =
∑
k,�∈Z

ck,� e
2πi(P�x+kω)

is a locally L2 function which is 1/P periodic in x and 1 periodic in ω. Note that the construction of h is 
based on the assumption that (ϕ, Z × PZ) is a Riesz basis for its closed linear span. Hence

Zϕ(x, ω) = e−2πiη(x+u)h(x + u, ω + η)Zϕ(x + u, ω + η), (x, ω) ∈ R× R̂. (3)
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The above together with the quasiperiodicity of the Zak transform implies

Zϕ(x, ω) = e−2πiη(x+u) h(x + u, ω + η)Zϕ(x + u, ω + η)

= e−2πiη(x+u) h(x + u, ω + η) e−2πiη(x+2u) h(x + 2u, ω + 2η)Zϕ(x + 2u, ω + 2η)

= . . . = Zϕ(x + Ru, ω + Rη) exp
(
− 2πiη(Rx + u

R∑
r=1

r)
) R∏

r=1
h(x + ru, ω + rη)

= e2πiM2ω Zϕ(x, ω) exp
(
− 2πi(M1x + M2η(R + 1)/2)

) R∏
r=1

h(x + ru, ω + rη)

= e2πi(M2ω−M1x) Zϕ(x, ω)
R∏

r=1
h(x + ru, ω + rη), (x, ω) ∈ R× R̂,

where we used that M2η/2 is an integer.
Hence h satisfies the quasiperiodicity condition

R∏
r=1

h(x + ru, ω + rη) = e2πi(M1x−M2ω), (x, ω) ∈ suppZϕ ⊆ R× R̂. (4)

Eq. (4) holds a priori only on suppZϕ, we shall now extend it to hold on all of R × R̂ based on the 
assumption that (ϕ, αZ × βZ) is a Riesz sequence for its closed linear span.

Indeed, a standard periodization trick gives

∫
R

∣∣∣ ∑
k,�∈Z

dk,�π(k, P�)ϕ(x)
∣∣∣2 dx =

1∫
0

1∫
0

∣∣∣ ∑
k,�∈Z

dk,� e
2πi(P�t−kω)Zϕ(t, ν)

∣∣∣2 dt dν
=

1∫
0

1/P∫
0

∣∣∣ ∑
k,�∈Z

dk,� e
2πi(P�t−kω)

∣∣∣2 P−1∑
p=0

∣∣∣Zϕ(t− p
P , ν)

∣∣∣2 dt dν,
and, hence, we have that (ϕ, Z × PZ) is a Riesz sequence if and only if

A ≤
P−1∑
p=0

∣∣∣Zϕ(x− p
P , ω)

∣∣∣2 ≤ B, a.e. (x, ω),

for some 0 < A ≤ B < ∞. So, for almost every x0, ω0 exists p0 ∈ {0, 1, . . . , P − 1} so that

Zϕ(x0 −
p0

P
, ω0) 	= 0.

Using the computations above, we have

Zϕ(x0 −
p0

P
, ω0) = Zϕ(x0 −

p0

P
, ω0)e2πi(M2ω0−M1(x0− p0

P ))
R∏

r=1
h(x0 −

p0

P
+ ru, ω0 + rη)

= Zϕ(x0 −
p0

P
, ω0)e2πi(M2ω0−M1x0)

R∏
r=1

h(x0 + ru, ω0 + rη),

where we used the fact that h is 1 periodic in x and P divides M1. As Zϕ(x0 − p0 , ω0) 	= 0, we have indeed
P P
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R∏
r=1

h(x0 + ru, ω0 + rη) = e2πi(M1x0−M2ω0).

As (x0, ω0) was chosen arbitrarily (a.e.), we conclude (4) holds for almost every (x0, ω0).
Moreover, observe that (3) implies that the zero set of Zϕ is (u, η) periodic, hence if (x0, ω0) satisfies 

Zϕ(x0 − p0
P , ω0) 	= 0, we have

0 	= Zϕ(x0 −
p0

P
, ω0) = Zϕ(x0 − u− p0

P
, ω0 − η)

= e−2πiη(x0−u− p0
P +u) h(x0 − u− p0

P
+ u, ω0 − η + η)Zϕ(x0 − u− p0

P
+ u, ω0 − η + η)

= e−2πiη(x0− p0
P ) h(x0, ω0)Zϕ(x0 −

p0

P
, ω0).

