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We unveil in concrete terms the general machinery of the syzygy-
based algorithms for the implicitization of rational surfaces in 
terms of the monomials in the polynomials defining the parame-
trization, following and expanding our joint article with M. Dohm. 
These algebraic techniques, based on the theory of approximation 
complexes due to J. Herzog, A. Simis and W. Vasconcelos, were 
introduced for the implicitization problem by J.-P. Jouanolou, 
L. Busé, and M. Chardin. Their work was inspired by the practical 
method of moving curves, proposed by T. Sederberg and F. Chen, 
translated into the language of syzygies by D. Cox. Our aim is 
to express the theoretical results and resulting algorithms into 
very concrete terms, avoiding the use of the advanced homological 
commutative algebraic tools which are needed for their proofs.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Let K be a field. We can assume K = Q (or any computable field) when dealing with implemen-
tations. All the varieties, rings and vector spaces we will consider are understood to be taken over K. 
Consider a rational parametrization

K2 f���K3

s = (s1, s2) �→
(

f1(s)

f0(s)
,

f2(s)

f0(s)
,

f3(s)

f0(s)

)
(1.1)
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of a (hyper)surface S := (F = 0) ⊂ A3, where F ∈ K[T1, T2, T3] is a non-constant polynomial and 
f i ∈ K[s1, s2]. (As usual, the dashed arrow means that f is defined on a dense open set of K2.) 
An important problem in computer aided geometric design is to switch from parametric to implicit 
representations of rational surfaces (Hoffmann, 1989), that is the parametrization f is assumed to be 
known and one seeks for the implicit equation F (which is defined only up to multiplicative constant). 
In fact, we will assume that f is given and our aim will not be to get the implicit equation F of S
written in terms of its monomials, but a matrix representation of the surface.

Definition 1.1. A matrix representation M of S is a matrix with entries in K[T1, T2, T3], generically 
of full rank, which verifies the following condition: for any point p ∈ K3, the rank of M(p) drops if 
and only if p lies on S .

The use of matrix representations goes back to Manocha and Canny (1991), and to Chionh and 
Goldman (1992). Having the matrix M is sufficiently good for many purposes and it is cheaper to 
compute. The well-developed theory and tools of linear algebra can be applied to solve geometric 
problems. We can certainly use the (numerical) rank dropping condition in Definition 1.1 to check 
membership in S , and, moreover, the whole structure of minors of M is related to the singularities 
of the parametrization (Botbol et al., 2014) and gives a way to invert it when the fiber has a single 
point (Busé, 2014; Botbol et al., 2014). Matrix representations are also useful for solving intersection 
problems as is shown in Aruliah et al. (2007), Thang et al. (2009), Diaz-Toca et al. (2013), Busé (2014). 
Much of the computational difficulty in these problems lies on computing ranks for polynomial ma-
trices (cf. Henrion and Sebek, 1999 as well as Section 5 in the nice and interesting paper Busé, 2014).

The motivation for this paper is to present in the simplest possible terms procedures for the im-
plicitization of rational surfaces via matrix representations, based on the syzygies (h0, . . . , h3) of the 
input polynomials, that is, 4-tuples of polynomials in the s variables verifying the linear relation ∑3

i=0 hi f i = 0. The theoretical justification is not naive and requires a good command of techniques 
of (homological) commutative algebra. However, the algorithms do not require a heavy background 
and are easy to explain. We will show that they perform very well, and moreover, they work even 
better in the presence of base points.

Call T1, T2, T3 the coordinates in the target of f . Our question is an instance of elimination of 
variables, where we want to find the algebraic relations among the variables T1, T2, T3 under the as-
sumption that f0(s)Ti − f i(s) = 0, i = 1, 2, 3, for some s in the domain of f . The eliminant polynomial 
by excellence is the determinant det(A), a polynomial with integer coordinates on the coefficients of 
a square matrix A, which vanishes on those coefficients for which there exists a nonzero solution x to 
the equations A · x = 0. Elimination of variables is done in the literature through different incarnations 
of the following general strategy:

(1) Reduce the problem to a linear algebra problem.
(2) Hide the variables one wants to eliminate in the (typically monomial) bases.
(3) Use determinants.

This strategy is also the core in our syzygy-based algorithms.
The following short account of the approach of the use of syzygies in our context is reconstructed 

from David Cox’s lecture at the Conference PASI on Commutative Algebra and its connections to Ge-
ometry honoring Wolmer Vasconcelos, held in Brazil in 2009 (Corso and Polini, 2011, Mini Course 1). 
The use of syzygies for the implicitization of (conic) surfaces goes back to Steiner in 1832 (Steiner, 
1832). In 1887, Meyer describes in Meyer (1887) syzygies of three polynomials and makes a general 
conjecture proved by Hilbert in 1890 (Hilbert, 1890). Surface implicitization by eliminating param-
eters was studied by Salmon in 1862 (Salmon, 1958) and Dixon in 1908 using resultants (Dixon, 
1908). In 1995, Sederberg and Chen reintroduced the use of syzygies, by a method termed as Moving 
curves and surfaces (Sederberg and Chen, 1995). Cox realized they were using syzygies (Cox, 2001), 
and produced several papers with other coauthors (Cox et al., 1998b; Busé et al., 2003; Cox, 2003a;
Zheng et al., 2003; Chen et al., 2005). In 2002, Busé and Jouanolou (2003) abstracted and generalized 
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on a sound basis the method of Sederberg–Chen via approximation complexes, a tool in homological 
commutative algebra that had been developed by Herzog et al. (1982, 1983a, 1983b). Busé, Chardin, 
Jouanolou and Simis produced further advances in the homogeneous case (Busé and Jouanolou, 2003;
Busé and Chardin, 2005; Chardin, 2006; Busé et al., 2009, 2010). Goldman et al. studied the cases of 
planar and space curves (Jia and Goldman, 2009; Hoffman et al., 2010; Jia et al., 2010). A general-
ization of the linear syzygy method when the support of the input polynomials is a square (that is, 
bihomogeneous of degree (d, d)) was proposed by Busé and Dohm (2007), and for any polygon by 
Botbol et al. (2009), and Botbol (2009, 2011a, 2011b). This method is particularly adapted when the 
polynomials defining the parametrization are sparse, which is often the case. This will be our point of 
view in this article. So, we want to solve the following problem.

Problem. Given a rational parametrization f as in (1.1), find a matrix representation M of the surface 
S by means of syzygies and the monomial structure of f0, . . . , f3.

The main general algorithmic answer to this problem is given in Algorithm 3.1 (see Theorem 3.3). 
Our assumption that the dimension of S is 2 is equivalent to the fact, when we extend the map to 
the algebraic closure K of K, that for almost all p = f (s) in the image of f , the number of preimages 
by f is finite. This number is called the degree of f and noted deg( f ). The matrix representations 
M of S provided by Algorithms 3.1 and 3.6 moreover satisfy that the greatest common divisor of all 
minors of M of maximal size equals F deg( f ) .

We present in Section 2 the first naive linear algebra algorithm to compute the implicit equation 
F , which requires to solve a huge linear algebra system. Moreover, this naive method “forgets” the 
parametrization and thus in general it is not useful in Computer Aided Geometric Design. In Section 3
we recall previous results on the implicitization of curves and surfaces using syzygies and present our 
general methods of implicitization via linear syzygies, which requires to solve considerably smaller 
systems. We highlight in Section 3.1 the main elimination step, which was termed instant elimination
in Eisenbud (2004) (see also the references therein).

In Section 3.3 we present in Theorem 3.8 a refinement of Theorem 3.3 for bihomogeneous 
parametrizations, in the same spirit. Technicalities are avoided in our presentation in these sections, 
and in particular in the statement of our main results Theorems 3.3 and 3.8.

Detailed hypotheses and proofs are deferred to Section 4, where we introduce the necessary back-
ground on toric geometry. We collect in Appendix A a general overview of the rationale of the tools 
and results from homological commutative algebra required for the proofs. A reader only interested in 
the application of our results, can skip these two sections, except for the explanation in Remark 4.7
which addresses the question of running our main algorithm without checking hypotheses on the 
base points.

Section 5 illustrates the practicality and advantages of our approach. For our computations, we use 
implementations in Macaulay 2, which need different type of homogenizations to use current routines 
(via a toric embedding or a multihomogenization via an abstract toric Cox ring) (Botbol and Dohm, 
2010; Botbol, 2010).1 For the best performance of our algorithms, it would be important to design 
ad-hoc structured linear algebra strategies to compute syzygies in the sparse case.

2. A naive linear algebra answer

The convex hull in Rn of the exponents of the monomials occurring in a nonzero (Laurent) 
polynomial h in n variables is called the Newton polytope N (h) of h. When h is a polynomial in 
(s1, s2) of degree (at most) d, its Newton polygon N (h) is contained in the triangle �d with vertices 
(0, 0), (d, 0), (0, d). The Euclidean area vol(�d) of this triangle is d2/2 and its lattice area volZ(�d) is 
equal to 2 · d2/2 = d2, which is always an integer.

We have the following classical result (cf. for instance Busé and Jouanolou, 2003):

1 Routine updates at: http://mate.dm.uba.ar/~nbotbol/Macaulay2/BigradedImplicit.m2, http://mate.dm.uba.ar/~nbotbol/
Macaulay2/MatrixRepToric.m2.

http://mate.dm.uba.ar/~nbotbol/Macaulay2/BigradedImplicit.m2
http://mate.dm.uba.ar/~nbotbol/Macaulay2/MatrixRepToric.m2
http://mate.dm.uba.ar/~nbotbol/Macaulay2/MatrixRepToric.m2


496 N. Botbol, A. Dickenstein / Journal of Symbolic Computation 74 (2016) 493–512
Theorem 2.1. For generic polynomials f0, . . . , f3 of degree d, the degree of the implicit equation F is d2 and 
its Newton polytope is the tetrahedron with vertices (0, 0, 0), (d2, 0, 0), (0, d2, 0), (0, 0, d2).

In the sparse case, the following generalization holds (Sturmfels and Yu, 1994).

Theorem 2.2. For generic polynomials f0, . . . , f3 with the same Newton polygon P , the degree of F is the 
lattice area v = volZ(P ) and its Newton polytope is the tetrahedron with vertices (0, 0, 0), (v, 0, 0), (0, v, 0), 
(0, 0, v).

A first naive algorithm would then be the following. Assume the Newton polytope N (F ) of F is 
known (as in the previous theorems) and number m1, . . . , mN ∈ N3 the integer points (also called 
lattice points) in N (F ). Consider indeterminates c = (c1, . . . , cN) and write F = ∑N

i=1 ci T mi . Substi-
tute T = f (s) and equate to zero the coefficient of each power of (s1, s2) that occurs (clearing the 
denominator). This sets a system L of linear equations in c, with solution space of dimension 1. Any 
nonzero solution c of L will give a choice of implicit equation F .

This solves the problem, but, which is the size of this linear system L?

The number of lattice points in �d equals 
(d2+3

3

)
. In the sparse case, the number of lattice points of 

a given lattice polygon P can be computed via a theorem of Ehrhart valid in any dimension (Ehrhart, 
1967), which amounts to Pick’s formula in the case dimension 2. Given a positive integer t , we denote 
by t P the Minkowski sum of P with itself t times, i.e. t P = {p1 + · · · + pt , pi ∈ P for i = 1, . . . , t}. The 
number of lattice points in t P equals

#(t P ∩Z2) = vol(P )t2 + 1

2
volZ(∂ P )t + 1, (2.1)

where volZ(∂ P ) denotes the number of lattice points in the boundary of P . In particular, #(P ∩Z2) =
vol(P ) + 1

2 volZ(∂ P ) + 1.
The proof of the following result is straightforward:

Lemma 2.3. In case f0, . . . , f3 are generic polynomials of degree d in (s1, s2), the number of unknowns in the 
linear system L in the coefficients of the implicit equation F is 

(d2+3
3

)
(approximately d6/6) and the number 

of equations is 
(d3+2

2

)
(approximately d6/2).

For any lattice polygon P and generic polynomials f i with Newton polytope P , the linear system L has (volZ(P )+3
3

)
(approximately volZ(P )3/6) variables and volZ(P )3

2 + volZ(P )2

2 volZ(P ) + 1 equations (approxi-
mately volZ(P )3/2).

We will see in Remark 3.5 of Section 3 that the size of the involved linear systems in the syzygy 
based methods is drastically smaller.

3. The main algorithm based on linear syzygies

Our main result is Theorem 3.3, which has a wide applicability. We distill and state it in naive 
terms, which do not call upon the more sophisticate tools recalled in Section 4 and Appendix A
required for its proof. This is why we postpone the detail of Hypotheses 4.4 and 4.8 until Section 4. 
Our approach is an inhomogeneous translation of the basic general algorithm for the sparse case in 
Botbol et al. (2009), which were inspired by the methods (Busé and Jouanolou, 2003) for classical 
homogeneous polynomials.

Before moving to the implicitization of rational surfaces, we recall the practical approach of moving 
lines proposed by Sederberg and Chen (1995) for the implicitization of planar curves.
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3.1. Curves

A planar rational curve C over a field K is given as the image of a map

K1 f���K2

s �→
(

f1(s)

f0(s)
,

f2(s)

f0(s)

)
,

with f i ∈ K[s] polynomials of degree d in s. We can assume without loss of generality that 
gcd( f0, f1, f2) = 1. Remark that a linear syzygy can be represented as a linear form L = h0T0 +h1T1 +
h2T2 in the new variables T = (T0, T1, T2) with hi ∈ K[s] such that

∑
i=0,1,2

hi f i = 0.

With this incarnation, a linear syzygy was termed a moving line. For any ν ∈ N, consider the finite-
dimensional K-vector space Syz( f )ν of linear syzygies satisfying deg(hi) ≤ ν , and call N(ν) its di-
mension.

Pick a K-basis hi = (hi
0, h

i
1, h

i
2), i = 1, . . . , N(ν) of Syz( f )ν . Consider the standard monomial basis 

{1, s, . . . , sν} of polynomials in s of degree at most ν and write for each syzygy hi :

Li = Li(s, T ) =
∑

j=0,1,2

hi
j(s)T j =

∑
j=0,1,2

(
ν∑

k=0

ci
jksk

)
T j

=
ν∑

k=0

⎛
⎝ ∑

j=0,1,2

ci
jk T j

⎞
⎠ sk.

Let Mν be the N(ν) × (ν + 1) matrix of coefficients of the Li ’s with respect to the basis {1, s, . . . , sν}:

Mν =
⎛
⎝ ∑

j=0,1,2

ci
jk T j

⎞
⎠

i=1,...,N(ν),k=0,...,ν

.

Observe that the variable s has disappeared. This is the main elimination step!

It is known that for ν = d − 1, the matrix Mν is a square matrix with det(Mν) = F deg( f ) , where 
F is an implicit equation of C . In case ν ≥ d, then Mν is a non-square matrix with more columns 
than rows, but still the greatest common divisor of its minors of maximal size equals F deg( f ) . In both 
cases, for ν ≥ d − 1, a point P ∈ P2 lies on C iff the rank of Mν(P ) drops.

In other words, one can always represent the curve as a square matrix of linear syzygies, which 
gives a matrix representation of the implicit equation. In principle, one could now actually calculate the 
implicit equation, but the matrix Mν is easier to get and well suited for numerical methods (Aruliah 
et al., 2007). As we remarked in the surface case, testing whether a point p lies on the curve only 
requires computing the rank of Mν evaluated in p. Also, the singularities of C can be read off from 
Mν (Jia and Goldman, 2009; Cox et al., 2013; Busé and D’Andrea, 2012).

