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Abstract. This work is concerned about the existence of solutions to
the nonlocal semilinear problem −

∫
RN

J(x− y)(u(y)− u(x))dy + h(u(x)) = f(x) x ∈ Ω,

u = g x ∈ RN \ Ω,

verifying that lim
x→∂Ω,x∈Ω

u(x) = +∞, known in the literature as large

solutions. We find out that the relation between the diffusion and the
absorption term is not enough to ensure such existence, not even assum-
ing that the boundary datum g blows up close to ∂Ω. On the contrary,
the role to obtain large solutions is played only by the interior source
f , which gives rise to large solutions even without the presence of the
absorption. We determine necessary and sufficient conditions on f pro-
viding large solutions, compute the blow-up rates of such solutions in
terms of h and f . Finally, we also study uniqueness of large solutions.

1. Introduction

In this work we analyze the existence of large solutions to the following
semilinear nonlocal problem −

∫
RN

J(x− y)(u(y)− u(x))dy + h(u(x)) = f(x) x ∈ Ω,

u = g x ∈ RN \ Ω.
(1)

Here the kernel J is a smooth probability density, f is a continuous function,
g ∈ L1(RN \ Ω) and h is an increasing continuous function.

By large solutions we understand solutions satisfying

lim
x→∂Ω,x∈Ω

u(x) = +∞. (2)

This interpretation of large solutions was originated by the works of Keller
and Osserman, see [6] and [9], who separately proved that the Cauchy prob-
lem −∆u+ h(u) = 0 has not entire solutions (solutions well defined in the
whole RN ) if h is non decreasing and verifies∫ ∞

0

(∫ x

0
h(z)dz

)−1
2

dx <∞. (3)
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Furthermore, Keller shows that in this case, for any bounded domain, Ω,
there exists a solution to −∆u+h(u) = 0 in Ω such that (2) holds. Condition
(3) is known as Keller-Osserman condition and in fact it is a necessary and
sufficient condition if in addition h ∈ C1([0,+∞)) and h(0) = 0.

Existence of this kind of solutions has been analyzed by a large number
of authors for a wide variety of diffusions and nonlinearities, see for instance
the compiling paper by C. Bandle and M. Marcus [1], the books by J. López-
Gómez [7] and L. Véron [11] and references therein.

In [3] the authors use the monotonicity methods developed in [8] to study
large solutions to the problem{

∆u = λ f(u)

1+ 1
|Ω|

∫
Ω g(u) dx

x ∈ Ω,

u =∞ x ∈ ∂Ω.

Notice the nonlocal character of the above absorption term. However, the
problem under consideration here corresponds to a nonlocal diffusion oper-
ator, competing with a local absorption given by the function h(u).

On the other hand, nonlocal diffusion problems have attracted a great
interest in the last years, though within this context of large solutions, the
literature is not so rich, to our knowledge. In [2] the authors change the
diffusion by the fractional laplacian and consider the absorption h(u) =
|u|p−1u. Precisely, they study existence of large solutions to −

∫
RN

u(x+ y)− u(x)
|y|2α+N

dy + |u|p−1u = 0 x ∈ Ω,

u = 0 x ∈ RN \ Ω,
(4)

with α ∈ (0, 1). They prove that if p ∈ (1 + 2α, p∗(α)) there exists a unique
large solution, whose precise asymptotic behaviour close to the boundary is
given by dist(x, ∂Ω)−γ , with γ = 2α/(p− 1).

In [10] it is shown existence and uniqueness of large solutions for the
problem ∫

|y|≤ρ(x)

u(x+ y)− u(x)
|y|2α+N

dy + |u|p−1u = 0 x ∈ Ω,

where ρ(x) = Λdist(x, ∂Ω)σ with 0 < Λ < 1. Since Λ < 1 the integration is
performed within Ω, thus no condition is needed in the complementary set.
They prove that for certain relations of the parameters α, σ,Λ and p there
exists a unique large solution, which approaching the boundary behaves as

dist(x, ∂Ω)−
σ(α−2)+2

p−1 .

We wish to emphasize here that in both of the mentioned problems, the
authors consider a singular symmetric kernel, while our kernel is smooth
and not necessarily symmetric. Furthermore, the operator associated to
our kernel (which is integrable) is not even of differential nature, contrary
to what happens for the fractional Laplacian. On the contrary, if J is in-
tegrable we have a zero-order operator competing with a nonlinear term
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h(u). In our opinion, that is precisely the reason behind the breakage of the
Keller-Osserman condition. An interesting question arising here is if being
integrable is a necessary and sufficient requirement on J for the rupture of
the Keller-Osserman condition. In the last Section we answer part of the
question for symmetric kernels belonging to L1(Rn).

If we rewrite Problem (1) in the form

−
∫

Ω
J(x− y)u(y)dy+ u(x) + h(u(x)) = f(x) +

∫
RN\Ω

J(x− y)g(y) dy, (5)

it is clear that the datum g does not play any role for existence of large
solutions. Recall that g ∈ L1(RN \ Ω), hence the last term is bounded
thus not relevant in the analysis of the blow-up. On the other hand, this
hypothesis on g is essential to give sense to the equation.

Now, we seek large solutions for the corresponding Keller-Osserman prob-
lem

−
∫

Ω
J(x− y)u(y)dy + u(x) + h(u(x)) = 0.

We will see that any continuous large solution must be bounded from below
and u /∈ L1(Ω). As a result the convolution term does not make sense and
none large solution exists. This is the core of the following Theorem:

Theorem 1.1. Let f be a continuous bounded function, g ∈ L1(RN \ Ω)
and h continuous and increasing. Then, there does not exist any continuous
large solution for Problem (1).

According to this Theorem, it does not exist any absorption term, capable
of compensating this kind of nonlocal diffusion, if we wish that (2) holds.
This fact, not only exhibits another important difference concerning the
behaviour of solutions to this kind of nonlocal problems with respect to
models involving non localities of fractional type. It constitutes indeed, a
notorious novel result within the theory of large solutions.

In consequence, if we look for large solutions to our problem, the function
f must be required from now on to satisfy

lim
x→∂Ω,x∈Ω

f(x) = +∞. (6)

Let us determine now a necessary and sufficient condition replacing (3)
for our problem. For this purpose, it will be useful to introduce the function

H(s) =


h−1(s) if

h(s)
s
→∞ as s→∞,

s if
h(s)
s

is bounded,
(7)

to unify the subsequent notation.
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Turning back our attention to equation (5), it is clear that the terms u
and h(u) compete for the role of providing large solutions. More concisely,
we show

Theorem 1.2. Let g ∈ L1(RN \ Ω), f be a continuous function verifying
(6), h a continuous and increasing function and H defined in (7). Then
Problem (1) admits large solutions if and only if∫

Ω
H(f(x)) dx ≤ C. (8)

Remark 1.1. We note that, contrarily to what occurs for local diffusions,
the presence of the term u in the equation allows to obtain large solu-
tions, even when the absorption is null or bounded. We would like to em-
phasize the surprising difference with respect to its local linear counterpart
−∆u(x) = f(x) if x ∈ Ω and u = ∞ on ∂Ω, for which no solution exists
under assumption (6).

Our second result deals with the blow-up rate for large solutions obtained
as an approximation procedure. This approach returns the minimal large
solution u in the sense that any large solution v satisfies v ≥ u. Regarding
the maximal solution, for local problems it is usually constructed as the
limit of large solutions to the problem settled in certain subdomain Ωε ⊂⊂ Ω.
However, in our case f is bounded in Ωε and by Theorem 1.1 no large solution
exists in Ωε. For this reason, we need to consider a family of functions fε that
blow up on the boundary ∂Ωε, to guarantee the existence of large solutions
for the approximating problem, see Remark 3.3 below.

Theorem 1.3. Let u be a large solution. Then, there exist two positive
constants such that

H(δf(x))− C1 ≤ u(x) ≤ H(f(x)) + C2, (9)

where the parameter δ is given by

δ =


1 if

h(s)
s
→∞ as s→∞,

1
1 + C

if
h(s)
s

< C.

Now we focus on the uniqueness of large solutions. Accordingly to the
hypothesis of h and J , we perform two different arguments to accomplish
the uniqueness result.

Theorem 1.4. In the hypothesis of Theorem 1.2. If either f ≥ 0 and the
function s→ h(s)/s is unbounded and nondecreasing, or, J is a symmetric
function then the large solution is unique.

Remark 1.2. A typical example of explosive source is f = dist(x, ∂Ω)−γ. In
this case, if we take h(s) = |s|p−1s by condition (8) there exist large solutions
if and only if γ < r := max(1, p). Furthermore, close to the boundary

u ∼ dist(x, ∂Ω)−
γ
r .
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However, if we choose h(s) = es there are no large solutions, since the
condition (8) reads∫

Ω
H(f(x)) dx = −γ

∫
Ω

log
(

dist(x, ∂Ω)
)
dx =∞.

This last example illustrates another important difference with respect to the
(local) laplacian, which admits large solutions with exponential absorption.

Remark 1.3. Following step by step the proofs of the above theorems, a
similar result can be established if we assume that f blows up only at certain
Γ ⊂ ∂Ω.

In this case there exist large solutions if and only if (8) holds. Moreover,
u blows up only at Γ, with blow-up rate given also by (9).

Let us conclude this introduction specifying which is the notion of solution
that we are using along the paper:

Definition 1.1. We say that u is a classical solution of (1) if u ∈ C(Ω) and
satisfies (1) pointwise.

This paper is organized as follows. In the next section we show that there
does not exist any large solution to (1) whenever f is bounded, namely we
prove Theorem 1.1. Section 3 includes some preliminary results on existence
and comparison of solutions when f is bounded. Then we prove Theorem 1.2
with the use of approximation arguments. Section 4 contains our uniqueness
results and finally, the last section is devoted to extend the breakage of the
Keller- Osserman condition to integrable and symmetric kernels.

2. Breakage of the Keller-Osserman condition

We devote this section to prove Theorem 1.1. First, we make the following
observations:

(1) Any classical large solution is bounded from below. Notice that it
is a continuous function diverging to infinity as x approaches the
boundary.

(2) Moreover, if f is a bounded function then, none classical large solu-
tion of (1) belongs to L1(Ω). In fact, assuming that u ∈ L1(Ω), from
(5) we infer that

u(x) + h(u(x)) = f(x) +
∫

RN\Ω
J(x− y)g(y) dy +

∫
Ω
J(x− y)u(y)dy

≤ ‖f‖L∞(Ω) + ‖J‖L∞(RN )‖g‖L1(RN\Ω) + ‖J‖L∞(RN )‖u‖L1(Ω).

Since the function s→ s+ h(s) is increasing and it goes to infinity,
the above estimate turns impossible the occurrence of (2).

Ad contrarium let us admit that a classical large solution u exists. From
point two above we know that necessarily u /∈ L1(Ω). This fact means that
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there must exist a point x0 ∈ ∂Ω such that∫
Ω∩Bδ(x0)

u(y) dy =∞,

for some δ > 0. Let us fix x ∈ Ω∩Bδ(x0) and δ small enough ensuring that

J(x− y) ≥ α > 0, y ∈ Ω ∩Bδ(x0). (10)

Taking into account that u is bounded from below, we obtain that∫
Ω
J(x− y)u(y) dy =

∫
Ω\
(

Ω∩Bδ(x0)
) J(x− y)u(y) dy +

∫
Ω∩Bδ(x0)

J(x− y)u(y) dy

≥ −C‖J‖L1(Rn) + α

∫
Ω∩Bδ(x0)

u(y) dy =∞.

Recalling (5), this implies that u(x) =∞, hence no large solution exists. �

Remark 2.1. Notice that the argument above does not require the continuity
of J . Then, if the kernel J ∈ L1(Rn) satifies (10) any large solution must
belong to L1(Ω).

3. Existence of large solutions

From now on, we will turn our attention to precise necessary and sufficient
conditions for existence of large solutions. This aim will be accomplished
by approximation arguments. Therefore, we start by showing existence of
(bounded) solutions when f is bounded, via the sub-supersolution method.
Thus, we first prove a comparison result.

Lemma 3.1. Let u and u be a classical bounded supersolution and subsolu-
tion, respectively. Then, u ≤ u.

Proof. Define w(x) = u(x)− u(x), we get that

−
∫

Ω
J(x−y)(w(y)−w(x))dy+w(x)

∫
RN\Ω

J(x−y) dy+h(u(x))−h(u(x)) ≤ 0.

In order to get a contradiction we define K = supΩw and assume that
K > 0.

i) If there exists x0 ∈ Ω such that w(x0) = K, then evaluating the previous
expression at x0, we observe that the first two terms are non-negative. Hence
h(u(x0))−h(u(x0)) ≤ 0. Applying the monotonicity of h leads to the desired
contradiction.

ii) