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Pfaff-Saalschütz identity.
2010 MSC: 13P15, 15B05, 33C05

1. Introduction

Let K be a field, and f = fmx
m + · · ·+ f0 and g = gnx

n + · · ·+ g0 be two
polynomials in K[x] with fm 6= 0 and gn 6= 0. Set 0 ≤ d < min{m,n}. The
order-d subresultant Sresd(f, g) is the polynomial in K[x] defined as

Sresd(f, g) := det

m+n−2d

fm · · · · · · fd+1−(n−d−1) xn−d−1f
. . .

...
... n−d

fm . . . fd+1 f
gn · · · · · · gd+1−(m−d−1) xm−d−1g

. . .
...

... m−d

gn · · · gd+1 g

, (1)

where, by convention, f` = g` = 0 for ` < 0.
Although it is not immediately transparent from the definition, Sresd(f, g)

is a polynomial of degree at most d, whose coefficients are equal to some
minors of the Sylvester matrix of f and g. Subresultants were implicitly
introduced by Jacobi [Jac1836] and explicitly by Sylvester [Syl1839, Syl1840],
see [GL2003] for a comprehensive historical account1.

For any finite subsets A = {α1, . . . , αm} and B = {β1, . . . , βn} of K, and
for 0 ≤ p ≤ m, 0 ≤ q ≤ n, one can define after Sylvester [Syl1840b] the
double sum expression:

Sylp,q(A,B)(x) :=
∑

A′⊂A,B′⊂B
|A′|=p, |B′|=q

R(A′, B′)R(A\A′, B\B′)
R(A′, A\A′)R(B′, B\B′)

R(x,A′)R(x,B′),

where R(Y, Z) :=
∏

y∈Y
∏

z∈Z(y − z).

1The Sylvester matrix was defined in [Syl1840], and the order-d subresultant was in-
troduced in [Syl1839, Syl1840] under the name of “prime derivative of the d-degree”.
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Sylvester stated in [Syl1840b], then proved in [Syl1853, Section II], the
following connection between subresultants and double sums: assume that
d = p+ q, and suppose that f and g are the square-free polynomials

f = (x− α1) · · · (x− αm) and g = (x− β1) · · · (x− βn).

Then, (
d

p

)
Sresd(f, g) = (−1)p(m−d)Sylp,q(f, g).

This identity can be regarded as a generalization to subresultants of the
famous Poisson formula [Poi1802] for the resultant of f and g:

Res(f, g) =
m∏
i=1

n∏
j=1

(αi − βj). (2)

We note however that the Poisson formula also holds when f or g have
multiple roots, since it does not involve denominators in terms of differences
of roots in subsets of A or in subsets of B. To demonstrate the challenges in
finding closed formulae for subresultants in the most general case, consider
the instance when f = (x−α1)

m1 · · · (x−αr)mr , g = (x−β1)n1 · · · (x−βs)ns

with αi 6= αj, βk 6= β` and d = 1. A (quite intricate) closed formula for
Sres1(f, g) appears in [DKS2013, Th.2.7] and has the form:

Sres1(f, g) =

r∑
i=1

(−1)m−mi

( ∏
1 ≤ j ≤ r

j 6= i

g(αj)
mj

(αi − αj)mj

)
g(αi)

mi−1
(

(x− αi)·

∑
k1 + · · · + k̂i + · · ·
· · · + kr+s = mi − 1

∏
1 ≤ j ≤ r

j 6= i

(
mj−1+kj

kj

)
(αi − αj)kj

∏
1≤`≤s

(
n`−1+kr+`

kr+`

)
(αi − β`)kr+`

+ min{1,mi − 1}
∑

k1 + · · · + k̂i + · · ·
· · · + kr+s = mi − 2

∏
1 ≤ j ≤ r

j 6= i

(
mj−1+kj

kj

)
(αi − αj)kj

∏
1≤`≤s

(
n`−1+kr+`

kr+`

)
(αi − β`)kr+`

)
.