In the absence of common zeros of f0, f1, f2, it is possible to find the implicit equation via a 
resultant computation. Note that for a parametrization with polynomials of degree d, the Sylvester 
resultant matrix uses a matrix of size 2d, while the syzygy method uses a matrix of size d, as the 
Bézout resultant (indeed, one first needs to solve a linear system of size d × 2d to find a basis of 
syzygies of degree d − 1).
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3.2. The general method of implicitization via linear syzygies for surfaces

Assume we are given a rational parametrization of a surface S as in (1.1). We aim at finding 
a matrix representation for S . Note that we can in principle assume that ( f0, . . . , f3) are Laurent 
polynomials admitting negative exponents, but after multiplying them by a common monomial, we 
get a new rational parametrization of S defined by polynomials f i ∈ K[s1, s2]. We will then assume, 
without loss of generality, that we have a lattice polygon P which lies in the first orthant of R2 and 
contains the Newton polytopes of f0, . . . , f3.

We saw that in the curve case, it is always possible to find a square matrix representation. In the 
surface case, however, linear syzygies provide in general rectangular matrix representations and the 
implicit equation (raised to the degree of the map f ) equals the great common divisor of the maximal 
minors (or the determinant of a complex). A recent paper by Busé (2014) presents a very interesting 
square matrix representation out of a matrix representation M when we work over the real numbers, 
by considering the square matrix MMt . This approach is natural because of the properties of the 
rank of a real matrix with respect to its singular value decomposition. The determinant of MMt gives 
an implicit equation for S (in general, it gives F with multiplicity), which is moreover a sum of 
squares. As Busé observes, for complex matrices it would be enough to replace the transpose Mt by 
the conjugate transpose.

The paper (Chen et al., 2005) translated to the general case of (parametric) surfaces the method 
of moving lines developed for curves, by considering a so-called μ-basis. They showed that μ-bases 
always exist, they are a basis of the moving plane module of the rational surface, and that they are 
a basis of the moving surface ideal of the rational surface if the base points of the parametrization 
are local complete intersections. As no bound on the degrees of the basis of syzygies is given, the 
associated implementation requires the use of Gröbner basis computations (except for special cases, 
as in Wang and Chen, 2012). By introducing a fixed support 2P for the syzygies in Algorithm 3.1, we 
are able to find the implicit equation under the general strategy explained in the introduction.

The use of quadratic relations (i.e. linear syzygies among the products f i f j of any of two of the 
polynomials f i defining the parametrization) was proposed to construct square matrices (Sederberg 
and Chen, 1995; Cox et al., 1998b; Cox, 2001; D’Andrea, 2001; Adkins et al., 2005). Khetan and D’An-
drea generalized in 2006 (Khetan and D’Andrea, 2006) the method of moving quadrics to the toric 
case. These syzygies among the f i f j are termed as “quadratic syzygies”, even if they are linear rela-
tions on these products. This is why in the context of this paper, one uses the redundant name “linear 
syzygies” for the standard linear relations among the given polynomials f i .

The choice of the quadratic syzygies is in general not canonical and the cost of computing syzy-
gies is increased. Note that syzygies in ( f0, . . . , f3) and the implicit equation F have a common 
shape. Indeed, linear syzygies h = (h0, . . . , h3) of degree ν correspond to polynomials H(s, T ) =∑3

i=0 hi(s)Ti such that 
∑3

i=0 hi(s) f i(s) = 0, with deg(H) in the s variables equal to ν , and deg(H)

in the T variables equal to 1. Also, quadratic syzygies of degree ν ′ correspond to polynomials 
H(s, T ) = ∑3

i≤ j=0 hi, j(s)Ti T j such that 
∑3

i, j=0 hi, j(s) f i f j(s) = 0, with deg(H) in the s variables equal 
to ν ′ , and deg(H) in the T variables equal to 2. The implicit equation (of degree D) is a polynomial 
H(s, T ) = ∑

|α|≤D hα T α such that 
∑

α hα f α1
1 (s) = 0. Thus, deg(H) in the s variables equals 0, and 

deg(H) in T variables equals D . So to go from linear syzygies to the implicit equation, in some sense 
one has to play the game of lowering the degree in the s variables to 0 (which increases the degree 
in the T variables up to D).

We now present our main general algorithm to construct matrix representations of parametrized 
surfaces. Clearly, given any lattice polygon P ⊂ R2, 2P = {p1 + p2, pi ∈ P } is again a lattice polygon. 
Moreover, in dimension two, any lattice polygon is normal, which is implicitly used in the algorithm. 
This means that 2P ∩Z2 = {p1 + p2, pi ∈ P ∩Z2}.

Algorithm 3.1. The following algorithm produces a matrix of polynomials in (T1, T2, T3) out of the 
input polynomials f0, . . . , f3 in variables s = (s1, s2):

• INPUT: A lattice polytope P and polynomials ( f0(s), f1(s), f2(s), f3(s)) with no common factor 
and Newton polytopes N ( f i) contained in P .
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• STEP 1: Let (h( j)
0 , . . . , h( j)

3 ), j = 1, . . . , N , be a K-basis of the syzygies (h0, . . . , h3) with 
N (hi) ⊂ 2P .

• STEP 2: Represent the syzygies as linear forms L j = h( j)
0 T0 + · · · + h( j)

3 T3. Write h( j)
i =∑

β∈2P∩Z2 h( j)
i,β sβ and switch:

L j =
∑

i

h( j)
i T i =

∑
β

(∑
i

h( j)
i,β Ti

)
sβ.

• OUTPUT: The matrix M of linear forms � j,β := ∑
i h( j)

i,β Ti .

We illustrate the steps in Algorithm 3.1 in the following example.

Example 3.2. Let P be the lattice polygon with vertices (0, 0), (0, 1), (2, 0) and (1, 1), with lattice 
points p0, . . . , p4, as in the figure. We consider the following four polynomials with support in P , 
where we denote s := (s1, s2), and given p := (i, j) we write sp := si

1s j
2:

f0 = 1 + 3s1 + s2
1 + 2s2 + s1s2 = sp0 + 3sp1 + sp2 + 2sp3 + sp4 ,

f1 = 5sp0 − sp1 − sp2 + 2sp3 − sp4 ,

f2 = 7sp0 + 3sp1 + 2sp2 + 6sp3 + 3sp4 ,

f3 = 11sp0 + 0sp1 + 4sp2 + 3sp3 + 5sp4 .

To compute the syzygies in Step 1, we consider the morphism (a0, a1, a2, a3) �→ ∑
i ai f i , where ai

are polynomials with support in 2P . Let B be the matrix of this map in the monomials bases. Since 
2P has 12 lattice points and 

∑
i ai f i has support in 3P , which has 22 lattice points, then B is a 

Sylvester matrix of size 22 × 48. It can be easily checked that B is full ranked (same as for generic 
polynomials). Thus, the kernel of B has dimension N = 48 − 22 = 26, which is the number of linearly 
independent syzygies.

To construct the matrix M , assume that we choose as our first syzygy the following 4-tuple of 
polynomials (h(1)

0 , . . . , h(1)
3 ) with N (h(1)

i ) ⊂ 2P :

h(1)
0 = −196s2p0 + 504sp0+p1 − 257sp0+p2 + 672sp0+p3 + 234sp0+p4 ,

h(1)
1 = −237sp0+p2 + 420sp0+p3 − 168sp0+p4 ,

h(1)
2 = 28s2p0 + 10sp0+p2 − 364sp0+p3 + 226sp0+p4 , and

h(1)
3 = −216sp0+p4 .