Solving for h(x0, ω0) implies that h(x, ω) is continuous on R × R̂, and therefore (4) holds on all of R × R̂.
The proof of the case Q = 1 is completed, by proving in Step 4 that a function h as constructed above 

does not exist.

Step 4. Periodicity vs quasiperiodicity and conclusion of the case Q = 1 Proposition 3 below is an extension 
of the simple fact that if h(x) is a function satisfying e2πiMx =

∏R
r=1 h(x + r0) = h(x)R, then h(x) 	= 0 for 

all x and h(x) = α(x)e2πiM
R x where the values of α are R-th roots of unity. Since h(x) 	= 0, continuity of h

implies continuity of the function α, so α is a constant function. If further, h is 1
P -periodic, then

0 	= h(x) = h(x + 1
P ) = α e2πiM

R (x+ 1
P ) = h(x) e2πi M

RP ,

and, hence, RP divides M .

Proposition 3. Let P1, P2, R ∈ N, M1, M2 ∈ Z, and u, η ∈ R. If h(x, ω) is continuous on R ×R̂, 1/P1 periodic 
in x, 1/P2 periodic in ω and

e2πi(M1x+M2ω) =
R−1∏
r=0

h(x + ru, ω + rη), (x, ω) ∈ R× R̂, (5)

then RP1 divides M1 and RP2 divides M2.

Before giving a proof, let us first use Proposition 3 to conclude the proof of Theorem 1 for Λ = Z × PZ.
Using all assumptions, we have established the existence of a continuous h(x, ω) which satisfies (4) and 

is 1/P periodic in x, and 1-periodic in ω. Therefore (5) is satisfied with

M1 = Rη, M2 = −Ru, P1 = P and P2 = 1.

Then Proposition 3 implies M1/(RP1) ∈ Z, that is, η = M1/R ∈ PZ, and u = −M2/R ∈ Z. We conclude 
that (u, η) ∈ Λ = Z × PZ, a contradiction.

Proof of Proposition 3. We have

M1x + M2ω =
R−1∑
r=0

arg h(x + ru, ω + rη) mod 1, (x, ω) ∈ R× R̂,

where by continuity of h, we can choose argh(x, w) to be continuous as well. (Note that this necessitates 
the values of arg h to be real numbers, not only values in [0, 1).)
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For x = ω = 0, we have 
∑R−1

r=0 arg h(ru, rη) = p ∈ Z.
As arg h(x, w) is continuous, we have

R−1∑
r=0

arg h(x + ru, ω + rη) = p + M1x + M2ω, x, ω ∈ R× R̂.

Indeed, by varying ω (or x) by a small value, 
∑R−1

r=0 arg h(x + ru, ω + rη) − M1x − M2ω can only vary 
marginally and not jump by an integer value. We conclude in particular that (for x = 1, ω = 0 and 
x = 0, ω = 1 respectively)

R−1∑
r=0

arg h(1 + ru, rη) = p + M1,
R−1∑
r=0

arg h(ru, 1 + rη) = p + M2.

But, now, arg h(0, 0) − arg h(1/P1, 0) = q1 ∈ Z by 1/P1 periodicity of arg h(x, ω) in x. Similarly to 
before, arg h(x, ω) − arg h(x + 1/P1, ω) is an integer, and, this time by continuity in x and ω, we must 
have arg h(x, ω) − arg h(x + 1/P1, ω) = q1 for all x, ω ∈ R × R̂. Hence, arg h(x, ω) − arg h(x + 1, ω) = P1q1. 
Similarly, arg h(x, ω) − arg h(x, ω + 1) = P2q2 for all x, ω ∈ R × R̂ where q2 ∈ Z.