This is a nontrivial expression, and nothing similar has been found yet
for subresultants of general orders. It is worth noticing, however, that de-
terminantal formulations for subresultants of square-free polynomials readily
generalize to the case of polynomials with multiple roots (see [DKS2013,
Th.2.5]), so that the difficulty seems to lie in finding expanded expressions.
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In this article we take a completely different approach and focus on an
extremal case, which is when both f and g have only one multiple root each:
we get explicit expressions for Sresd((x−α)m, (x−β)n) for all d < min{m,n}.

To do this, we set 0 < d < min{m,n} or d = min{m,n} when m 6= n
and c = c(m,n, d) := m + n− 2d− 1. We introduce the d× (d + 1) integer
Hankel matrix with binomial entries by

H(m,n, d) :=

((
c

m− i− j

))
1≤i≤d
0≤j≤d

=


(

c
m−1

) (
c

m−2

)
. . . . . .

(
c

m−d−1

)(
c

m−2

)
. . . . . .

(
c

m−d−2

)
... . . . . . .

...(
c

m−d

) (
c

m−d−1

)
. . . . . .

(
c

m−2d

)
 ,

where, by convention,
(
c
k

)
= 0 for k < 0 and for k > c.

Denote with qj(m,n, d) the j-th maximal minor of H(m,n, d) defined as
the determinant of the square submatrix Hj(m,n, d) of H(m,n, d) obtained
by deleting its (j + 1)-th column, for 0 ≤ j ≤ d. By convention, q0(m,n, 0),
the determinant of an empty matrix, equals 1.

Clearly, all qj(m,n, d) are integer numbers. To regard them as elements
of the field K, we consider their class via the natural ring homomorphism
Z→ K which maps the integer 1 to the unit 1K of K.

We now describe our main result, which provides a closed-form expres-
sion for the coefficients of the subresultant Sresd((x−α)m, (x−β)n) when ex-
pressed in the set of Bernstein polynomials

{
(x− α)j(x− β)d−j, 0 ≤ j ≤ d

}
.

Theorem 1.1. Let m,n, d ∈ N with 0 ≤ d < min{m,n}, and α, β ∈ K.
Then,

Sresd((x−α)m, (x−β)n) = (−1)(
d
2)(α−β)(m−d)(n−d)

d∑
j=0

qj(m,n, d)(x−α)j(x−β)d−j .

Note that Theorem 1.1 is consistent with the Poisson formula (2) for d = 0.

Our second result completes the first one by providing explicit expressions
for the values of the minors qj(m,n, d), 0 ≤ j ≤ d, as products of quotients
of explicit factorials.

4



Theorem 1.2. Let m,n, d ∈ N with 0 < d < min{m,n}, and c = m + n −
2d− 1. Then,

q0(m,n, d) = (−1)(
d
2)

d∏
i=1

(i− 1)! (c+ i− 1)!

(m− i− 1)!(n− i)!
,

and for 1 ≤ j ≤ d the following identities hold in Q:

qj(m,n, d) =

(
d
j

)(
n−d+j−1

j

)(
m−1
j

) q0(m,n, d).

The proof of Theorem 1.1 yields as a byproduct (see Proposition 3.3) a
nice description of the d-th principal subresultant PSresd((x−α)m, (x−β)n),
that is, of the coefficient of xd in Sresd((x− α)m, (x− β)n):

PSresd((x− α)m, (x− β)n) = (α− β)(m−d)(n−d)
d∏
i=1

(i− 1)! (c+ i)!

(m− i)!(n− i)!
. (3)

The product in (3) is an integer number whose prime factors are less than
m+n−d. Thus, if α 6= β and if the characteristic of K is either zero or at least
equal to m+n−d, the subresultant Sresd((x−α)m, (x−β)n) is a polynomial of
degree exactly d. When char(K) is positive but smaller than m+n−d, this is
generally not true (though exceptions exist, e.g., for m = 5, n = 3, d = 2 and
char(K) = 3). The change of behavior might be very radical. For instance,
there exist triples (m,n, d) for which the degree of Sresd((x−α)m, (x−β)n) is
less than d for any positive characteristic p < m+n− d. Such an example is
(m,n, d) = (6, 8, 2). Another interesting example is when p = m+n− d− 1:
in that case, Sresd((x−α)m, (x−β)n) reduces to a constant in characteristic p.
In general, the degree of Sresd((x− α)m, (x− β)n) can be determined using
Theorem 1.2. For example, in characteristic 5, the order-8 subresultant of
(x− α)11 and (x− β)9 is a polynomial of degree 6 for all α 6= β.

