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Abstract

Fixed a Banach operator ideal A, we introduce and investigate two new approximation properties, which
are strictly weaker than the bounded approximation property (BAP) for A of Lima et al. (2010). We call
them the weak BAP for A and the local BAP for A, showing that the latter is in turn strictly weaker than
the former. Under this framework, we address the question of approximation properties passing from dual
spaces to underlying spaces. We relate the weak and local BAPs for A with approximation properties given
by tensor norms and show that the Saphar BAP of order p is the weak BAP for the ideal of absolutely
p∗-summing operators, 1 ≤ p ≤ ∞, 1/p + 1/p∗

= 1.
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∗ Correspondence to: Departamento de Matemática, Universidad de San Andrés, Vito Dumas 284, (B1644BID)
Victoria, Buenos Aires, Argentina.

E-mail addresses: slassalle@udesa.edu.ar (S. Lassalle), eve.oja@ut.ee (E. Oja), paturco@dm.uba.ar (P. Turco).

http://dx.doi.org/10.1016/j.jat.2016.01.005
0021-9045/ c⃝ 2016 Elsevier Inc. All rights reserved.



26 S. Lassalle et al. / Journal of Approximation Theory 205 (2016) 25–42

1. Introduction

Let X be a Banach space and let 1 ≤ λ < ∞. We denote by A = (A, ∥·∥A) a Banach operator
ideal. As usual, L, F , F , K and W are the ideals of bounded, finite rank, approximable, compact
and weakly compact linear operators, respectively; all considered with the supremum norm ∥ · ∥.

Recall that X has the approximation property (AP for short) if its identity map IX can be
uniformly approximated by finite rank operators on compact sets, i.e., there exists a net (Sα) in
F (X) := F (X; X) such that Sα → IX uniformly on compact subsets of X . If the net (Sα) can be
chosen to satisfy also that supα ∥Sα∥ ≤ λ, then X is said to have the λ-bounded approximation
property (λ-BAP). The 1-BAP is called the metric approximation property (MAP). If X has the
λ-BAP for some λ, then X is said to have the bounded approximation property (BAP).

In [23], Lima and Oja defined the weak BAP and used it, among others, to approach the
famous problem: are the AP and the MAP equivalent on a dual space?

Recall that X has the weak λ-bounded approximation property (weak λ-BAP) if for every
Banach space Y and for each operator T in W(X; Y ), there exists a net (Sα) in F (X) such that
Sα → IX uniformly on compact subsets of X and lim supα ∥T Sα∥ ≤ λ∥T ∥. In [20], Lima,
Lima and Oja, continuing to approach the above-mentioned problem, extended the weak BAP as
follows.

Definition 1.1 (Lima–Lima–Oja). A Banach space X has the λ-bounded approximation property
for A (λ-BAP for A) if for every Banach space Y and for each operator T in A(X; Y ),
there exists a net (Sα) in F (X) such that Sα → IX uniformly on compact subsets of X and
lim supα ∥T Sα∥A ≤ λ∥T ∥A.

The BAP for A allows the understanding of several known approximation properties in terms
of Banach operator ideals and their geometry. For instance, the λ-BAP is clearly the λ-BAP for
L, and it is also the λ-BAP for the ideal I of integral operators [20, Theorem 2.1]. The weak
λ-BAP is by definition the λ-BAP for W , and it is also the λ-BAP for K [23, Theorem 2.4] and
for the ideal N of nuclear operators [20, Theorem 3.1].

From [23] and [20] it is clear that in the special cases of A mentioned above, the λ-BAP for
A is equivalent to its (at least formal) weakening, where the uniform convergence Sα → IX
on compact subsets of X is replaced by the pointwise convergence. In turn, a weakening of this
weakening was occasionally also considered in [20]. Namely, in [20, Problem 5.5], the authors
wondered if given an arbitrary Banach operator ideal A, the λ-BAP for A could be equivalent to
a seemingly weaker property where no “global” behavior for the approximating net is required.
We shall call this property the local λ-BAP for A (see Definition 1.3 below). Problem 5.5 of [20]
(see also [26, Problem 4.1]) has an obvious positive answer if A = L. The answer is also positive
if A = W or A = K [27, Theorem 3.6].

One of our main aims in the present paper is to show that these two weakenings are not formal
(see Sections 2 and 4 below). So, it makes sense to introduce the following concepts.

Definition 1.2. A Banach space X has the weak λ-bounded approximation property for A (weak
λ-BAP for A) if for every Banach space Y and for each operator T in A(X; Y ), there exists a net
(Sα) in F (X) such that Sα → IX pointwise and lim supα ∥T Sα∥A ≤ λ∥T ∥A.

Definition 1.3. A Banach space X has the local λ-bounded approximation property for A (local
λ-BAP for A) if for every Banach space Y and for each operator T in A(X; Y ), there exists a net
(Tα) in F (X; Y ) such that Tα → T pointwise and lim supα ∥Tα∥A ≤ λ∥T ∥A.
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Remark that the local λ-BAP for K was considered in [27] under the name of condition c∗
λ.

It is interesting and also important to note that the local λ-BAP for the ideal P p of absolutely
p-summing operators was considered, implicitly, without giving any name, already in 1972 by
Saphar [39]. Namely, in [39, Theorem 2], Saphar characterized his λ-BAP of order p (this is, by
definition, the λ-BAP which is given by the Chevet–Saphar tensor norm gp; see Section 4) as
follows. For 1 ≤ p ≤ ∞ we denote by p∗ the conjugate index of p, i.e., 1/p + 1/p∗

= 1 with
the usual convention that p∗

= 1 if p = ∞.

Theorem 1.4 (Saphar). Let 1 ≤ λ < ∞ and 1 ≤ p ≤ ∞. A Banach space X has the λ-BAP of
order p∗ if and only if X has the local λ-BAP for P p.

Summarizing we have:

λ-BAP ⇒ λ-BAP for A ⇒ weak λ-BAP for A ⇒ local λ-BAP for A.

We do not know of any example of an ideal A for which the λ-BAP is strictly stronger than the
λ-BAP for A. However, as already mentioned, we shall show that the subtle differences between
the λ-BAP for A, the weak λ-BAP for A and the local λ-BAP for A are, in fact, not formal (see
Sections 2 and 4 for examples).