We conclude

p =
R−1∑
r=0

arg h(ru, rη) =
R−1∑
r=0

(
arg h(ru + 1, rη) + P1q1

)
= p + M1 + RP1q1,

and

p =
R−1∑
r=0

arg h(ru, rη) =
R−1∑
r=0

(
arg h(ru, rη + 1) + P2q2

)
= p + M2 + RP2q2,

that is, RP1q1 + M1 = 0 = RP2q2 + M2, and the conclusion follows since q1, q2 ∈ Z. �
Remark 4. If we drop the assumption that Zϕ is continuous but maintain the assumption that (ϕ, Λ) is 
a Riesz sequence, then the arguments above allow to construct an L2 function h satisfying (4) a.e. on 
R × R̂. Then, Proposition 3 implies that h is discontinuous, so h is neither a trigonometric polynomial nor 
an absolutely convergent Fourier series. We conclude that whenever π(u, η)ϕ ∈ G(ϕ, Λ), (ϕ, Λ) is a Riesz 
sequence, and (u, η) /∈ Λ, then π(u, η)ϕ has a slowly convergent series expansion in (ϕ, αZ × βZ).

Step 5. The rational case P
Q /∈ N We choose again R ∈ N with (Ru, Rη) ∈ Z × PZ. Set M2 = Ru and 

M1 = Rη, by increasing R we can assume that M2η/2 is an integer and P divides M1.
We have π(u, η)ϕ ∈ G(ϕ, 1QZ × PZ) if and only if

e2πiηxZϕ(x− u, ω − η) =
(
Zπ(u, η)ϕ

)
(x, ω) ∈ ZG(ϕ, 1

QZ× PZ).

But

ZG(ϕ, 1
QZ× PZ) = span{Zπ(λ)ϕ, λ ∈ 1

QZ× PZ}

= span{e2πi�PxZϕ(x− k
Q , ω − �P ), (k, �) ∈ Z× Z}

= span{e2πi�PxZϕ(x− k
Q , ω), (k, �) ∈ Z× Z}.

That is, if and only if there exist a sequence c = (ck,�) ∈ �2(Z2) with
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e2πiηxZϕ(x− u, ω − η) =
∑
k,�∈Z

ck,� e
2πi�PxZϕ(x− k

Q , ω)

=
Q−1∑
q=0

∑
k,�∈Z

cq+kQ,� e
2πi(�Px+kω)Zϕ(x− q

Q , ω)

=
Q−1∑
q=0

hq(x, ω)Zϕ(x− q
Q , ω), (x, ω) ∈ R× R̂,

that is

Zϕ(x, ω) = e−2πiη(x+u)
Q−1∑
q=0

hq(x + u, ω + η)Zϕ(x + u− q
Q , ω + η), (x, ω) ∈ R× R̂, (6)

where

hq(x, ω) =
∑
k,�∈Z

cq+kQ,� e
2πi(P�x+kω)

are locally L2 functions which are 1/P periodic in x and 1 periodic in ω. (Note that we can assume that all 
hq are locally in L2, since (ϕ, Λ) is a Riesz system.)

Following Zeevi and Zibulski (see [22,26,27])we set

Zϕ(x, ω) =
(
Zϕ(x, ω), Zϕ(x− 1

Q , ω), Zϕ(x− 2
Q , ω), . . . , Zϕ(x− Q−1

Q , ω)
)T

,

but extend it quasiperiodically to an infinite vector Z◦ϕ(x, ω), that is, for p = sQ + r, r ∈ {0, 1, . . . , Q − 1}, 
s ∈ Z, we have

Z◦
pϕ(x, ω) = Zϕ(x− p

Q , ω) = e−2πisωZ◦
r (x, ω) = e−2πisωZr(x, ω).

The above translates then into

Z◦
pϕ(x, ω) = e

−2πiη(x− p
Q+u)

Q−1+p∑
q=p

hq−p(x− p
Q + u, ω + η)Z◦

qϕ(x + u, ω + η)

which leads to the biinfinite matrix equation

Z◦ϕ(x, ω) = e−2πiη(x+u)H(x + u, ω + η)Z◦ϕ(x + u, ω + η), (7)

where

Hpq(x, ω) = e
2πiη p

Q hq−p(x− p
Q , ω) if q − p ∈ {0, 1, . . . , Q− 1} and 0 else.