We briefly sketch our proof strategy for these results. We start from the
basic fact that if Sresd((x−α)m, (x−β)n) has degree exactly d, then any linear
combination F ·(x−α)m+G ·(x−β)n, of degree bounded by d with deg(F) <
n−d and deg(G) < m−d, is a scalar multiple of the subresultant (Lemma 3.1).
In Proposition 3.4 we show that

∑d
j=0 qj(m,n, d)(x − α)j(x − β)d−j can be

expressed as such a linear combination, and determine the scalar multiple
which is the ratio between this expression and the subresultant. Theorem 1.1
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then follows by specializing the “generic case” (in characteristic zero) to fields
of positive characteristic.

To prove Theorem 1.2, we proceed in two main steps. We first evaluate
q0(m,n, d) in Lemma 2.3 by using a result due to Ostrowski (Lemma 2.1)
for the determinant evaluation of a Hankel matrix involving binomial co-
efficients. Then, in Lemma 2.4 we reduce the computation of the remain-
ing qj(m,n, d), 1 ≤ j ≤ d, to a hypergeometric identity due to Pfaff and
Saalschütz (Lemma 2.2).

Sylvester’s original motivation for deriving expressions in roots for subre-
sultants was to understand how Sturm’s method for computing the number
of real roots of a polynomial in a given interval works formally; see [Syl1853],
where Sylvester applies the theory of subresultants developed there to the
case when g = f ′, with f having simple roots. Furthermore, Sylvester’s
formulae opened the door to have great flexibility in the evaluation of re-
sultants and subresultants (see the book of Jouanolou and Apéry [AJ2006]
for several ingenious formulae for the simple roots case). The search of ex-
plicit expressions for subresultants of polynomials having multiple roots is
an active area of research; see for instance [Hon1999, LP2003, DHKS2007,
DHKS2009, RS2011, DKS2013]. The quest for such formulae has uncovered
some interesting connections of subresultants to other well-known objects
and thus several new applications were discovered.

One of these applications are closed expressions for various rational in-
terpolation problems, including the Cauchy interpolation or the osculatory
rational interpolation problem [BL2000, DKS2015]. The search for formu-
lae in multiple roots also uncovered the close connection of subresultants to
multivariate symmetric Lagrange interpolation [KSV2017]; generalizations
to symmetric Hermite interpolation are the topic of ongoing research. These
formulae in roots may be used to analyze the vanishing of the coefficients of
the subresultants (see the discussion after Theorem 1.2), a question related
to the understanding of the performance of the Euclidean Algorithm for poly-
nomials over finite fields [MG1990]. Our closed formulae also led us think
about accelerating the computation of the subresultants in our particular
extremal case; this will be explained in detail in a forthcoming paper.

The paper is organized as follows: We first derive Theorem 1.2 in Section 2
thanks to Lemmas 2.3 and 2.4. Section 3 then introduces the aforementioned
multiple of the subresultant and proves Theorem 1.1.
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2. Proof of Theorem 1.2

All along this section, we work over the rational numbers to compute
the coefficients qj(m,n, d) which appear in the expression of the subresultant
given in Theorem 1.1 over a field K of characteristic zero. As these numbers
are integers, we can regard them as elements of any field K via the natural
ring homomorphism Z→ K which maps 1Z 7→ 1K.

We start by recalling Ostrowski’s determinant evaluation (Lemma 2.1) for
Hankel matrices with binomial coefficients entries, and the Pfaff-Saalschütz
identity (Lemma 2.2) for the evaluation at the point 1 of a special family of

3F2 hypergeometric functions.

Lemma 2.1 ([Ost1964]). For `, k ∈ N and a0, a1, . . . , ak ∈ N,

det

((
`

ai − j

))
0≤i,j≤k

= `!k+1

∏k
i=1(`+ i)k+1−i∏

0≤i<i′≤k(ai′ − ai)∏k
i=0 ai!