We consider L1 = h(1)
0 T0 + · · · + h(1)

3 T3 and we write

L1 = (−196T0 + 28T2)s2p0 + (504T0)sp0+p1 + (−257T0 − 237T1 + 10T2)sp0+p2

+ (672T0 + 420T1 − 364T2)sp0+p3 + (234T0 − 168T1 + 226T2 − 216T3)sp0+p4 ,

which gives the first column of the 26 × 12-matrix M (computed with the computer-algebra system 
Macaulay2, Grayson and Stillman)

| -196T_0+28T_2 0 0 ...
| 504T_0 -196T_0+28T_2 0 ...
| -257T_0-237T_1+10T_2 504T_0 -196T_0+28T_2 ...
| 672T_0+420T_1-364T_2 0 0 ...
| 234T_0-168T_1+226T_2-216T_3 672T_0+420T_1-364T_2 0 ...
| 0 -257T_0-237T_1+10T_2 504T_0 ...
| 0 234T_0-168T_1+226T_2-216T_3 672T_0+420T_1-364T_2 ...
| 0 0 -257T_0-237T_1+10T_2 ...
| 0 0 234T_0-168T_1+226T_2-216T_3...
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| 0 0 0 ...
| 0 0 0 ...
| 0 0 0 ...

12 26
Matrix (QQ[T , T , T , T ]) <--- (QQ[T , T , T , T ])

0 1 2 3 0 1 2 3

The columns of this matrix M are given by a choice of a basis of syzygies with support in 
2P . The corresponding linear forms L1, . . . , LN are known as the moving planes defining the surface 
parametrized by f1, . . . , f3. The associated rational map f has deg( f ) = 1. It can be checked that the 
common factor of any maximal minor of M is the degree 3 implicit equation of the closed image 
of f :

F = 2643T 3
0 + 2905T 2

0 T1 + 1345T0T 2
1 + 91T 3

1 − 8T 2
0 T2 − 444T0T1T2 + 284T 2

1 T2 + · · · ,

as asserted by Theorem 3.3 below.
Note that we have to write the lattice points in 2P as a sum of two points in P , but in general 

there is not a unique way of doing this. In our example, for instance, p0 + p2 = p1 + p1, so a choice 
was made. In fact, it is possible to make a coherent choice in general with the use of weight vectors, 
but any choice will work since in the quotient ring A defined in (4.7) below, it holds that X0.X2 and 
X2

1 are identified.

We now state our main result. The proof will be given in Section 4.

Theorem 3.3. Given ( f0(s), f1(s), f2(s), f3(s)) with no common factor, with Newton polytopes contained in 
P and satisfying Hypotheses 4.4 below, Algorithm 3.1 computes a presentation matrix of the implicit equation 
of the rational map f . That is, the rank of the matrix M drops precisely when evaluated at the points in the 
closure of the image of f .

Moreover, the implicit equation F can be computed (up to multiplication by a nonzero constant) as

F deg( f ) = gcd(maximal minors of M). (3.1)

The main ingredient for the validity of Algorithm 3.1 to give a matrix representation is the choice 
2P ∩ Z2 of the support of the linear syzygies. Again, the “instant” elimination is done in STEP 2, 
where the s variables give the monomial basis which is used to compute the matrix M (and thus 
they disappear from the output!).

In fact, Algorithm 3.3 can be run without checking Hypotheses 4.4. We point out in Remark 4.7
the possible outcomes. The general algorithm can be refined using Theorem 11 in Botbol et al. (2009).

Theorem 3.4. Assume f satisfies the hypotheses of Theorem 3.3. If the lattice polygon P can be written as 
a multiple P = dP ′ of another lattice polygon P ′ without interior lattice points, then we can consider in
STEP 1 of Algorithm 3.1 syzygies (h0, . . . , h3) with smaller support N(hi) contained in (2d − 1)P ′ (which is 
strictly contained in 2P ), and the OUTPUT will still be a matrix representation for f . Moreover, in case P ′ is 
the unit simplex, it is enough to consider syzygies with support inside (2d − 2)P ′ .

We then have the following comparison between the general syzygy method and the naive linear 
algebra method described in Section 2.

Remark 3.5. Assume that P is the triangle of size d. Then, as it is enough to consider syzygies of 
degree 2d − 2, they can be found by solving a linear system on 4

(2d
2

)
variables with 

(3d
2

)
equations. 

That is, both sizes, as well as the vector space dimension of the space of syzygies in this degree, are 
quadratic in d. The matrix M has then a number of rows quadratic in d. The number of its columns 
equals 

(2d
2

)
, again quadratic in d. Comparing with the sizes in Lemma 2.3, which are of degree 6 in d, 

we observe that the syzygy method is a great improvement on the naive linear algebra method!
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The same improvement occurs for any lattice polygon P . Using (2.1), we see that syzygies with 
support in 2P can be obtained by solving a system with approximately 9 vol(P ) equations in 16 vol(P )

variables and both row and column sizes of the matrix representation M are of the order of vol(P )

and not of its cube, as in Lemma 2.3.

3.3. The bihomogeneous case and beyond

As we have mentioned, the main motivation for the implicitization problem comes from Computer 
Aided Geometric Design and geometric modeling. In this area, bihomogeneous surfaces (correspond-
ing to rectangular support P ) are known as tensor product surfaces, and they play a central role, 
in particular the Bézier surfaces. Quoting Dietz (1998): “In current CAD systems tensor product surface 
representations with their rectangular structure are a de facto standard”. These surfaces (called NURBS) are 
given by pieces of parametrized surfaces cut by curves. So, it is necessary to control the location of 
the parameter, which can be achieved by computing the kernel of the matrix representation we give, 
as explained in Busé (2014).

Due to the nature of the base locus of the parametrization, many of the current geometric mod-
eling systems do not satisfy the hypotheses to be detailed in Hypotheses 4.4 needed for Theorem 3.3
to hold, if considered as homogeneous polynomials (with P an equilateral triangle). But if we use 
a rectangle P as the input in Algorithm 3.1, it is possible to get a full-ranked matrix representation 
by Theorem 3.3. In this bihomogeneous case, the detailed study of regularity in Botbol and Chardin
(in press) allows to get the following improvement in the support of the proposed linear syzygies in 
STEP 1 of Algorithm 3.1: it is enough that the support of these syzygies is contained in a polygon 
obtained by only enlarging the rectangle support P of the input polynomials (approximately) to its 
double in only the horizontal or the vertical direction, instead of considering syzygies with support in 
(the lattice points of) 2P .

A more general result can be obtained for bigraded toric surfaces, and in particular for lattice 
polygons defining a Hirzebruch surface, that is, for Hirzebruch quadrilaterals Ha,b,n with vertices 
(0, 0), (a, 0), (0, b) and (a + nb, b), for any a, b, n ∈ N. We state this extension in Theorem 3.8 be-
low.

Algorithm 3.6. Take as INPUT a Hirzebruch lattice polygon P = Ha,b,n and bivariate polynomials 
( f0, f1, f2, f3) with Newton polygons contained in Ha,b,n , and which satisfy the Hypotheses 4.8. Run 
Algorithm 3.1 with the following modification: in STEP 1 consider a basis of syzygies with support in 
the smaller lattice quadrilaterals H2a−1,b−1,n (or Ha−1,2b−1,n instead). The OUTPUT is the correspond-
ing matrix M of linear forms.

In most cases, it is convenient to consider syzygies with support in H2a−1,b−1,n rather than in 
Ha−1,2b−1,n since the first one has less lattice points.

In general, a Hirzebruch lattice polygon Hx,y,n has the shape in the 
diagram on the right.

Remark 3.7. Note that for n = 0, Ha,b,0 is the standard lattice rectangle with vertices in (0, 0), (a, 0),

(0, b), (a, b), and thus Algorithm 3.6 works in particular in a standard bihomogeneous setting.

Theorem 3.8. Given ( f0(s), f1(s), f2(s), f3(s)) with no common factor, with Newton polytopes contained 
in Ha,b,n and satisfying Hypotheses 4.8 below, Algorithm 3.6 computes a presentation matrix of the implicit 
equation of the rational map f . That is, the rank of the output matrix M drops precisely when evaluated at the 
points in the closure of the image of f .
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Moreover, the implicit equation F can be computed (up to multiplication by a nonzero constant) as

F deg( f ) = gcd(maximal minors of M). (3.2)

The proof of Theorem 3.8 will be also given in Section 4.