The above and quasiperiodicity of the Zak transform implies similarly as in the case Q = 1 that

Z◦ϕ(x, ω) = exp
(
− 2πiη(Rx + u

R∑
r=1

r
)
·

R∏
r=1

H(x + ru, ω + rη)Z◦ϕ(x + Ru, ω + Rη)

= e2πi(M2ω−M1x)
R∏

r=1
H(x + ru, ω + rη)Z◦ϕ(x, ω), (x, ω) ∈ R× R̂,

where we used as before that M2η/2 is an integer.
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Using the fact that H(x, ω) is 1/P periodic in x and that P divides M1 we have in addition that

Z◦ϕ(x + p

P
, ω) = e2πi(M2ω−M1x)

R∏
r=1

H(x + ru, ω + rη)Z◦ϕ(x + p

P
, ω), p = 0, . . . , P − 1.

Hence, for fixed (x, ω), we have

e2πi(M1x−M2ω)I =
R∏

r=1
H(x + ru, ω + rη), a.e. (x, ω) ∈ R× R, (8)

for every quasiperiodic sequence in the span of Z◦ϕ(x + p
P , ω), p = 0, . . . , P−1. The following lemma implies 

that (8) is an identity of operators on Q-quasiperiodic sequences for a.e. (x, ω).

Lemma 5. If ϕ ∈ S0(R) and (ϕ, 1QZ × PZ) is a Riesz basis for its closed linear span, then Z◦ϕ(x + p
P , ω), 

p = 0, . . . , P − 1, spans the space of Q-quasiperiodic sequences for almost every (x, ω) ∈ R × R.

Proof. For any d = (dk,�) ∈ �2(Z2), we have

‖{dk,�}‖�2  ‖
∑
k,�∈Z

dk,� π( k
Q , �P )ϕ‖L2(R) = ‖

∑
k,�∈Z

dk,� Zπ( k
Q , �P )ϕ‖L2([0,1]×[0,1]).

We compute as above∑
k,�∈Z

dk,� Zπ( k
Q , �P )ϕ(x, ω) =

∑
k,�∈Z

dk,� e2πi�PxZϕ(x− k
Q , ω)

=
Q−1∑
q=0

∑
k,�∈Z

dq+kQ,� e
2πi(�Px+kω)Zϕ(x− q

Q , ω)

=
Q−1∑
q=0

mq(x, ω)Zϕ(x− q
Q , ω), (x, ω) ∈ R× R̂.

We conclude that for some A > 0 and all m0(x, ω), . . . , mQ−1(x, ω) that are 1 periodic in ω and 1/P periodic 
in x, we have

A‖{dk,�}‖2
�2 = A

Q−1∑
q=0

‖mq‖2
L2([0,1]) ≤ ‖

Q−1∑
q=0

mq(x, ω)Zϕ(x− q
Q , ω)‖2

L2([0,1]×[0,1])

=
P−1∑
p=0

1
P∫

0

1∫
0

∣∣∣∣∣
Q−1∑
q=0

mq(x− p
P , ω)Zϕ(x− p

P − q
Q , ω)

∣∣∣∣∣
2

dω dx

=
P−1∑
p=0

1
P∫

0

1∫
0

∣∣∣∣∣
Q−1∑
q=0

mq(x, ω)Zϕ(x− p
P − q

Q , ω)

∣∣∣∣∣
2

dω dx (9)

≤

1
P∫

0

1∫
0

Q−1∑
q=0

|mq(x, ω)|2
P−1∑
p=0

∣∣∣Zϕ(x− p
P − q

Q , ω)
∣∣∣2 dω dx. (10)

From (10) we conclude that for q = 0, . . . , Q − 1 we have
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A ≤
P−1∑
p=0

∣∣∣Zϕ(x− p
P − q

Q , ω)
∣∣∣2 a.e. (x, ω) ∈ [0, 1/P ] × [0, 1].

As 
∑P−1

p=0

∣∣∣Zϕ(x− p
P − q

Q , ω)
∣∣∣2 is 1/P periodic in x, this inequality holds in fact for a.e. (x, ω) ∈ R × R. 