The paper is organized as follows. In Section 2 we study the weak BAP for A, the local
BAP for A and the interplay between them. We exhibit classes of ideals for which they coincide
(Theorem 2.12) and also examples for which they differ (Proposition 2.2). Also, we give an
omnibus characterization of the weak BAP for A (Theorem 2.6) which allows us to relate this
property and the BAP for A. In Section 3 we relate these approximation properties with some
other approximation properties, also determined by Banach operator ideals, showing that they
pass from a dual space down to the underlying space, giving there the corresponding metric
approximation properties. In order to do so, we show that (for many operator ideals) it is enough
to check the weak and the local BAPs for A using only bidual spaces. Finally, in Section 4
we connect the weak and the local BAPs for A with approximation properties given by tensor
norms (Theorem 4.1) extending, among others, Theorem 1.4 of Saphar (Corollary 4.2). As a
by-product, we show that every Banach space has the local MAP for the ideal of p-integral
operators I p, 1 ≤ p ≤ ∞ (Corollary 4.3), and that this property may differ from the weak BAP
for I p, 2 < p < ∞ (Proposition 4.6).

All the relevant terminology and preliminaries will be given in corresponding sections. For the
theory of operator ideals we refer the reader to the books of Pietsch [33], of Defant and Floret [6],
of Diestel, Jarchow and Tonge [12] and of Ryan [38]. For approximation properties we refer the
reader to the books of Lindenstrauss and Tzafriri [24], of Diestel, Fourie and Swart [11] and to
the books [6,38]; see also the surveys [4,28] and references therein.

Our notation is standard. We consider Banach spaces X , Y over the same, either real or
complex, field K. We denote by X∗ and BX the topological dual of X and its closed unit ball,
respectively. The canonical inclusion of X into its bidual X∗∗ is denoted by JX . The Banach
space of all absolutely p-summable sequences in X is denoted by ℓp(X) and its norm by ∥·∥p,
for any 1 ≤ p < ∞, and the Banach space of all null sequences in X is denoted by c0(X),
considered with the supremum norm. As usual, operators in F (X; Y ) are regarded as elements
of the algebraic tensor product X∗

⊗ Y and tensors in X ⊗ Y as operators in F (X∗
; Y ). Also,

τw, τs and τc stand for the weak operator topology, the strong operator topology and the compact
open topology, respectively; all considered on L(X; Y ).
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2. Three bounded approximation properties for A

Let us start with a couple of preliminary observations showing, among others, that the prob-
lem [20, Problem 5.5] mentioned in the Introduction has a negative answer. Although some coun-
terexamples had been at hand in several articles, they were not explicitly written. For instance,
N immediately provides a counterexample, due to the reasons given below. Also, the next result

can be deduced from [29]. We shall use that F (X; Y )
∥·∥A

= A(X; Y ) for all Banach spaces X
and Y whenever A is a minimal Banach operator ideal.

Proposition 2.1. Every Banach space X has the local MAP for A whenever A is a minimal
Banach operator ideal. As a consequence, the local MAP for A does not imply the BAP for A
whenever X fails the AP and A is a minimal Banach operator ideal.

Proof. Let A be a minimal Banach operator ideal and X, Y be Banach spaces. Given T ∈

A(X; Y ) there exists a sequence (Tn) ⊂ F (X; Y ) such that Tn → T in A (and therefore Tn → T
pointwise). Then, limn ∥Tn∥A = ∥T ∥A, showing that X has the local MAP for A. In particular,
this is true for any Banach space X without the AP and hence without the BAP for A. �

Thus, the local MAP for A, in general, does not imply the AP. On the other hand, for instance,
the AP does not imply the local BAP for P p for any p ≠ 2. This follows from Theorem 1.4 and
the fact, due to Reinov [35, Corollary 3.1], that there is a Banach space with the AP which lacks
the approximation property of order q for any q ≠ 2.

Well-known examples of minimal Banach operator ideals include F and N . As we see next,
if A equals one of these, then the local BAP for A is strictly weaker than the weak BAP for A.

Proposition 2.2. Every Banach space X has the local MAP for F and N . If X fails the AP, then
X does not have the weak BAP for F nor N .

Proof. In the both cases A = F and A = N , the weak λ-BAP for A is the same as the λ-BAP
for A. For N , this was proved in [20] (see the proof of Theorem 3.1 in [20] or [21, Theorem 1.2]).
For F , see Proposition 2.3 below. �

Proposition 2.3. Let X be a Banach space and 1 ≤ λ < ∞. Then, the following statements are
equivalent.

(i) X has the weak λ-BAP.
(ii) X has the λ-BAP for F .

(iii) X has the weak λ-BAP for F .

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are clear. As the weak λ-BAP and the weak λ-BAP
for K coincide [23, Theorem 2.4], to complete the proof we show that the latter property is
implied by (iii). Fix a Banach space Y and T ∈ K(X; Y ). Denote by j : Y → C(K ) a linear
isometric embedding for a suitable compact space K . Since C(K ) has the AP, K(X; C(K )) =

F (X; C(K )). Hence, jT ∈ F (X; C(K )). By (iii), there exists a net (Sα) in F (X) such
that Sα → IX pointwise and lim supα ∥ jT Sα∥ ≤ λ∥ jT ∥. Being j an isometry, the result
follows. �

The operator ideals which are Banach with respect to the usual norm ∥·∥ are called closed
(see [33]) or classical (see [12]). A wide list of closed operator ideals can be found in [15], for
instance. The inclusion A ⊂ B (defined as A(X; Y ) ⊂ B(X; Y ) for all Banach spaces X and Y )
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provides a natural partial ordering on the family of all operator ideals. In the family of all closed
operator ideals, L is the largest element and F is the smallest one.

Proposition 2.3 shows that the smallest closed ideal F yields the weak BAP, meaning that the
weak λ-BAP and the λ-BAP for F coincide. It is not known (see [20, Problem 5.3]) whether
there is the largest closed operator ideal yielding the weak BAP. (Note that L trivially yields the
BAP.) To our knowledge, the best result belongs to Lissitsin [25]: the weak λ-BAP is equivalent
to the λ-BAP for RN dual , the ideal of operators whose adjoints are Radon–Nikodým.

We saw that, in the case of the closed operator ideals A = F , K, W and L, the BAP for A
coincides with the weak BAP for A. We shall show that this is true for any closed operator ideal
A (see Corollary 2.10). Hence, in particular, for A = RN dual .

Our next goal is to establish an omnibus characterization of the weak BAP for A
(Theorem 2.6). This is one of our main results which will be used throughout the paper. In order to
proceed, recall that Grothendieck’s characterization [16] (see for example [24, Proposition 1.e.3])
states that, algebraically,

(L(X; Y ), τc)
∗

= Y ∗⊗π X, (1)

the projective tensor product, under the duality

⟨u, T ⟩ =

∞
n=1

y∗
n (T xn), u =

∞
n=1

y∗
n ⊗ xn ∈ Y ∗⊗π X, T ∈ L(X; Y ).

Recall also that

Y ∗⊗π X =


u =

∞
n=1

y∗
n ⊗ xn : (y∗

n ) ∈ ℓ1(Y
∗), (xn) ∈ c0(X)


=


u =

∞
n=1

y∗
n ⊗ xn : (y∗

n ) ∈ c0(Y
∗), (xn) ∈ ℓ1(X)


.

Here it will be convenient to replace the null sequences with the A-null sequences of Carl and
Stephani [3], defined as follows.

Fixed an operator ideal A, a sequence (xn) in a Banach space X is said to be A-null if there
exist a Banach space Z , an operator R ∈ A(Z; X) and a null sequence (zn) ⊂ Z such that
xn = Rzn for all n ∈ N (see [3, Definition 1.1 and Lemma 1.2]). The set c0,A(X) of the A-
null sequences in X forms a linear subspace of c0(X). Now we consider the following linear
subspaces of Y ∗⊗π X :

GA :=


u =

∞
n=1

y∗
n ⊗ xn : (y∗

n ) ∈ ℓ1(Y
∗), (xn) ∈ c0,A(X)


,

G A
:=


u =

∞
n=1

y∗
n ⊗ xn : (y∗

n ) ∈ c0,A(Y ∗), (xn) ∈ ℓ1(X)

.

Associated to these subspaces we have natural locally convex Hausdorff topologies τA :=

σ(L(X; Y ), GA) and τ A
:= σ(L(X; Y ), G A). Then, as is well known, we may identify

(L(X; Y ), τA)∗ = GA and (L(X; Y ), τ A)∗ = G A, similarly to (1).
Since τw = σ(L(X; Y ), Y ∗

⊗ X), we clearly have τw ⊂ τA, τ A
⊂ τc. By [18, Proposition 1.4

and Remark 1.3], c0(X) = c0,F (X), and therefore τF = τ F
= τc. Hence, we have the following.
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Proposition 2.4. Let A be an operator ideal. If F ⊂ A, then τA = τ A
= τc.

We shall need a natural modification of the BAP for A.

Definition 2.5. Let A be a Banach operator ideal and 1 ≤ λ < ∞. Let X be a Banach space
and τ a topology on L(X). We say that X has the λ-bounded approximation property for A and
τ (λ-BAP for A and τ ) if for every Banach space Y and for each operator T in A(X; Y ), there
exists a net (Sα) in F (X) such that Sα → IX in τ and lim supα ∥T Sα∥A ≤ λ∥T ∥A.

Clearly, the λ-BAP for A is precisely the λ-BAP for A and τc. And the weak λ-BAP for A is
the λ-BAP for A and τs . It also coincides with the λ-BAP for A and τw because τw and τs are
the same on convex sets (see, for instance, [13, Corollary VI.1.5]).

Now, we are in conditions to state and prove the omnibus characterization of the weak BAP
for A which can be seen as a generalization of [23, Theorem 2.4] (from W = (W, ∥.∥) to
A = (A, ∥.∥A)); see also Remark 2.7 concerning methods of proof.

Theorem 2.6. Let A be a Banach operator ideal and 1 ≤ λ < ∞. For a Banach space X, the
following statements are equivalent.

(i) X has the weak λ-BAP for A.
(ii) For every Banach space Y and for each operator T ∈ A(X; Y ), there exists a net (Sα) in

F (X) with lim supα ∥T Sα∥A ≤ λ∥T ∥A such that T Sα → T pointwise.
(iii) For every Banach space Y and for each operator T ∈ A(X; Y ) with ∥T ∥A = 1, for all

sequences (y∗
n ) in Y ∗ and (xn) in X such that


∞

n=1 ∥y∗
n∥∥xn∥ < ∞, one has the inequality ∞

n=1

y∗
n (T xn)

 ≤ λ sup
∥T S∥A≤1

S∈F (X)

 ∞
n=1

y∗
n (T Sxn)

 .
(iv) X has the λ-BAP for A and τ Adual

.

Proof. Clearly, (i) implies (ii). Also, (iv) implies (i) since the weak λ-BAP for A coincides with
the λ-BAP for A and τw. To prove that (ii) implies (iii), follow the easy straightforward proof
of [23, Theorem 2.4, (a) ⇒ (d)] with the obvious modifications.

Let us prove that (iii) implies (iv). Fix a Banach space Y and T ∈ A(X; Y ) such that
∥T ∥A = 1. Consider the absolutely convex set

M = {S ∈ F (X) : ∥T S∥A ≤ λ},

and suppose that IX ∉ M τ Adual

. Then, there exists φ ∈ (L(X); τ Adual
)∗ such that

|φ(IX )| > sup{|φ(S)| : S ∈ M}.

We may write φ =


∞

n=1 x∗
n ⊗ xn with (x∗

n ) ∈ c0,Adual (X∗) and (xn) ∈ ℓ1(X). Hence, ∞
n=1

x∗
n (xn)

 > sup
∥T S∥A≤λ

S∈F (X)

 ∞
n=1

x∗
n (Sxn)

 = λ sup
∥T S∥A≤1

S∈F (X)

 ∞
n=1

x∗
n (Sxn)

 . (2)

We affirm that inequality (2) cannot hold. Indeed, since the sequence (x∗
n ) is Adual -null, there

exist a Banach space Z , an operator R ∈ Adual(Z; X∗), meaning that R∗
∈ A(X∗∗

; Z∗), and a
null sequence (zn) in BZ such that x∗

n = Rzn for all n. Then R∗ JX ∈ A(X; Z∗). Consider the
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Banach space W = Y × Z∗ endowed with the sum norm. Fix r > 0 and define the operatorT : X → W by T x = (T x, r R∗ JX x), x ∈ X . Then T ∈ A(X; W ) and

∥T ∥A ≤ 1 + r∥R∗ JX∥A.

As an element of W ∗, (0, zn) satisfies

(0, zn)(T x) = r(R∗ JX x)(zn) = r(Rzn)(x) = r x∗
n (x),

for all x ∈ X and all n. Then, by (iii), we have ∞
n=1

r x∗
n (xn)

 =

 ∞
n=1

(0, zn)(T xn)


≤ λ sup

∥T S∥A≤1+r∥R∗ JX ∥A
S∈F (X)

 ∞
n=1

(0, zn)(T Sxn)


= λ(1 + r∥R∗ JX∥A) sup

∥T S∥A≤1
S∈F (X)

 ∞
n=1

r x∗
n (Sxn)

 . (3)

Since T = PY T , where PY is the norm one projection of W onto Y , we have ∥T S∥A ≤ ∥T S∥A,
for any S ∈ F (X). Hence from (3), we obtain ∞

n=1

x∗
n (xn)

 ≤ λ(1 + r∥R∗ JX∥A) sup
∥T S∥A≤1

S∈F (X)

 ∞
n=1

x∗
n (Sxn)

 .
Since r > 0 is arbitrary, we conclude that ∞

n=1

x∗
n (xn)

 ≤ λ sup
∥T S∥A≤1

S∈F (X)

 ∞
n=1

x∗
n (Sxn)

 ,
contradicting inequality (2). Therefore, the proof is complete. �

Remark 2.7. Up to inequality (2), our proof of the implication (iii) ⇒ (iv) followed the
beginning of the proof of (Theorem 2.4, (d′) ⇒ (a′), [23]). However, the main part of our proof
essentially differs from that in [23]. Namely, [23] relied on the isometric version of the Davis,
Figiel, Johnson and Pełczyński factorization lemma due to Lima, Nygaard and Oja [22]. Our
proof cannot use this factorization result because its suitable version seems to be unknown for
arbitrary Banach operator ideals. So, since in the case when A = W , one has A = Adual

[33, Proposition 4.4.7] and τ Adual
= τc (see Proposition 2.4), we have given as a by-product an

alternative proof of a main part of [23, Theorem 2.4].

Remark 2.8. Let A be an operator ideal. By [3, Definition 1.2], c0,A(X) = c0,Asur (X) for
any Banach space X . Since also Adual sur

= Ain j dual (see [33, Theorem 4.7.16]), we get that
τ Adual

= τ Adual sur
= τ Ain j dual

. Therefore, condition (iv) of Theorem 2.6 can be stated with
τ Adual sur

or with τ Ain j dual
.

As a consequence of Theorem 2.6, together with the above remark and Proposition 2.4, we
have the following.
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Corollary 2.9. Let A be a Banach operator ideal and 1 ≤ λ < ∞. If F ⊂ Ain j dual , then a
Banach space X has the λ-BAP for A if and only if X has the weak λ-BAP for A.

The above corollary applies to any closed ideal. In this case it can be restated as follows.

Corollary 2.10. Let A be a closed operator ideal and 1 ≤ λ < ∞. Then a Banach space X has
the λ-BAP for A if and only if X has the weak λ-BAP for A.

Corollary 2.9 can also be applied to non-closed operator ideals such as the ideal of ∞-integral
operators I∞.

Proposition 2.11. Let 1 ≤ λ < ∞. Then a Banach space X has the λ-BAP for I∞ if and only if
X has the weak λ-BAP for I∞.

Proof. Recall that given Z and Y Banach spaces, S ∈ I∞(Z; Y ) if and only if JY S factorizes
through a C(K )-space. Hence I∞ ≠ L, which allows us to observe that I∞ is non-closed.
Indeed, by its definition [33, 19.3.1, 19.3.9], I∞ is maximal. But the only maximal closed ideal
is L [33, 4.9.7].

Let us also observe that I in j
∞ = L. Indeed, by [6, 17.12(4)], I in j

∞ is associated with the
Chevet–Saphar tensor norm g∞. Therefore (see [6, Theorem 20.11]) I in j

∞ is associated with g∞\

which equals the injective tensor norm ε (see [6, Proposition 20.14(5)]). The claim follows since
ε and L are associated (see [6, 17.12(1)]. Hence I in j

∞ = L and F ⊂ L = Ldual
= I in j dual

∞ .
�

We saw (Proposition 2.2) that the weak λ-BAP for A and the local λ-BAP for A may differ.
However, they coincide for injective Banach operator ideals.

Theorem 2.12. Let A be an injective Banach operator ideal and 1 ≤ λ < ∞. Then a Banach
space X has the weak λ-BAP for A if and only if X has the local λ-BAP for A.

Proof. Assume that X has the local λ-BAP for A. Let us show that condition (iii) of Theorem 2.6
holds. Let Y be a Banach space and take T ∈ A(X; Y ). Set Z = T (X) and denote by T0 the
operator T with values in Z . Since A is injective, applying [33, Proposition 8.4.4], we know that
T0 ∈ A(X; Z) and ∥T0∥A = ∥T ∥A. By assumption, there exists a net (Tα) ∈ F (X; Z) such that
Tα → T0 pointwise and

lim sup
α

∥Tα∥A ≤ λ∥T0∥A = λ∥T ∥A.

Let us order the set of pairs (α, ε) where α is as above and ε > 0 in a natural way:
(α, ε) ≥ (α̃, ε̃) if and only if α ≥ α̃ and ε ≤ ε̃. For each (α, ε) look at the operator Tα which is
of the form

Tα =

n
j=1

x∗

j ⊗ z j ∈ X∗
⊗ Z ,

for some z1, . . . , zn ∈ Z and x∗

1 , . . . , x∗
n ∈ X∗ with

n
j=1 ∥x∗

j ∥ = 1. Choose x j ∈ X such that
∥T x j − z j∥ < ε, j = 1, . . . , n. Let S(α,ε) ∈ F (X) be the finite rank operator defined by

S(α,ε) =

n
j=1

x∗

j ⊗ x j .
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Then

∥T S(α,ε) − Tα∥A =

 n
j=1

x∗

j ⊗ (T x j − z j )


A

≤

n
j=1

∥x∗

j ∥∥T x j − z j∥ < ε.

Therefore,

lim sup
(α,ε)

∥T S(α,ε)∥A ≤ lim sup
α

∥Tα∥A ≤ λ∥T ∥A

and for every x ∈ X

∥T S(α,ε)x − T x∥ ≤ ∥Tαx − T x∥ + ε∥x∥,

implying that T S(α,ε) → T pointwise, which completes the proof. �

Proposition 2.13. Let A be an injective closed operator ideal and 1 ≤ λ < ∞. Then a Banach
space X has the λ-BAP for A if and only if X has the local λ-BAP for A.

Proof. The result follows as a direct application of Corollary 2.10 and Theorem 2.12. �

Proposition 2.13 applies, among others, to K, W , RN , Asplund or RN dual , Rosenthal,
Banach–Saks, completely continuous, weakly completely continuous, unconditionally converg-
ing, separable range, strictly singular and absolutely continuous operators. The particular case of
Proposition 2.13 when A = K should be compared with [27, Theorem 3.6].

We shall need the following result which is immediate from Theorem 2.12, because P p is an
injective Banach operator ideal (P∞ = L is a trivial case).

Corollary 2.14. Let 1 ≤ λ < ∞ and 1 ≤ p ≤ ∞. Then a Banach space X has the weak λ-BAP
for P p if and only if X has the local λ-BAP for P p.

The above corollary nicely completes Saphar’s Theorem 1.4; this will be used in the next two
results.

Proposition 2.15. Let 1 ≤ λ < ∞. If a Banach space X has the weak λ-BAP, then X has the
weak λ-BAP for P p, 1 < p < ∞.

Proof. Thanks to [30, Proposition 4.4], X has the Saphar λ-BAP of order p whenever 1 < p <

∞. By Theorem 1.4, X has the local λ-BAP for P p and, by Corollary 2.14, X has the weak
λ-BAP for P p, 1 < p < ∞. �

Proposition 2.16. There exists a Banach space with the weak MAP for P p for all 1 ≤ p ≤ 2,
which lacks the BAP for P p.

Proof. Let X be a Banach space with cotype 2 and without the AP, which exists by [41]. Then
X lacks the BAP for A for any Banach operator ideal A. In particular, X lacks the BAP for P p.
Since X has cotype 2, it has the Saphar MAP of order q for any q ≥ 2 [35, p. 126] (see also
[6, pp. 280–281]). By Theorem 1.4, X has the local MAP for P p and, by Corollary 2.14, X has
the weak MAP for P p for any p ≤ 2. �

As a consequence of the above and at the light of Proposition 2.1, the class P p of p-summing
operators, 1 ≤ p ≤ 2, provides an example of other type of ideals (not minimal) which also
answers [20, Problem 5.5] (see the Introduction) by the negative.
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3. Lifting of some approximation properties from X∗ to related metric approximation
properties of X

By the well-known Grothendieck’s classics, the AP passes down from dual spaces to under-
lying spaces. A lifting result due to Lima and Oja asserts that, in this case, the AP of underlying
spaces is always weakly metric (see [23, Theorem 2.4]; for a very simple proof of this result,
see [30, p. 5838, (3)]).

In this section we shall demonstrate that a similar phenomenon occurs in the general context
of approximation properties determined by Banach operator ideals A (see the results from
Proposition 3.7 till Corollary 3.14). Among others, with the particular case of A = K we cover
the Lima–Oja result (see text after Proposition 3.8). To this end, let us show that for many Banach
operator ideals A it is enough to check the definitions of the λ-BAP for A, the weak λ-BAP for
A and the local λ-BAP for A using the bidual spaces instead of all Banach spaces.

Proposition 3.1. Let A be a Banach operator ideal and 1 ≤ λ < ∞. Let X be a Banach space
and τ a topology on L(X). Then the following statements are equivalent.

(i) X has the λ-BAP for Areg and τ .
(ii) For every Banach space Y and for each operator T ∈ A(X; Y ∗), there exists a net (Sα) in

F (X) such that Sα → IX in τ and

lim sup
α

∥T Sα∥A ≤ λ∥T ∥A.

(iii) For every Banach space Y and for each operator T ∈ A(X; Y ∗∗), there exists a net (Sα) in
F (X) such that Sα → IX in τ and

lim sup
α

∥T Sα∥A ≤ λ∥T ∥A.

Proof. Note that for every Banach space Y , using that A = (JY )∗ JY ∗ A for A ∈ L(X; Y ∗), it
is straightforward to verify that A(X; Y ∗) = Areg(X; Y ∗) isometrically. Hence, (i) implies (ii).
It is clear that (ii) implies (iii). Finally, to see that (iii) implies (i) take a Banach space Y and
T ∈ Areg(X; Y ). Since JY T ∈ A(X; Y ∗∗), by assumption, there is a net (Sα) in F (X) such that
Sα → IX in τ and

lim sup
α

∥JY T Sα∥A ≤ λ∥JY T ∥A,

meaning that

lim sup
α

∥T Sα∥Areg ≤ λ∥T ∥Areg ,

and the proof is complete. �

Recall that a Banach operator ideal A is regular if Areg
= A. Note that a lot of Banach

operator ideals are regular, such as Adual , Amax , Ain j for any Banach operator ideal A.

Corollary 3.2. For a regular Banach operator ideal A, it is enough to check the definition of the
BAP for A and τ using bidual spaces, for any topology τ .

Proposition 3.3. Let A be an injective Banach operator ideal and 1 ≤ λ < ∞. Then a Banach
space X has the local λ-BAP for A if and only if for every Banach space Y and each operator
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T ∈ A(X; Y ∗∗) there exists a net (Tα) in F (X; Y ∗∗) such that Tα → T pointwise and

lim sup
α

∥Tα∥A ≤ λ∥T ∥A.

Proof. Let Y be a Banach space and T ∈ A(X; Y ). Then JY T ∈ A(X; Y ∗∗) and there is a net
(Sα) ⊂ F (X; Y ∗∗) such that Sα → JY T pointwise and

lim sup
α

∥Sα∥A ≤ λ∥JY T ∥A ≤ λ∥T ∥A.

Denote Eα = Sα(X) ⊂ Y ∗∗.
Let us consider the set of triples (α, F, ε), where α is as above, ε > 0 and F runs over

the finite-dimensional subspaces of Y ∗, ordered in a natural way. For each (α, F, ε), using the
principle of local reflexivity, we may find an operator R(α,F,ε) ∈ L(Eα, Y ) with ∥R(α,F,ε)∥ ≤

1 + ε such that

y∗(R(α,F,ε)y∗∗) = y∗∗(y∗), y∗
∈ F, y∗∗

∈ Eα.

Denoting by Sα the operator Sα considered with values in Eα , we have (see for instance
[33, Proposition 8.4.4]) Sα ∈ Ain j (X; Eα) = A(X; Eα) and

∥Sα∥A = ∥Sα∥A.

Put T(α,F,ε) = R(α,F,ε)
Sα . Then, the net (T(α,F,ε)) is in F (X; Y ) and

∥T(α,F,ε)∥A ≤ (1 + ε)∥Sα∥A = (1 + ε)∥Sα∥A.

Therefore,

lim sup
(α,F,ε)

∥T(α,F,ε)∥A ≤ lim sup
α

∥Sα∥A ≤ λ∥T ∥A.

Moreover, if x ∈ X and y∗
∈ Y ∗, we have with F ⊂ Y ∗ such that y∗

∈ F ,

y∗(T(α,F,ε)x) = y∗(R(α,F,ε)Sαx) = (Sαx)(y∗).

Since (Sαx)(y∗) → (JY T x)(y∗) = y∗(T x), we get that T(α,F,ε) → T in τw. After passing to
convex combinations if necessary, we may assume that T(α,F,ε) → T pointwise. Thus, the proof
is complete. �

Corollary 3.4. Let A be an injective Banach operator ideal and X be a Banach space. If

F (X; Y ∗∗)
∥·∥A

= A(X; Y ∗∗) for every Banach space Y , then X has the weak MAP for A.