4. The hypotheses via toric geometry and the proofs of our main results

In this section we will recall a minimum of theoretical tools from toric geometry in order to state 
the hypotheses needed for Theorems 3.3 and 3.8 and to give their proofs. The main homological 
commutative algebra tools that are the core of the proofs are recalled in Appendix A.

We refer to Cox (2003b), Fulton (1993), Cox et al. (2011) and Gel’fand et al. (1994, Chs. 5&6) for the 
general notions, and to Khetan and D’Andrea (2006, §2), Botbol et al. (2009), Botbol (2011a) for appli-
cations to the implicitization problem. Any reader only interested in the application of Algorithm 3.1
or its bihomogeneous (toric) refinement given in Algorithm 3.6 can skip this section.

As usual, we denote by K∗ =K \ {0} the multiplicative group of units of K. The first observation is 
that we can equivalently consider our parametrization (1.1) as a map f̃ :K2 ��� P3(K) or f̃ : (K∗)2 ���
P3(K) with image inside 3-dimensional projective space, and domain a dense open set U in affine 
space K2 or the torus (K∗)2 over K, given by

s �→ ( f0(s) : f1(s) : f2(s) : f3(s)), (4.1)

for any s ∈ U , and we have the commutative diagram

(K∗)2 f

f̃

K3

ι

P3.

(4.2)

In fact, if F is the implicit equation of the (closure of the) image of f , the (closure of the) image of f̃
is the closure of S under the standard embedding K3 ↪→ P3(K) and its equation is the homogeniza-
tion of F .

Similarly, we can consider our rational parametrization from any algebraic variety which contains 
the domain of f as a dense subset. We will choose embedded or abstract compact toric varieties to 
get a degree or multidegree notion that will allow us to get homological arguments to “bound” the 
support of the syzygies in Theorems 3.3 and 3.8.

4.1. Toric embeddings

Let f̃ be a rational map as in (4.1). The base points of the parametrization are the common zeros 
of f0, . . . , f3, that is, the points where the map is not defined. We assume that f̃ is a generically 
finite map onto its image and hence it parametrizes an irreducible surface S ⊂ P3. We also assume 
without loss of generality that gcd( f0, f1, f2, f3) = 1, which means that there are only finitely many 
base points.

Let P ⊂ R2 be a lattice polygon with m + 1 lattice points, which contains the Newton polygons 
N ( f0), . . . , N ( f3). Write P ∩ Z2 = {p0, . . . , pm}. The polygon P determines a projective toric surface 
TP ⊆ Pm as the closed image of the embedding

(K∗)2 ρ→ Pm

(s1, s2) �→ (. . . : spi : . . .)
where i = 0, . . . , m. For example, the unit triangle with vertices (0, 1), (1, 0) and (0, 0) (or any lat-
tice translate of it) corresponds to P2, and any lattice rectangle gives a Segre–Veronese projective 
embedding of P1 × P1, which are special cases of toric embeddings.
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Example 4.1. Assume P is the unit square, with m + 1 = 4 integer points:

p0 = (0,0), p1 = (1,0), p2 = (0,1), p3 = (1,1).

A polynomial f i with Newton polytope contained in P looks like

f i(s) = a(0,0) + a(1,0)s1 + a(0,1)s2 + a(1,1)s1s2. (4.3)

We take 4 new variables (X0 : X1 : X2 : X3) as the homogeneous coordinates in P3. The toric variety 
TP is the projective variety in P3 cut out by the relation X0 X3 − X1 X2 = 0. This binomial equation 
comes from the primitive affine relation p0 + p3 = p1 + p2, which implies the multiplicative rela-
tion sp0 sp3 = sp1 sp2 between the monomials with these exponents. The coordinate ring of TP is the 
quotient ring K[X0, . . . , X3]/〈X0 X3 − X1 X2〉.

In general, we will call (X0 : · · · : Xm) the homogeneous coordinate variables in Pm . Write P ∩Z2 =
{p0, . . . , pm}. We set one variable Xi for each integer point pi in P and we record multiplicatively (by 
binomial equations) the affine relations among these points. These binomials generate the toric ideal 
J P = J (TP ), which defines the variety TP ⊂ Pm . To each

f i(s) =
m∑

i=0

api s
pi , (4.4)

we associate the homogeneous linear form

gi(s) =
m∑

i=0

api Xi . (4.5)

For instance, in Example 4.1, the polynomial f i gets translated to

gi(X0, . . . , X3) = a(0,0) X0 + a(1,0) X1 + a(0,1) X2 + a(1,1) X3,

and over TP , we have the relation X0 X3 − X1 X2 = 0.
The rational map f̃ factorizes through TP in the following way

(K∗)2 f̃

ρ

P3

TP

g
(4.6)

where g = (g0 : g1 : g2 : g3) is given by four homogeneous linear polynomials g0, g1, g2, g3 in m + 1
variables. Thus, we have a new homogeneous parametrization g of the closed image of f̃ from TP . 
The polynomials gi generate an ideal I in the coordinate ring

A = K[X0, . . . , Xm]/ J P (4.7)

of TP . This ideal I defines the structure of the base locus in TP .
The embedding ρ : (K∗)2 → P3 provides a Z-grading in the coordinate ring A of TP , which is 

used to study the map g with the tools recalled in Appendix A.

4.2. Abstract toric varieties and Cox rings

Given a lattice polygon P , one can also associate to it an abstract compact toric variety X P that 
naturally contains the torus (K∗)2 as a dense open set (via the map we call j below), adjoining a 
torus invariant divisor to each edge of P . We refer the reader to Cox et al. (1998a, 2011) for the 
theory and details.

The map f̃ also defines a rational map f that makes the following diagram commutative:
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X P

f

(K∗)2

j

ρ

f̃
P3

TP

g

(4.8)

Example 4.2. Assume P is the unit square, with N = 4 edges: the segments E1 = [(0, 0), (1, 0)], E2 =
[(0, 0), (0, 1)], E3 = [(0, 1), (1, 1)], and E4 = [(1, 0), (1, 1)]. The respective inner normal vectors η1 =
(0, 1), η2 = (1, 0), η3 = (0, −1), η4 = (−1, 0) satisfy the linear relations η1 +η3 = 0, η2 +η4 = 0, which 
give rise to two homogeneities. We introduce four associated variables Y = (Y1, . . . , Y4). A polynomial 
f i with Newton polytope P as in (4.3) defines a bihomogeneous polynomial (in (Y1, Y3) and (Y2, Y4)):

f i(Y ) = a(0,0)Y3Y4 + a(1,0)Y1Y4 + a(0,1)Y2Y3 + a(1,1)Y1Y2.

These polynomials f i define the map f = ( f 0 : . . . , f 3).

The main motivation for this change of perspective comes again from the commutative algebra 
results needed for the proof of Theorems 3.3 and 3.6. The Cox ring of X P is endowed with a more nat-
ural multigrading, which is finer than the grading obtained via the embedded projective variety TP . 
Also, this point of view has an impact in the computations, as the number of variables to eliminate is 
smaller (one for each edge of P , instead of one for each lattice point in P ). In our small Example 4.2, 
there are four edges and four lattice points, but the number of edges can remain constant while the 
number of lattice points goes to infinity.

4.3. Precise hypotheses and proof of Theorem 3.3

In this subsection we detail the precise hypotheses that ensure the validity of Theorem 3.3 and 
we prove it, based on results in Botbol et al. (2009). We first need to recall a few standard definitions 
from commutative algebra.

Definition 4.3. Given (nonzero) homogeneous polynomials (g0, . . . , g3), defining a rational map
g : TP ��� P3 as in (4.6), a point p ∈ TP is a base point of g if it is a common zero set of g0, . . . , g3, 
that is, if p is a zero of the ideal I ⊂ A in TP .