Moreover, (9) implies that for q = 0, . . . , Q − 1, the CP vectors(
Zϕ(x− q

Q , ω), Zϕ(x− q
Q − 1

P , ω), Zϕ(x− q
Q − 2

P , ω), . . . , Zϕ(x− q
Q − P−1

P , ω)
)

are linearly independent for a.e. (x, ω) ∈ [0, 1/P ] ×[0, 1], indeed, else we could find L2(R2) functions mq(x, ω), 
not all mq(x, ω) = 0, such that (9) equals 0. We conclude that the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Zϕ(x, ω) Zϕ(x− 1
P , ω) Zϕ(x− 2

P , ω) . . . Zϕ(x− P−1
P , ω)

Zϕ(x− 1
Q , ω) Zϕ(x− 1

Q − 1
P , ω) Zϕ(x− 1

Q − 2
P , ω) . . . Zϕ(x− 1

Q − P−1
P , ω)

Zϕ(x− 2
Q , ω) Zϕ(x− 2

Q − 1
P , ω) Zϕ(x− 2

Q − 2
P , ω) . . . Zϕ(x− 2

Q − P−1
P , ω)

...
...

...
...

Zϕ(x− Q−1
Q , ω) Zϕ(x− Q−1

Q − 1
P , ω) Zϕ(x− Q−1

Q − 2
P , ω) . . . Zϕ(x− Q−1

Q − P−1
P , ω)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
is full rank for a.e. (x, ω) ∈ [0, 1/P ] × [0, 1], so its P columns are a spanning set of CQ for a.e. (x, ω) ∈
[0, 1/P ] × [0, 1]. Note that replacing x by x − p0

P in the matrix above corresponds to a circular shift of the 
columns of the matrix by p0, with the possible appearance of a non-zero scalar factor e2πiω due to the 
quasiperiodicity of the Zak transform. This allows us to extend the observation on the columns spanning 
CQ to hold for almost every (x, ω) ∈ R × R̂. �

In the Q dimensional model, that is, choosing H̃(x, ω) ∈ CQ×Q so that for any Z ∈ CQ and any 
(x, ω) ∈ R × R̂ we have (

H(x, ω)Z◦
)
p

=
(
H̃(x, ω)Z

)
p
, p = 0, 1, . . . , Q− 1,

we have equivalently (with I now denoting the identity matrix in CQ×Q)

e2πi(M1x−M2ω)I =
R∏

r=1
H̃(x + ru, ω + rη), a.e. (x, ω) ∈ R× R̂.

Taking h(x, ω) = det H̃(x, ω) we conclude

e2πiQ(M1x−M2ω) =
R∏

r=1
h(x + ru, ω + rη), a.e. (x, ω) ∈ R× R̂.

It remains to argue that h(x, ω) is continuous, since then, Proposition 3 and the 1/P periodicity of h(x, ω)
in x and the 1 periodicity in ω implies first that R divides QM2. Hence RL = QM2 for some L ∈ N

and u = M2/R = L/Q ∈ 1
QZ. Second, we have RP divides QM1, that is, ηQ

P = QM1
RP is an integer. By 

assumption, we have that (P, Q) = 1, so η ∈ PZ. However, since by assumption (u, η) /∈ 1
QZ ×PZ, this is a 

contradiction.
We conclude by showing that H̃ and therefore h depends continuously on (x, ω). To this end, observe 

that ϕ ∈ S0(R) implies that both, Z◦ϕ(x, ω) and Zϕ(x, ω) are continuous in (x, ω). Let Φ(x, ω) ∈ CQ×P

be the frame synthesis matrix with columns Zϕ(x + p , ω), p = 0, . . . , P − 1. Eq. (7) implies that
P
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e2πiηxZϕ(x− u, ω − η) = H̃(x, ω)Zϕ(x, ω).

Inserting x + p
P for x and using that H̃(x, ω) is 1/P periodic in x, we obtain

e2πiηx Φ(x− u, ω − η) D(η) = H̃(x, ω) Φ(x, ω),

where D(η) is the diagonal matrix with entries 1, e−2πiη/P , e−2πiη 2/P , . . . , e−2πiη (P−1)/P .
The columns of Φ(x, ω) form a frame that depends continuously on (x, ω). Hence, the same operator 

S(x, ω) = Φ(x, ω)Φ(x, ω)∗ ∈ CQ×Q and its inverse S(x, ω)−1 depend continuously on (x, ω). Similarly, the 
matrix consisting of the dual frame elements Ψ(x, ω) = S(x, ω)−1Φ(x, ω) depends continuously on (x, ω). 
Clearly, Ψ(x, ω)∗ is a right inverse of Φ(x, ω). The equality

e2πiηx Φ(x− u, ω − η) D(η) Ψ(x, ω)∗ = H̃(x, ω) Φ(x, ω) Ψ(x, ω)∗ = H̃(x, ω)

shows that H̃(x, ω) depends continuously on (x, ω). The proof is complete. �
4. Construction of Gabor spaces with additional shift invariance

In this section, we study the case π( 1
R , 0)ϕ ∈ G(ϕ, Z × PZ), gcd(P, R) = 1, and give a complete charac-

terization of those ϕ which satisfy π( 1
R , 0)ϕ ∈ G(ϕ, Z × PZ).