∏k
i=0(`+ k − ai)!

.

Lemma 2.2 ([Pfa1797, Saa1890, And1996, And1997], [Sla1966, §2.3.1]).
Let x, y, z be indeterminates over Q. Then, for any k ∈ N, the following
identity holds in Q(x, y, z):

k∑
j=0

(x)j(y)j(−k)j
(z)j(1 + x+ y − z − k)j j!

=
(z − x)k(z − y)k
(z)k(z − x− y)k

.

Here (x)0 := 1 and (x)j := x(x+ 1) · · · (x+ j− 1) for j ≥ 1 denotes the j−th
Pochhammer symbol of x.
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By applying these two results, Theorem 1.2 follows straightforwardly from
Lemmas 2.3 and 2.4 below. Lemma 2.3 computes q0(m,n, d) as a direct
consequence of Ostrowski’s determinant evaluation. Lemma 2.4 computes
all qj(m,n, d) for j > 0, and is a consequence of a binomial identity (given
in (6)) which is, in fact, the Pfaff-Saalschütz identity in disguise. Recall that
we have set c = m+ n− 2d− 1.

Lemma 2.3. Let d,m, n ∈ N with 0 < d < min{m,n}. Then,

q0(m,n, d) = (−1)(
d
2)

d∏
i=1

(i− 1)!(c+ i− 1)!

(m− i− 1)!(n− i)!
.

Proof. Using Lemma 2.1 with k = d−1 and ai = m− i−2 for 0 ≤ i ≤ d−1,
and ` = c we get

q0(m,n, d) = det

((
c

m− i− j

))
1≤i,j≤d

= det

((
c

m− i− j − 2

))
0≤i,j≤d−1

= c!d
∏d−1

i=1 (c+ i)d−i
∏

0≤i<i′≤d−1(i− i′)∏d−1
i=0 (m− i− 2)!

∏d−1
i=0 (c+ d− 1− (m− i− 2))!

=

∏d
i=1

(
c!
∏i−1

j=1(c+ j)
)
· (−1)(

d
2)
∏d

i=1(i− 1)!∏d
i=1(m− i− 1)!

∏d
i=1(n− d+ i− 1)!

.

The statement follows by rearranging terms. 2

Lemma 2.4. Let j, d,m, n ∈ N with 0 < j ≤ d < min{m,n}. Then,

qj(m,n, d) =

(
d
j

)(
n−d+j−1

j

)(
m−1
j

) q0(m,n, d).

Proof. Observe that the matrix H has full rank d since by Lemma 2.3, its
minor q0(m,n, d) is non-zero. Therefore, an elementary linear algebra argu-
ment shows that the kernel of the induced linear map H: Qd+1 → Qd has
dimension 1, and is generated by the (non-zero) vector

q(m,n, d) := (q0(m,n, d),−q1(m,n, d), . . . , (−1)dqd(m,n, d)).
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Set kj(m,n, d) :=

(
d
j

)(
n−d+j−1

j

)(
m−1
j

) for 0 ≤ j ≤ d. It suffices then to show that

k(m,n, d) := (k0(m,n, d),−k1(m,n, d), . . . , (−1)dkd(m,n, d)) ∈ kerH, (4)

so then we would have k(m,n, d) = λq(m,n, d) with λ = 1/q0(m,n, d), as
k0(m,n, d) = 1.

Therefore, to prove (4) it is enough to check the following identities

d∑
j=0

(
m+ n− 2d− 1

m− j − i

)
(−1)jkj(m,n, d) = 0 for 1 ≤ i ≤ d. (5)

We actually prove that a more general identity holds for any i ∈ N:

d∑
j=0

(
m+ n− 2d− 1

m− j − i

)
(−1)j

(
d
j

)(
n−d+j−1

j

)(
m−1
j

) =

(
i−1
d

)(
m+n−d−1

m−i

)(
m−1
d

) , (6)

The expressions in (5) are then recovered by specializing i to 1, . . . , d.
The equalities in (6) follow from the Pfaff-Saalschütz identity described

in Lemma 2.2. Since both sides of (6) are polynomials in n (of degree at
most m − i) it is enough to verify them for an infinite number of values n.
We will show that they hold for n ≥ 2d.

By observing that (a + j − 1)! = (a − 1)!(a)j,
(
a+j−1
j

)
=

(a)j
j!
, (a − j)! =

(−1)j a!
(−a)j and

(
a
j

)
= (−1)j

(−a)j
j!

, we deduce that the left-hand side of (6) is

equal, for n ≥ 2d, to

(m+ n− 2d− 1)!

(m− i)!(n− 2d+ i− 1)!
·

d∑
j=0

(n− d)j(−(m− i))j(−d)j
(n− 2d+ i)j(−(m− 1))jj!

.

To simplify the latter sum, we now apply Lemma 2.2 for k = d, and for
x, y, z specialized respectively to n− d,−(m− i), n− 2d+ i, and get

d∑
j=0

(n− d)j(−(m− i))j(−d)j
(n− 2d+ i)j(−(m− 1))j j!

=
(i− d)d(m+ n− 2d)d
(n− 2d+ i)d(m− d)d

=

(
i−1
d

)
(m+ n− 2d) · · · (m+ n− d− 1)(

m−1
d

)
(n− 2d+ i) · · · (n− d+ i− 1)

,

from which (6) follows immediately. 2
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3. Proof of Theorem 1.1

To prove Theorem 1.1, we make use of the following well-known result,
which follows for instance from Lemmas 7.7.4 and 7.7.6 in [Mis1993].

Lemma 3.1. Let m,n, d ∈ N with 0 ≤ d < min{m,n}, and f, g ∈ K[x] have
degrees m and n respectively. Assume PSresd(f, g) 6= 0. If F ,G ∈ K[x] are
such that deg(F) < n− d, deg(G) < m− d and h = F f + G g is a non-zero
polynomial in K[x] of degree at most d, then there exists λ ∈ K\{0} satisfying

h = λ · Sresd(f, g).

Following Lemma 3.1, we first prove that Sresd((x − α)m, (x − β)n) has
indeed degree d when α 6= β and char(K) = 0 or char(K) ≥ m + n − d,
in other words, that its principal subresultant PSresd((x− α)m, (x− β)n) is
non-zero. We start by recalling a well-known result, which is used in the
proof.

Lemma 3.2 (Proposition 8.6(i) in [AJ2006]). Let f, g ∈ K[x]. Then,
for any α ∈ K,

Sresd(f, g)(x+ α) = Sresd(f(x+ α), g(x+ α))(x).

Proposition 3.3. Let d,m, n ∈ N with 0 < d < min{m,n}, and α, β ∈ K.
Then,

PSresd ((x− α)m, (x− β)n) = (α− β)(m−d)(n−d)
d∏
i=1

(i− 1)! (c+ i)!

(m− i)!(n− i)!
.

In particular, if α 6= β and char(K) = 0 or char(K) ≥ m+ n− d, then

deg (Sresd((x− α)m, (x− β)n)) = d.

Proof.

PSresd((x− α)m, (x− β)n) = PSresd(x
m, (x+ α− β)n)

= PSresd(x
m,

n∑
j=0

(
n

j

)
(α− β)n−jxj).
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Therefore, by the definition of the principal subresultant,

PSresd((x− α)m, (x− β)n) =

= det

m+n−2d
1 · · · 0 · · · 0

. . .
...

... n−d
. . .

...
...

1 0 · · · 0

1 · · ·
(
n
d

)
(α− β)n−d · · ·

(
n

m−1
)
(α− β)n−(m−1)

. . .
...

... m−d

1 . . .
(

n
2d−m+1

)
(α− β)n−(2d−m+1) . . .

(
n
d

)
(α− β)n−d

= det

m−d(
n
d

)
(α− β)n−d . . .

(
n

m−1
)
(α− β)n−(m−1)(

n
d−1
)
(α− β)n−(d−1) . . .

(
n

m−2
)
(α− β)n−(m−2) m−d

...
...(

n
2d−m+1

)
(α− β)n−(2d−m+1) . . .

(
n
d

)
(α− β)n−d

= (α− β)(m−d)(n−d) det

((
n

d− i+ j

))
1≤i,j≤m−d

= (α− β)(m−d)(n−d)
d∏
i=1

(i− 1)! (c+ i)!

(m− i)!(n− i)!
.

The third equality above follows from the “weighted” homogeneities of the
determinant. Indeed, by multiplying the i-th row in the second matrix above
by (α−β)i−1, 1 ≤ i ≤ m− d, the whole determinant gets multiplied by (α−
β)1+···+(m−d−1) = (α− β)(

m−d
2 ), but now for each j = 1, . . . ,m− d, column j

has the same term (α − β)n−d+j−1 that can be factored out, obtaining (α −
β)(n−d+m−d−1)+···+(n−d+0) = (α−β)(m−d)(n−d)+(m−d

2 ) and one can then clear out

the spurious (α− β)(
m−d

2 )), and the equality can be derived from Lemma 2.1
with ` = n, k = m− d− 1 and aj = d+ j + 1 for 0 ≤ i ≤ m− d− 1. 2

We now show how to express a scalar multiple of the polynomial ex-
pression

∑d
j=0 qj(m,n, d)(x − α)j(x − β)d−j as a polynomial combination

F · (x − α)m + G · (x − β)n, with F and G satisfying the hypothesis of
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Lemma 3.1. For this, we define for 0 ≤ d < min{m,n},

hd(α, β,m, n) := (α− β)c
( d∑
j=0

qj(m,n, d)(x− α)j(x− β)d−j
)
. (7)

Note that hd(α, β,m, n) ∈ K[x] has degree bounded by d.

Proposition 3.4. Let d,m, n ∈ N with 0 ≤ d < min{m,n}, and α, β ∈ K.
There exist F , G ∈ K[x] with deg(F) < n− d, deg(G) < m− d such that

hd(α, β,m, n) = F · (x− α)m + G · (x− β)n.

Proof. Set f := (x− α)m and g := (x− β)n, and write

(α− β)c = (α− x+ x− β)c =
c∑

k=0

(−1)k
(
c

k

)
(x− α)k(x− β)c−k.

Fix 0 ≤ j ≤ d. Then,

(α− β)c(x− α)j(x− β)d−j =
c∑

k=0

(−1)k
(
c

k

)
(x− α)k+j(x− β)c−k+d−j.

For k+ j ≥ m the corresponding terms in the right-hand side are polynomial
multiples of f , with coefficient Fj of degree bounded by (k + j) + (c − k +
d− j)−m = n− d− 1. Similarly, for c− k + d− j ≥ n, the corresponding
terms are multiples of g, with coefficient Gj of degree bounded by (k + j) +
(c− k+ d− j)− n = m− d− 1. The remaining terms satisfy k+ j < m, i.e.
k < m− j and c− k + d− j < n, i.e. k > m− j − d− 1.

Therefore

(α− β)c(x− α)j(x− β)d−j

= Fj f + Gj g +

m−j−1∑
k=m−j−d

(−1)k
(
c

k

)
(x− α)k+j(x− β)c−k+d−j

= Fj f + Gj g +
d∑
i=1

(−1)m−i−j
(

c

m− i− j

)
(x− α)m−i(x− β)n−d+i−1.
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Multiplying each of these equations by qj(m,n, d) for 0 ≤ j ≤ d and adding
them up, we get

hd(α, β,m, n) = (α− β)c
( d∑
j=0

qj(m,n, d)(x− α)j(x− β)d−j
)

= F f + G g +

d∑
j=0

( d∑
i=1

(−1)m−i−j
(

c

m− i− j

)
qj(m,n, d)(x− α)m−i(x− β)n−d+i−1

)
,

with F :=
∑d

j=0 qj(m,n, d)Fj and G :=
∑d

j=0 qj(m,n, d)Gj. It turns out that

d∑
j=0

( d∑
i=1

(−1)m−i−j
(

c

m− i− j

)
qj(m,n, d) (x− α)m−i(x− β)n−d+i−1

)
=

d∑
i=1

(−1)m−i(x− α)m−i(x− β)n−d+i−1

(
d∑
j=0

(−1)j
(

c

m− i− j

)
qj(m,n, d)