Proof. Take T ∈ A(X; Y ∗∗). As in the proof of Proposition 2.1, there is a sequence (Tn) ⊂

F (X; Y ∗∗) such that Tn → T pointwise and limn ∥Tn∥A = ∥T ∥A. Since A is injective, by
Proposition 3.3, X has the local MAP for A which, by Theorem 2.12, is equivalent to the weak
MAP for A. �

Corollary 3.4 will enable us to relate the weak λ-BAP for A with the A-approximation
property showing a lifting result (see Proposition 3.7 below). Let A be a Banach operator ideal.
As in [29] (see also [19, Definition 4.3]), we say that a Banach space X has the A-approximation

property (A-AP) if F (Y ; X)
∥.∥A

= A(Y ; X) for every Banach space Y .
Thanks to Grothendieck’s classics, the K-AP coincides with the classical AP. Since Kdual

=

K, the result below just extends a well-known Grothendieck’s characterization of the AP of dual
spaces.
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Proposition 3.5. Let A be a Banach operator ideal such that A ⊂ Adual dual and let X be a

Banach space. Then X∗ has the A-AP if and only if F (X; Y ∗)
∥·∥Adual

= Adual(X; Y ∗) for every
Banach space Y .

Proposition 3.5 is immediate from the lemma below.

Lemma 3.6. Let A be a Banach operator ideal such that A ⊂ Adual dual and let X and

Y be Banach spaces. Then F (Y ; X∗)
∥·∥A

= A(Y ; X∗) if and only if F (X; Y ∗)
∥·∥Adual

=

Adual(X; Y ∗).

Proof. We only show the ‘if’ part, the other one being analogous. Fix T ∈ A(Y ; X∗) (hence
in Adual dual(Y ; X∗)) and ε > 0. Since T ∗

∈ Adual(X∗∗
; Y ∗), T ∗ JX ∈ Adual(X; Y ∗). Take

S ∈ F (X; Y ∗) such that ∥T ∗ JX − S∥Adual = ∥J ∗

X T ∗∗
− S∗

∥A < ε. As T = J ∗

X T ∗∗ JY , we have

∥T − S∗ JY ∥A ≤ ∥J ∗

X T ∗∗
− S∗

∥A < ε,

which concludes the proof because S∗ JY ∈ F (Y ; X∗). �

In the next two results, we shall use that Adual is injective whenever A is surjective (see, for
instance, [33, Proposition 8.5.10 (2)]).

Proposition 3.7. Let A be a surjective Banach operator ideal such that A ⊂ Adual dual and let
X be a Banach space. If X∗ has the A-AP, then X has the weak MAP for Adual .

Proof. By Proposition 3.5, if X∗ has the A-AP, then F (X; Y ∗∗)
∥·∥Adual

= Adual(X; Y ∗∗) for
every Banach space Y . Since Adual is injective, an immediate application of Corollary 3.4 gives
the result. �

If A is a closed operator ideal, then clearly also Adual is. Hence, from Proposition 3.7 and
Corollary 2.10, we get the following.

Proposition 3.8. Let A be a surjective closed operator ideal such that A ⊂ Adual dual and let
X be a Banach space. If X∗ has the A-AP, then X has the MAP for Adual .

In the special case A = K, recalling that the MAP for K coincides with the weak MAP
(see [23, Theorem 2.4]), Proposition 3.8 yields an alternative proof of the Lima–Oja result
mentioned in the beginning of this section.

A particular case of the A-AP is the KA-AP studied in detail in [18]. Here KA denotes the
ideal of A-compact operators of Carl and Stephani [3], those which send bounded sets into
A-compact sets. (Recall that a subset K of X is A-compact if it is contained in the closed
absolutely convex hull of an A-null sequence [3, Theorem 1.1].) In [18] KA was equipped
with a natural Banach operator ideal norm. Since KA is surjective (see [3, Theorem 2.1] and
[18, Proposition 2.1]) and KA = Kdual dual

A [18, Corollary 2.4], Proposition 3.7 implies the
following.

Corollary 3.9. Let A be a Banach operator ideal and X be a Banach space. If X∗ has the
KA-AP, then X has the weak MAP for Kdual

A .

A well-known special case of KA is the Banach operator ideal K p of p-compact operators.
This is the case when A = N p, the ideal of right p-nuclear operators (see [18, Remark 1.3]).
The K p-AP was launched by Delgado, Piñeiro and Serrano [9] under the name of κp-AP. Since
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K = K∞, the K∞-AP coincides with the classical AP. Also, for closed subspaces of an L p(µ)-
space, where 1 ≤ p < ∞, the K p-AP is the same as the AP [29, Theorem 1].

By [1, Remark 4.3] or [14, Theorem 2.8], Kdual
p = QN p isometrically (see also [10,34]),

where QN p is the ideal of quasi p-nuclear operators. It is well known that QN p ⊂ P p
isometrically. This leads us to the following lifting result.

Proposition 3.10. Let X be a Banach space and let 1 ≤ p < ∞. Suppose that QN p(X; Y ∗∗) =

P p(X; Y ∗∗) for every Banach space Y . If X∗ has the K p-AP, then X has the weak MAP for P p.

Proof. Suppose that X∗ has K p-AP. Since Kdual
p = QN p isometrically, by Corollary 3.9, X has

the weak MAP for QN p. Since QN p and P p are regular, a direct application of Corollary 3.2
completes the proof. �

It is known that QN p(X; Y ) = P p(X; Y ), 1 ≤ p < ∞, for all Banach spaces Y whenever
X is an Asplund space (equivalently, X∗ has the Radon–Nikodým property). (This result is
essentially due to Persson [32]: his proof for the special case when X∗ is separable or reflexive
goes through in the general case; this was firstly noticed probably in [37] and [17].) Therefore, a
direct application of Proposition 3.10 gives the following.

Corollary 3.11. Let X be an Asplund Banach space and let 1 ≤ p < ∞. If X∗ has the K p-AP,
then X has the weak MAP for P p.

Since P p is an injective Banach operator ideal, Theorem 2.12 allows us to consider indistinctly
the local MAP for P p or the weak MAP for P p, the latter being, by Theorem 1.4, equivalent to
the Saphar MAP of order p∗. It is known that if X∗∗ has the BAP of order p, then X has it (see
for instance [6, Proposition 21.7]). Let us discuss how X∗ is positioned in this framework. A first
result of this type can be found in [7, Corollary 2.9]. Also, relying on [39, Theorem 4], Delgado,
Piñeiro and Serrano related the AP of order p with the K p-AP [9, Corollary 2.5]. (Recall that a
Banach space X has the AP of order p, 1 ≤ p < ∞, if for all Banach spaces Y , the natural map
from Y ∗⊗gp X (the completion of Y ∗

⊗ X with the Chevet–Saphar tensor norm gp) to L(Y ; X)

is injective.)

Proposition 3.12 (Saphar–Delgado–Piñeiro–Serrano). Let X be a Banach space and let 1 <

p < ∞. If X∗∗ the AP of order p∗, then X∗ has the K p-AP.

We do not know if the K p-AP on X∗ implies the AP of order p∗ on X . However, thanks to
Corollary 3.11 and the above discussion we have the following.

Corollary 3.13. Let X be an Asplund Banach space and let 1 ≤ p < ∞. If X∗ has the K p-AP,
then X has the MAP of order p∗.

For any reflexive space X and any 1 < p < ∞, the AP of order p and the MAP of order p
coincide [35, Theorem 4.2]. Since reflexive spaces are Asplund, we have the following.

Corollary 3.14. Let X be a reflexive Banach space and let 1 < p < ∞. The following statements
are equivalent.

(i) X∗ has the K p-AP.
(ii) X has the weak MAP for P p.

(iii) X has the local MAP for QN p.
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(iv) X has the MAP of order p∗.
(v) X has the AP of order p∗.

The equivalence between (i) and (v) was previously obtained in [29, Corollary 8] for X being
a quotient of an L p(µ)-space, 1 < p < ∞.

4. Relations with approximation properties given by tensor norms

In this section we relate the properties under study with approximation properties given by
tensor norms. In order to proceed we recall some definitions and basic results. First of all, when
we use “tensor norm” we follow the terminology of Ryan’s book [38, p. 130] (according to the
Defant–Floret [6] terminology, this is a “finitely generated tensor norm”).

Let X and Y be Banach spaces and α be a tensor norm. Since X∗
⊗ Y = F (X; Y ), we

may (and shall) consider the normed space (F (X; Y ), α(.)). There is a bijective correspondence
between the classes of all maximal Banach operator ideals A and of all tensor norms α, in this
case A and α are said to be associated [6, 17.3]. If A and α are associated, then for all X and Y

∥S∥A ≤ α(S), S ∈ F (X; Y ) (4)

[6, 17.6]. In this case also (X ⊗α′ Y )∗ = A(X; Y ∗) isometrically, where α′ stands for the dual
tensor norm of α, under the duality

⟨T, u⟩ =

n
j=1

(T x j )(y j ), T ∈ A(X; Y ∗), u =

n
j=1

x j ⊗ y j ∈ X ⊗ Y,

and, similarly, A(X; Y ) = (X ⊗α′ Y ∗)∗ ∩ L(X; Y ) [6, 17.5].
Let α be a tensor norm. Recall (from [6, 21.7]) that a Banach space X has the bounded

α-approximation property with constant λ (α-λ-BAP) if for every Banach space Y the natural
mapping  : Y ∗

⊗α X → (Y ⊗α′ X∗)∗ satisfies α(u) ≤ λ∥ (u)∥, u ∈ Y ∗
⊗ X . Summarizing, we

may clearly reformulate the α-λ-BAP in the form of an ‘outer inequality’ (cf. [30, Definition 1.3])
as follows.

Let 1 ≤ λ < ∞. Let a tensor norm α be associated with a maximal Banach operator ideal
A. A Banach space X has the α-λ-BAP if and only if for every Banach space Y and every
S ∈ F (Y ; X)

α(S) ≤ λ∥S∥A(Y ;X).

Note that the Saphar λ-BAP of order p is precisely the gp-λ-BAP [6, 21.7].
Let A be a maximal Banach operator ideal A and α be associated with A. As usual (see

[6, 17.9] or [38, p. 197]), we denote by A∗ the adjoint Banach operator ideal of A. It is known,
that A∗ is maximal and A∗ is associated with the tensor norm α∗

:= (α′)t
= (αt )′, where αt

denotes the transpose of α. The following result connects the α-BAP with the local BAP for A∗.
It also provides a lifting result for the α-BAPs from dual spaces down to underlying spaces.

Theorem 4.1. Let A be a maximal Banach operator ideal associated with a tensor norm α. Let
1 ≤ λ, λ̃ < ∞ and X be a Banach space. Then the following statements hold.

(a) If X has the α-λ-BAP, then X has the local λ-BAP for A∗.
(b) If X has the local λ-BAP for A∗ and X∗ has the α′-λ̃-BAP, then X has the α-λλ̃-BAP.
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Proof. Suppose that X has the α-λ-BAP and take T ∈ A∗(X; Y ). Since A∗ is maximal, it is
regular [6, Corollary 17.8.2] and then JY T ∈ A∗(X; Y ∗∗) with ∥JY T ∥A∗ = ∥T ∥A∗ . Now, by
[6, Proposition 21.8], which describes the α-BAP of X as a property of an ‘approximation’
of operators from A∗(X; Y ∗∗), there exists a net (Sν) in F (X; Y ) such that Sν → T in
the weak operator topology on L(X; Y ) and supν α∗(Sν) ≤ λ∥JY T ∥A∗ = λ∥T ∥A∗ . After
passing to convex combinations, we may assume that Sν → T pointwise and by (4) we have
lim supν ∥Sν∥A∗ ≤ λ∥T ∥A∗ . Hence, X has the local λ-BAP for A∗.

To prove the second statement, take S ∈ F (Y ; X), S =
n

j=1 y∗

j ⊗ x j with
n

j=1 ∥y∗

j ∥ = 1.
Since

α(S) = α∗∗(S) = ((α∗)′)t (S) = (α∗)′
 n

j=1

x j ⊗ y∗

j


and (X ⊗(α∗)′ Y ∗)∗ = A∗(X; Y ∗∗), there is T ∈ A∗(X; Y ∗∗) with ∥T ∥A∗ = 1 such that

α(S) =

 n
j=1

(T x j )(y∗

j )

 . (5)

Since X has the local λ-BAP for A∗, given ε > 0 there is T0 ∈ F (X; Y ∗∗) such that ∥T0∥A∗ ≤ λ

and ∥T x j − T0x j∥ ≤ ε, j = 1, . . . , n. Then, from (5) we get

α(S) ≤

 n
j=1

(T0x j )(y∗

j )

 + ε.