Let p ∈ TP be a base point of g . The local ring of p is the ring Ap = {h1/h2, hi ∈ A, h2(p) �= 0}, 
with the natural operations induced from A (in turn, naturally induced from the polynomial ring). Let 
I p be the ideal generated by (the classes of) g0, . . . g3 in Ap . We say that p is a local complete inter-
section base point if I p can be generated by only 2 elements. We say that p is an almost complete 
intersection base point if I p can be generated with 3 elements.

We have similar definitions for the map f̃ : (K∗)2 ��� P3.

For a given lattice polygon P , here are the hypotheses we need in terms of g:

Hypotheses 4.4. There are only finitely many base points of g on TP which are local complete inter-
sections.

We cannot easily find hypotheses on f equivalent to Hypotheses 4.4. Given a lattice polygon P , an 
edge E of P , and a polynomial f i with N ( f i) contained in P as in (4.4), the restriction f i |E of f i to 
E is defined as the sub-sum of the monomials with exponents pi in E . We have the following partial 
translation.
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Proposition 4.5. Let f , T and g be as in (4.6). Then

(1) There are only finitely many base points of g on TP if and only if there are only finitely many isolated base 
points of f in the torus and for each edge E of P , at least one of the restrictions f i |E is nonzero.

(2) If g has finitely many isolated base points on TP which are local complete intersections, then the base 
points of f in the torus are local complete intersections.

Proof. The map ρ defines an isomorphism between (K∗)2 and its image (which is an open dense 
subset of TP ), sending a base point q of f̃ (that is, a point where f0(q) = · · · = f3(q) = 0) to a base 
point p = ρ(q) of g , and reciprocally, any base point p of g in ρ(K)2 is the image of a base point 
q of f . Moreover, we have an isomorphism between the ideal generated by f0, . . . , f3 at q and I p . 
Any base point of g outside the image of ρ cannot be seen in the torus. But these points are either 
the fixed torus points corresponding to the finitely many vertices of P , or they lie in the torus of the 
toric divisor D E in TP associated to an edge E of P . As D E has dimension 1, there are finitely many 
solutions as long as at least one of the f i |E is nonzero. �

The following example shows that the converse of item (2) in Proposition 4.5 does not hold.

Example 4.6. Consider the sparse parametrization with 6 monomials: ( f0, f1, f2, f3) = (st6 + 2, st5 −
3st3, st4 + 5s2t6, 2 + s2t6). Then, f has no base points in the torus. But if we consider their standard 
homogenizations to degree 8 polynomials (that is, we take P equal to 8 times the standard unit 
simplex in the plane), the corresponding homogeneous polynomials g0, . . . , g3 have one base point 
“at infinity” which is not even an almost locally complete intersection.

We now give the proof of Theorem 3.3.

Proof of Theorem 3.3. Given ( f0(s), f1(s), f2(s), f3(s)) with no common factor and Newton polytopes 
contained in P , the corresponding polynomials gi associated to f i are homogeneous of degree d = 1
and satisfy Hypotheses 4.4.

From Botbol et al. (2009, Cor. 14) one has that for d = 1, the matrix of coefficients of a K -basis of 
the module of Syzygies of g in any degree ν ≥ 2 with respect to a K -basis of the graded piece Aν of 
A, is a matrix representation for the closure of the image of f , which equals the closure of the image 
of g .

In particular, we can take ν = 2. In STEP 1 of Algorithm 3.1, the syzygies (h( j)
0 , . . . , h( j)

3 ) for j =
1, . . . , N with N (h( j)

i ) ⊂ 2P for all i, j, provide a K-basis of the module of syzygies of g in degree 
2, since classes of monomials of degree 2 in A correspond to monomials in the s variables with 
exponents in 2P .

Equality (3.1) follows from Theorem 13 in Botbol et al. (2009). �
In principle, given a rational map f̃ , we could take any lattice polygon P containing the union 

N ( f ) of Newton polytopes of f0, . . . , f3. Note that the hypothesis that f is generically finite implies 
that N ( f ) is two-dimensional. Taking P strictly containing N ( f ) will increase the number of expo-
nents and will in general produce bad behavior of g at the fixed points in TP corresponding to the 
vertices of P which do not lie in N ( f ).

Remark 4.7. We can check algorithmically if f0, . . . , f3 have finitely many solutions over (K∗
)2 and if 

for any edge E at least one of the restrictions f i |E is nonzero. So, by Proposition 4.5, we can check 
whether g has finitely many base points in TP .

Assume the dimension of the base locus of g is zero. As we remarked in Example 4.6, even if 
we could check the local behavior of the base points of f in the torus, this would not imply the 
satisfiability of Hypotheses 4.4. But what if we don’t check this and run Algorithm 3.1? . . . nothing 
bad!

We then check whether the output matrix M has full rank:
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• If the rank of M is not maximal, then there is at least one base point p of g which is not an 
almost local complete intersection. In this case, we cannot get the implicit equation, but we get 
a certificate of the bad behavior of the base locus (without computing it).

• If the rank of M is maximal, it may happen that the its rank drops when evaluated at points 
outside S due to the existence of an almost complete intersection but non-complete intersection 
base point. In this case, the greatest common divisor of the maximal minors of M would have 
irreducible factors other than the implicit equation F . In fact, the existence of other irreducible 
factors is equivalent to the fact that there exists a base point which is an almost local complete 
intersection but not a local complete intersection.

4.4. The hypotheses and proof of Theorem 3.8

In this subsection we detail the precise hypotheses that ensure the validity of Theorem 3.8 and we 
prove it, based on results in Botbol (2011b).

Given P and f , here are the hypotheses we need in terms of the map f in (4.8):

Hypotheses 4.8. There are only finitely many base points of f on X P which are local complete inter-
sections.

Again, we cannot easily find hypotheses on f equivalent to Hypotheses 4.4, since good algebraic 
behavior of the base points in the torus does not imply the same behavior for the possible base points 
of f at the invariant divisors in X P associated with the edges of P .

Proposition 4.9. Let f , X P and f as in Hypotheses 4.8. Then

(1) There are only finitely many isolated base points of f on X P if and only if there are only finitely many 
isolated base points of f in the torus and for each edge of P , at least one of the restrictions of the f i is 
nonzero.

(2) If f has finitely many base points on X P which are local complete intersections, then the base points of f
in the torus are local complete intersections.

We next give the proof of Theorem 3.8.

Proof of Theorem 3.8. By hypothesis, there are only finitely many isolated base points of f on the 
toric variety X P associated with P := Ha,b,n , which are local complete intersections. There are four 
primitive inner normal vectors of P : η1 = (0, 1), η2 = (0, 1), η3 = (−1, 0), η4 = (−1, n), which satisfy 
the linear relations η3 = −η1, η4 = nη2 − η1. So any multidegree ν can be described by a “bidegree” 
(ν1, ν2) given by the degrees with respect to the first normals and which fixes (up to translation) the 
associated polytope Pν with the same normals as P . Thus, by Botbol (2011b, Thm. 5.5) the matrix of 
coefficients of a K -basis of the module of Syzygies of f in any bidegree (ν1, ν2) with ν1 ≥ 2a − 1 and 
ν2 ≥ b − 1 (or ν1 ≥ a − 1, ν2 ≥ 2b − 1),2 with respect to a K -basis of the bigraded piece (ν1, ν2) of 
the Cox ring of X P , is a matrix representation for the closure of the image S of f (which equals the 
closure of the image of f ).

Taking (ν1, ν2) = (2a − 1, b − 1) one has that in STEP 1 a basis of syzygies (h( j)
0 , . . . , h( j)

3 ), for 
j = 1, . . . , N with all N (h( j)

i ) with support in the quadrilateral H2a−1,b−1,n , provides a K-basis of 
the module of syzygies of f in bidegree (2a − 1, b − 1). Hence, the matrix M of coefficients of such 
syzygies obtained in STEP 2 gives a representation matrix for S .