)
= 0,

since, as observed in the proof of Lemma 2.4, (q0(m,n, d),−q1(m,n, d), . . . ,
(−1)dqd(m,n, d)) generates kerH.
Therefore hd(α, β,m, n) = F · (x− α)m + G · (x− β)n with deg(F) < n− d
and deg(G) < m− d. 2

We now compute explicitly the d-th coefficient of hd(α, β,m, n), which
also implies in particular that it has degree exactly d when α 6= β and
char(K) = 0 or char(K) ≥ m+ n− d.

Proposition 3.5. Let d,m, n ∈ N with 0 < d < min{m,n}, and α, β ∈ K.
Then,

coeffxd
(
hd(α, β,m, n)

)
= (−1)(

d
2)(α− β)c

d∏
i=1

(i− 1)! (c+ i)!

(m− i)!(n− i)!
.

For d = 0 we have h0(α, β,m, n) = (α− β)c.

13



Proof. It is clear that coeffxd(hd(α, β,m, n)) = (α−β)c
∑d

j=0 qj(m,n, d). The
d = 0 case follows from our convention that q0(m,n, 0) = 1.

We now show that
∑d

j=1 qj(m,n, d) = q0(m+1, n, d), which proves the state-
ment by Lemma 2.3.
Observe that

d∑
j=0

qj(m,n, d) = det

d+1

1 . . . (−1)d(
c

m−1

)
. . .

(
c

m−d−1

)
d+1

...
...(

c
m−d

)
. . .

(
c

m−2d

) .

For 0 ≤ j ≤ d let C(j) denote the (j+1)-th column of the matrix above. We
perform the following operations: C(j) + C(j − 1)→ C(j) for j = d, . . . , 0.
By using the identity

(
c

k−1

)
+
(
c
k

)
=
(
c+1
k

)
, we get

det

d+1

1 . . . (−1)d(
c

m−1

)
. . .

(
c

m−d−1

)
d+1

...
...(

c
m−d

)
. . .

(
c

m−2d

) = det

1 d

1 0 . . . 0 1(
c

m−1

) (
c+1
m−1

)
. . .

(
c+1
m−d

)
...

...
... d(

c
m−d−1

) (
c+1
m−d

)
. . .

(
c+1

m−2d+1

)
= q0(m+ 1, n, d).

2

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. When α = β, both sides of the expression in Theo-
rem 1.1 vanish.
Assume now that α 6= β, and that char(K) = 0, or char(K) ≥ m + n − d.
Thanks to Propositions 3.3 and 3.5, both Sresd((x − α)m, (x − β)n) and
hd(α, β,m, n) are non-zero polynomials of degree exactly d. Recall that we
have set c = m + n− 2d− 1. Proposition 3.4 and Lemma 3.1 with µ = 1/λ
then imply that

Sresd((x− α)m, (x− β)n) = µ · hd(α, β,m, n) (8)
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with

µ =
PSresd((x− α)m, (x− β)n)

coeffxd(hd(α, β,m, n))

=
(α− β)(m−d)(n−d)

∏d
i=1

(i−1)! (c+i)!
(m−i)!(n−i)!

(−1)(
d
2)(α− β)c

∏d
i=1

(i−1)! (c+i)!
(m−i)!(n−i)!

= (−1)(
d
2)(α− β)(m−d)(n−d)−c.

To prove these equalities, we use the identities shown in Propositions 3.3
and 3.5. The final identity for µ also holds when d = 0. Plugging the
expression of hd given in (7) in the identity (8), we deduce Theorem 1.1 in
this case.

In the general case, we use the fact that Theorem 1.1 holds for (x − uα)m

and (x − uβ)n in K ⊃ Q(uα, uβ), where uα, uβ are indeterminates over Q.
As subresultants are defined via the determinant (1), and in this case they
actually belong to Z[uα, uβ][x], the expression (1.1) holds after specializing
uα 7→ α, uβ 7→ β, and the standard ring homomorphism Z → K. This
concludes the proof of Theorem 1.1.

2
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