Recall that π( 1
R , 0)ϕ ∈ G(ϕ, Z × PZ) if and only if there exists a sequence c = (ck,�) ∈ �2(Z2) with

Zϕ(x− 1
R , ω) =

∑
k,�∈Z

ck,� e
2πi(P�x+kω)Zϕ(x, ω)

= h(x, ω)Zϕ(x, ω), (x, ω) ∈ R× R̂. (11)

Our strategy is to construct a quasiperiodic function F (x, ω) and a function h(x, ω) so that (11) holds 
with F in place of Zϕ. Then we use the fact that the Zak transform is onto the space of quasiperiodic 
functions, and, using a Zak transform inversion formula [18], we construct

ϕ(x) =
1∫

0

Zϕ(x, ω) dω =
1∫

0

F (x, ω) dω =
1+u∫
u

F (x, ω) dω, a.e. x ∈ R.

In order to construct the quasiperiodic function F (x, ω), we shall show that the conditions

(S) F (x − 1
R , ω) = h(x, ω)F (x, ω), x ∈ [1/R, 1], ω ∈ [0, 1];

(Q) e2πiω =
R−1∏
r=0

h(x + r
R , ω), (x, ω) ∈ [0, 1/P ]×[0, 1] ∩ suppF ;

(P) h(x, ω) is 1/P periodic in x and 1 periodic in ω,

characterize the pairs F (x, ω) = Zϕ(x, ω) and h(x, ω) that satisfy (11).
First, note that (11) implies that the zero set E of Zϕ is 1/R periodic. Indeed, clearly Zϕ(x, ω) = 0

implies Zϕ(x − 1
R , ω) = 0. But also, Zϕ(x, ω) = 0 implies

0 = Zϕ(x + 1, ω) = Zϕ(x + 1 − 1
R , ω) = Zϕ(x + 1 − 2

R , ω) = . . . = Zϕ(x + 1
R , ω).

In addition, since R ∈ N, the quasiperiodicity conditions
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Fig. 1. Functions as constructed in Example 1 (left) and Example 2 (right).

e2πiMω =
RM∏
r=1

h(x + r
R , ω), (x, ω) ∈ suppZϕ ⊆ R× R̂,

are just the M -th power of the equation where M = 1, that is, the set of equations is equivalent to

e2πiω =
R∏

r=1
h(x + r

R , ω), (x, ω) ∈ suppZϕ ⊆ R× R̂.

We conclude that the three conditions given above follow from (11). To observe that these conditions are 
also sufficient, note first that as argued above, quasiperiodicity of F implies that the zero set of F is 1/R
periodic. Hence, condition (b) extends to all (x, ω) ∈ R × R̂. Now, (b) together with (a) implies that

h(x, ω)F (x, ω) = F (x− 1
R , ω) = e−2πiωF (x + R−1

R , ω), x ∈ [0, 1/R]×[0, 1].

Indeed, it suffices to check this on suppF where we have

e−2πiωF (x + R−1
R , ω) =

R−1∏
r=0

h(x + r
R , ω)F (x + R−1

R , ω)

...

= h(x, ω)h(x + 1
R , ω)F (x + 1

R , ω)

= h(x, ω)F (x, ω),

which concludes our proof of sufficiency.
In our first example, we construct a discontinuous window function which generates a Gabor space that 

features an additional shift invariance (Fig. 1).

Example 1. We choose R = 2 and P = 3. Let Ik = [k/6, (k + 1)/6] × R̂ for k ∈ Z. We define the function 
h(x, ω) = 2 on 

⋃
k I2k and h(x, ω) = e2πiω/2 on 

⋃
k I2k+1. Clearly, h satisfies (Q) and (P ). We set F (x, ω) = 1

for x ∈ [1/2, 1] and

F (x, ω) = F (x + 1/2 − 1/2, ω) = h(x + 1/2, ω)F (x + 1/2, ω) = h(x + 1/2, ω), x ∈ [0, 1/2],

and extend the function quasiperiodically. In the following, let 
∫

=
∫ 1/2
−1/2. Motivated by the Zak transform 

inversion formula, we define for x ∈ R,
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ϕ(x) =
∫

F (x, ω) dω =

⎧⎪⎨⎪⎩
∫
e2πimω = δ0(m), x ∈ [m + 1/2,m + 1],∫
2e2πimω = 2δ0(m), x ∈ [m,m+1/6]∪[m+1/3,m+1/2],∫ 1
2e

2πi(m+1)ω = 1
2δ0(m + 1), x ∈ [m + 1/6,m + 1/3],

= 1/2χ[−5/6,−2/3] + 2χ[0,1/6] + 2χ[1/3,1/2] + χ[1/2,1].

Clearly, ϕ /∈ S0(R). Moreover, note that 9/4 ≤
∑2

p=0

∣∣∣Zϕ(t − p
3 , ν)

∣∣∣2 ≤ 9 for all t and ν implies that 
(ϕ, Z × PZ) is a Riesz basis for G(ϕ, Z × PZ).

In addition, we would like to point out once more that h(t, ν) =
∑

ck,�e
2πi(P�x−kν) not being continuous 

implies that π(1/2, 0)ϕ =
∑

ck,�π(k, P�)ϕ converges rather slowly, for example, we do not have absolute 
convergence.

Remark 6. Note that the shift-invariant space G(ϕ, Z × {0}) is constant on the intervals [m + 1/2, m + 1], 
m ∈ Z, but the half shift ϕ(x − 1/2) does not satisfy this property. Hence, π(1/2, 0)ϕ = T1/2ϕ is not a 
member of the shift-invariant space G(ϕ, Z × {0}), showing that membership of translates to Gabor spaces 
cannot be reduced to membership of translates to respective shift-invariant spaces.

In the following, we construct a smooth window ϕ which has an additional shift invariance and which 
generates therefore not a Riesz basis for the Gabor space it spans. Note that mollifying h in the example 
above leads to a continuous function which does not satisfy property (Q) (Fig. 1).

Example 2. We consider again R = 2 and P = 3 and construct a Schwartz class function ϕ such that 
T 1

2
ϕ ∈ G(ϕ, Z × 3Z).
To this end, choose a function u(x) on [0, 1/2] with

(1) u has only values in [ 12 , 2], u(0) = 1 but u not constant 1;
(2) u is smooth;
(3) u(x)u(x + 1/6) = 1 for x ∈ [0, 13 ].

Now, set h(x, ω) = u(x) for x ∈ [0, 12 ] and h(x, ω) = e2πiw/u(x − 1/2) for x ∈ [ 12 , 2]. So h periodically 
extended is smooth away from the set 1

2Z × R̂ and satisfies (Q).
Now, we define F (x, ω) = v(x) for x ∈ [1/2, 1] where v(1/2) = v(1) = 0, v(x) ∈ [0, 1], and v smooth. 

Further, define

F (x, ω) = F (x + 1/2 − 1/2, ω) = h(x + 1/2, ω)F (x + 1/2, ω)

= e2πiωv(x + 1/2)/u(x), x ∈ [0, 1/2].

Clearly, F is smooth away from 1
2Z × R̂, but by choosing v(n)(0) = v(n)(1/2) = 0 for all n ∈ N ensures that 

F is smooth on R × R̂.
We compute

ϕ(x) =
1/2∫

−1/2

F (x, ω) dω =
{∫

e2πimωv(x) = δ0(m)v(x), x ∈ [m + 1/2,m + 1],∫ v(x+1/2)
u(x) e2πi(m+1)ω = v(x+1/2)

u(x) δ0(m + 1), x ∈ [m,m + 1/2],

=
{

v(x+1/2)
u(x) , x ∈ [−1,−1/2],

v(x), x ∈ [1/2, 1].

We conclude that ϕ is supported on [−1, 1] and smooth.
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