Equality (3.2) also follows from Theorem 5.5 in Botbol (2011b). �
2 The choice of the bidegree is less obvious than in the graded case. For further details, see definition of RB(γ ) in Botbol 

(2011b, Thm. 5.5), or the analysis of the bidegree in the standard bigraded case in Botbol (2011b, Sec. 7.1).
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5. Examples

This section consists of four examples which highlight the usefulness of our approach. Example 5.1
is taken from a case studied in Botbol et al. (2009, Ex. 18) of a sparse parametrization where projec-
tive implicitization does not work due to the nature of the base locus of the map, but Algorithm 3.1
is applicable with a right choice of polygon P read from the monomials of the input polynomials. 
In Example 5.2 we show how the method in Algorithm 3.1 works for a parametrization given by 
fewnomials of high degree, where classical resultant tools fail due to the computational complexity. 
In Example 5.3, classical resultant tools fail because of the existence of a base point in the torus. 
Finally, in Example 5.4 we compare the methods in Algorithms 3.1 and 3.6.

5.1. A very sparse parametrization

Consider the sparse parametrization with 6 monomials given in Botbol et al. (2009, Ex. 18): 
( f0, f1, f2, f3) = (st6 + 2, st5 − 3st3, st4 + 5s2t6, 2 + s2t6). The matrix representation can be com-
puted using the package MatrixRepToric.m2 (Botbol and Dohm, 2010) in the computer algebra software 
Macaulay2 (Grayson and Stillman).

One first defines the map f given by polynomials in the ring S = Q[s, t] (note that for easiness of 
typing, we call the variables (s, t) instead of (s1, s2)):

S = QQ[s,t];
f = {s*t^6+2, s*t^5-3*s*t^3, s*t^4+5*s^2*t^6, 2+s^2*t^6};

Consider P the lattice triangle with vertices (0, 0), (1, 6) and (2, 6).
One can compute P by the command:

P = polynomialsToPolytope L

The lattice-points of P can be computed using the auxiliary Macaulay2 package
Polyhedra as:

latticePoints P

By taking syzygies with support in 2P , on gets a matrix representation of size 17 ×34. The greatest 
common divisor of the 17-minors of this matrix is the homogeneous implicit equation of the surface:

2809T 2
0 T 4

1 + 124 002T 6
1 − 5618T 3

0 T 2
1 T2 + 66 816T0T 4

1 T2 + 2809T 4
0 T 2

2

− 50 580T 2
0 T 2

1 T 2
2 + 86 976T 4

1 T 2
2 + 212T 3

0 T 3
2 − 14 210T0T 2

1 T 3
2 + 3078T 2

0 T 4
2

+ 13 632T 2
1 T 4

2 + 116T0T 5
2 + 841T 6

2 + 14 045T 3
0 T 2

1 T3 − 169 849T0T 4
1 T3

− 14 045T 4
0 T2T3 + 261 327T 2

0 T 2
1 T2T3 − 468 288T 4

1 T2T3 − 7208T 3
0 T 2

2 T3

+ 157 155T0T 2
1 T 3

2 T3 − 31 098T 2
0 T 3

2 T3 − 129 215T 2
1 T 3

2 T3 − 4528T0T 4
2 T3

− 12 673T 5
2 T3 − 16 695T 2

0 T 2
1 T 2

3 + 169 600T 4
1 T 2

3 + 30 740T 3
0 T2T 2

3

− 433 384T0T 2
1 T2T 2

3 + 82 434T 2
0 T 2

2 T 2
3 + 269 745T 2

1 T 2
2 T 2

3 + 36 696T0T 3
2 T 2

3

+ 63 946T 4
2 T 2

3 + 2775T0T 2
1 T 3

3 − 19 470T 2
0 T2T 4

3 + 177 675T 2
1 T2T 3

3

− 85 360T0T 2
2 T 3

3 − 109 490T 3
2 T 3

3 − 125T 2
1 T 4

3 + 2900T0T2T 4
3

+ 7325T 2
2 T 4

3 − 125T2T 5
3

We can set T0 = 1 to get the affine equation.
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The map g is computed with the following command:

g = teToricRationalMap f;

The matrix representation and the implicit equation are computed as follows:

M = representationMatrix (teToricRationalMap f,2);
implicitEq (L,2)

Notice that the 2 as second parameter in the computation of M is precisely the 2 in the support 2P
of the syzygies. For a deeper understanding of the choice of the parameter 2, see Appendix A.

In the language of Section 4, the coordinate ring associated to TP is A =K[X0, . . . , X5]/ J P , where 
J P = (X2

3 − X2 X4, X2 X3 − X1 X4, X2
2 − X1 X3, X2

1 − X0 X5). The parametrization g over TP is given by 
(g0, g1, g2, g3) = (2X0 + X5, 2X0 + X4, −3X1 + X3, X2 + 5X5). This matrix can be computed as the 
right-most map of the ν0 = 2d = 2 strand of a graded complex as explained in Appendix A. The 
method fails over P2 (i.e. P = the triangle with vertices (0, 0), (8, 0), (0, 8)) due to the nature of the 
base locus. One can see this just by computing a matrix representation and verifying that it is not 
full-ranked.

5.2. Fewnomials with high degree

This example contributes to show how the method works fine for high degree fewnomials involved 
in the parametrization.

Consider the polynomials ( f0, f1, f2, f3) = (1 + st + s37, s7 + s47, s37 + s59, s61). Let f : C2 ��� C3

be the parametrization that maps (s, t) �→ ( f1/ f0, f2/ f0, f3/ f0)(s, t). The implicit equation of the 
closure of the image of f could be computed by eliminating the variables (s, t) as follows (using 
general elimination procedures based on Gröbner bases in Macaulay2):

R = QQ[s,t, x, y, z, w]
f0 = 1 + s*t + s^37; f1 = s^7 + s^47; f2 = s^37 + s^59; f3 = s^61
L1 = x*f1 - y*f0; L2 = x*f2 - z*f0; L3 = x*f3 - w*f0
eliminate ({s,t}, ideal(L1,L2,L3))

In a 2014 standard desktop computer this routine does not end after one hour of computation. We 
also tried the well implemented eliminate command in Singular (Decker et al., 2012), but with the 
same lack of answer after a couple of hours of computation.

By homogenizing with an auxiliary variable u we could try eliminate (s, t, u) using Macaulay 
resultant methods, but we easily figure out that the homogenized forms L1, L2, L3 vanish iden-
tically over the point (s, t, u) = (0 : 1 : 0). This implies in particular that the Macaulay resultant 
Res(s,t,u)(L1, L2, L3) is identically zero.

Finally one can compute the implicit equation (and matrix representation) by implementing the 
implicitization techniques described in this article. A not very efficient (but efficient enough) routine 
in Botbol (2010) gives the toric map g in less than 2 minutes and the desired matrix representation 
M in less than one more minute.

5.3. Fewnomials with base points in the torus

This example shows a case where classical resultants cannot be applied to compute the implicit 
equation, but the techniques in the paper can. Anyway, we recall that the aim of the matrix represen-
tations is to provide a better and more complete tool for representing a surface, and hence, the point 
presented with this example is just one extra advantage of the method.

Consider the following parametrization ( f0, f1, f2, f3) = (1 − ts, −ts36 + 1, −t(−s38 + t), s37 − t)
given by four polynomials that define a parametrization f : C2 ��� C3 that maps (s, t) �→ ( f1/ f0,

f2/ f0, f3/ f0)(s, t). The implicit equation cannot be computed by eliminating the variables (s, t) with 
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classical resultants, because the point (1, 1) is in the base locus. However, this fact does not imply 
any problem in Algorithm 3.1.

With Algorithm 3.6 with a rectangular P = H38,2,0, it takes 0.058 seconds in a standard 2014 
desktop computer to get a matrix representation M of the closure of the image of f . The size of M is 
152 × 194 and the gcd of its maximal minors has degree 110.