Let us consider T ∗

0 JY ∗ ∈ F (Y ∗
; X∗) as an element of Y ∗∗

⊗α′ X∗. As was mentioned before,
(Y ∗∗

⊗α′ X∗)∗ = A(Y ∗∗
; X∗∗) isometrically. Since S∗∗

∈ F (Y ∗∗
; X∗∗) ⊂ A(Y ∗∗

; X∗∗) we may
write  n

j=1

(T0x j )(y∗

j )

 =
⟨S∗∗, T ∗

0 JY ∗⟩
 ≤ ∥S∗∗

∥Aα′(T ∗

0 JY ∗).

Now, as X∗ has the α′-λ̃-BAP and (A∗)dual is the maximal Banach operator ideal associated
with α′,

α′(T ∗

0 JY ∗) ≤ λ̃∥T ∗

0 JY ∗∥(A∗)dual ≤ λ̃∥T ∗

0 ∥(A∗)dual ≤ λ̃∥T ∗∗

0 ∥(A∗).

Finally, recall the fact [6, Corollary 17.8.4] that Bdual dual
= B isometrically whenever

B is a maximal Banach operator ideal. In our case, this gives that ∥S∗∗
∥A = ∥S∥A and

∥T ∗∗

0 ∥A∗ = ∥T0∥A∗ ≤ λ. Hence,

α(S) ≤ λ̃λ∥S∥A + ε,

and that is what we need, because ε is arbitrary. �

There is a class of tensor norms α, called totally accessible, for which all Banach spaces have
the α-MAP [6, Proposition 21.7]. Below we shall use the fact that g∗

p and g′
p∗ = /dp (where

/dp is the left injective associate of the Chevet–Saphar tensor norm dp) are totally accessible
[6, Corollary 21.1] and [38, Corollary 7.15 and Theorem 7.20], implying that all Banach spaces
enjoy the g∗

p-MAP and the g′
p∗ -MAP, 1 ≤ p ≤ ∞. Recall also that the ideal of p-integral

operators I p is the maximal ideal associated with the tensor norm gp and that I ∗
p = P p∗ ,

1 ≤ p ≤ ∞, [6, 17.12]. As easy applications of the above theorem, we first recover the Shaphar
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characterization of the λ-BAP of order p∗, and then exhibit an example of the local MAP for A
enjoyed by all Banach spaces, where A is not minimal (compare with Proposition 2.1).

Corollary 4.2 (Saphar, see Theorem 1.4). Let 1 ≤ λ < ∞ and 1 ≤ p ≤ ∞. A Banach space X
has the local λ-BAP for P p if and only if X has the λ-BAP of order p∗.

Proof. As was mentioned, the λ-BAP of order p∗ is precisely the gp∗ -λ-BAP and any Banach
space enjoys the g′

p∗ -MAP. Since P p = (I p∗)∗, with A = I p∗ and α = gp∗ , Theorem 4.1
establishes the equivalence between the both approximation properties. �

Recall from Corollary 2.14 that the local λ-BAP for P p is equivalent to the weak λ-BAP for
P p.

Corollary 4.3. Every Banach space has the local MAP for I p, 1 ≤ p ≤ ∞.

Proof. We know that I ∗
p is associated with g∗

p, every Banach space has the g∗
p-MAP and

I p = (I ∗
p)

∗. Hence, by Theorem 4.1(a), every Banach space has the local MAP for I p. �

Our final aim is to show that, unlike the local BAP for I p, there exist Banach spaces which
fail the weak BAP for I p. To this end, we need to recall the p-approximation property.

Let us denote by τp the topology of uniform convergence on p-compact sets. The
p-approximation property (1 ≤ p < ∞) of a Banach space X means that the identity map
IX can be approximated in τp by finite rank operators. The class of p-compact sets was first
introduced and studied in [40] together with the notion of the p-approximation property. With
the notion of A-compact sets (see Section 3), by [18, Remark 1.3], we know that p-compact
sets coincide with N p-compact sets, where N p denotes the ideal of right p-nuclear operators.
Associated to the class of p-compact sets we have the Banach operator ideal K p = KN p of
p-compact operators. For more information on p-compact sets and p-compact operators we
refer the reader to [1,5,9,10,14,29,31,34] and references therein. Let us remark that the ‘limit’
case p = ∞ would just give compact sets, compact operators and the classical AP.

Lemma 4.4. Let X, Y be Banach spaces and 1 ≤ p < ∞. The following statements hold.

(a) G N p
= GN p as linear subspaces of Y ∗⊗π X.

(b) c0,N p (X) = c0,N dual
p

(X) = c0,I dual
p

(X) = c0,P dual
p

(X).

(c) M
τp

= M
τ A

for any absolutely convex subset M of L(X; Y ) whenever A is
N p, N dual

p , I dual
p or P dual

p .

Proof. Statement (a) can be proved following the proof of [5, Theorem 2.7]. Let us prove (b). It
is well known that N p ⊂ I p ⊂ P p. Hence, N dual

p ⊂ I dual
p ⊂ P dual

p . We also have the inclusion
N p

⊂ N dual
p . Indeed, by definition, N p

= N(p,1,p) and N p = N(p,p,1), particular cases of
general (u, s, t)-nuclear operators [33, 18.1.1]. Since N reg

(p,1,p) = N dual
(p,p,1) [33, Theorem 18.1.6],

N p
⊂ N dual

p as claimed. The above inclusions immediately yield that

c0,N p (X) ⊂ c0,N dual
p

(X) ⊂ c0,I dual
p

(X) ⊂ c0,P dual
p

(X).

The missing link c0,N p (X) = c0,P dual
p

(X) is provided by [2, Corollary 3.4]. Finally, to show
(c) we appeal to [8, p. 73] implying that the classes of τp- and τN p -continuous functionals on
L(X; Y ) coincide. Therefore, the result follows from (a) and (b). �
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Proposition 4.5. Let A be N p, I p or P p, 1 ≤ p < ∞. If a Banach space X has the weak BAP
for A, then X has the p-approximation property.

Proof. Suppose that X has the weak λ-BAP for A for some λ. By Theorem 2.6, X has the λ-BAP

for A and τ Adual
. Then, IX ∈ F (X)

τ Adual

(to see this just take T = 0 in Definition 2.5). By the
above lemma, IX ∈ F (X)

τp , which means that X has the p-approximation property. �

As a consequence of the above proposition, for p > 2 the local BAP for I p differs from the
weak BAP for I p. The same happens with the ideal N p.

Proposition 4.6. Let 2 < p < ∞. There is a Banach space which has the local MAP for I p and
the local MAP for N p, but lacks the weak BAP for I p and the weak BAP for N p.

Proof. Fix 2 < p < ∞. Reinov’s result [36, Theorem 5.3,1] clearly implies that there exists
a Banach space X that fails the p-approximation property. Now, by Proposition 4.5, X fails to
have the weak BAP for I p and the weak BAP for N p. On the other hand, by Corollary 4.3 and
Proposition 2.1, X has the local MAP for I p and local MAP for N p for all p. �
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