5.4. Comparison with and without embedding

While Algorithm 3.1 holds with great generality, when dealing with polynomials with rectangular 
support (which can be interpreted as bihomogeneous polynomials), Algorithm 3.6 provides a smaller 
matrix representation.

Consider the following four polynomials f0, . . . , f3:

f0 = 3s2
1s2 − 2s1s2

2 − s2
1 + s1s2 − 3s1 − s2 + 4 − s2

2,

f1 = 3s2
1s2 − s2

1 − 3s1s2 − s1 + s2 + s2
2 + s2

2 + s2
1s2

2,

f2 = 2s2
1s2

2 − 3s2
1s2 − s2

1 + s1s2 + 3s1 − 3s2 + 2 − s2
2, and

f3 = 2s2
1s2

2 − 3s2
1s2 − 2s1s2

2 + s2
1 + 5s1s2 − 3s1 − 3s2 + 4 − s2

2.

The Newton polytope P =N ( f ) is the rectangle {(x, y) : 0 ≤ x, y ≤ 2)}. If we apply Algorithm 3.1 (as 
we illustrated in Example 3.2), we obtain a matrix representation M of size 25 × 51.

The associated toric variety X P can be identified with the (2, 2) Segre–Veronese embedding of 
P1 × P1 in P8 (see Busé and Dohm, 2007; Botbol et al., 2009; Botbol, 2011a).

By means of Algorithm 3.6 we get a matrix representation M from a basis of linear syzygies of 
bidegree (2.2 − 1, 2 − 1) = (3, 1). This matrix representation can be computed using the algorithm 
developed in Botbol (2010) and implemented in M2, as the matrix Mν for bidegree ν = (3, 1), and 
one obtains a square 8 × 8-matrix. Its determinant equals the implicit equation F :

8 7 6 2 5 3 4 4
F = 63569053X - 159051916X X + 175350068X X - 82733240X X + 2363584X X + ...

0 0 1 0 1 0 1 0 1

Notice that the matrix M(3,1) is considerably smaller than the 25 × 51-matrix M because instead 
of considering syzygies with support in the rectangle 2P = {(x, y) : 0 ≤ x, y ≤ 4}, the syzygies are 
taken with support in the smaller rectangle {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 1}.
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Appendix A. Commutative algebra tools

This appendix is devoted to highlight the tools of homological commutative algebra and algebraic 
geometry that are needed to justify the validity of Algorithms 3.1 and 3.6, and to explain the choice 
of the support of the syzygies in STEP 2 which define the matrix representation of the parametrized 
surface.

Given P , the toric embedding ρ : (K∗)2 → Pm in Section 4.1 provides a Z-grading in the coordinate 
ring A = K[X0, . . . , Xm]/ J P in (4.7) of TP , which can be used to study the map g in Diagram (4.6)
and its associated Rees and symmetric algebras, denoted by ReesA(I) and SymA(I) respectively. Notice 
also that the graded ring A coincides with the affine semigroup ring of the lattice polytope P , which 
is Cohen–Macaulay and normal because P has dimension 2.
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The grading in A plays a key role in the elimination process. The matrix representation M of Sec-
tion 3.2 depends on a choice of degree ν , as was shown in Section 3.1 for the case of curves. The 
reason why ν needs to be considered is rather technical, and a complete explanation involves sheaf 
cohomology. From a more naive point of view, the implicit equation of the surface S := im(g) is 
written in the variables T = (T0, . . . , T3) but depends on the algebraic relations among the polynomi-
als gi , which lie in A. Fixing a degree ν in A can be thought as eliminating the variables of A, by hiding 
them in the monomial basis of the graded piece Aν . In turn, recall that the variables X = (X0, . . . , Xm) in 
A code monomials in the original s variables, with exponents in the lattice points in P .

More geometrically, consider the graph variety  of g where both group of variables X and T
are involved. The elimination process can be understood geometrically as projecting  via π2 in the 
following diagram

 ⊂ TP × P3

π2π1

TP g P3 ⊃ im(g) = im( f ).

In the correspondence between subvarieties of TP × P3 and bigraded algebras, the inclusion of 
the graph  ⊂ TP × P3 corresponds to the surjection A[T0, T1, T2, T3] � ReesA(I), the Rees algebra 
of the ideal I generated by g0, . . . , g3 over the coordinate ring A. The projection π2() corresponds 
to eliminating the variables Xi of ReesA(I). We denote by I(π2()) the defining ideal of π2() ⊂ P3.

How to eliminate the X variables from ReesA(I) algebraically? A standard procedure is to find a 
free graded presentation F1

M−→ F2 → ReesA(I) → 0 and a degree ν (in the X variables) such that 
the Fitting ideal F(Mν) generated by the maximal minors of Mν (in the graded strand (F1)ν

Mν−→
(F2)ν → ReesA(I)ν → 0) computes I(π2()). It happens that no universal way to compute such a free 
presentation is available, so the idea is to “approximate” ReesA(I) by the (hopefully) similar algebra 
SymA(I) that admits such a universal resolution. These resolutions of the symmetric algebras are 
known as approximation complexes, they were introduced in Herzog et al. (1982, 1983a) and their 
application on elimination theory was done in Busé and Jouanolou (2003), Busé (2006). The last map 
of the approximation complex is the following in our case:

Z1[T0, T1, T2, T3] M ′−→ A[T0, T1, T2, T3] → SymA(I) → 0,

where Z1 = {
(a0,a1,a2,a3) ∈ A4 : ∑ai gi = 0

}
is the first module of syzygies of g0, g1, g2, g3 and 

M ′ = [T0 T1 T2 T3]t , that is,

M ′ · (a0,a1,a2,a3) :=
∑

ai Ti .

The cokernel of M ′ is SymA(I) = A[T0, T1, T2, T3]/ J , where

J := {
∑

ai Ti : ai ∈ A[T0, T1, T2, T3] and
∑

ai gi = 0}.
We can recognize the origin of the linear forms Li in STEP 2 of our algorithms!

But there is a remaining question: which is the relation between ReesA(I) and SymA(I)? Which 
variety does SymA(I) define? Can we use F(M ′

ν) to compute Iπ2() for some ν? The answer is 
that in case there are finitely many base points and for each base point p, the local I p is a lo-

cal complete intersection, then ReesA(I) and SymA(I) define the same scheme in T × A4 (thus, in 
T × P3). As ReesA(I) is m-torsion free, both algebras coincide module the m-torsion of SymA(I), 
ReesA(I) ∼= SymA(I)/H0

m(SymA(I)), where m is the maximal ideal generated by X0, . . . , Xm . Thus if I
is a local complete intersection and ν is such that H0

m(SymA(I))ν = 0, then ReesA(I)ν ∼= SymA(I)ν . 
This happens for ν ≥ ν0 := 2 by Theorem 11 in Botbol et al. (2009) (in fact, that result also proves 
Theorem 3.4 as remarked before). In particular, in this case, F(M ′

ν ) computes Iπ2() for any ν ≥ ν0.
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In fact, the condition of I being a local complete intersection can be relaxed to the condition of 
being locally an almost complete intersection. (i.e. I p can be generated by 3 elements, for any p in 
the finite set V (I)). In this case, dim(SymA(I)) = dim(ReesA(I)). Since there is always a surjective 
map SymA(I) � ReesA(I) then V (SymA(I)) =  ∪ U , where U has the same dimension. In partic-
ular, π2() ∪ π2(U ) = π2(V (SymA(I)). For ν ≥ ν0, SymA(I) is m-torsion free, and F(M ′

ν) computes 
I(π2(V (SymA(I))) for any ν ≥ ν0. So, the gcd H of the maximal minors of M ′

ν contains the homoge-
nization of the implicit equation F as a factor.

In the bigraded case of Hirzebruch surfaces, in particular in the standard bigraded case, the basic 
ideas are similar, but new technical details have to be managed in order to determine the bidegrees 
for which the torsion of the symmetric algebra vanishes. We refer the reader to Botbol (2011b) for 
the details and proofs.
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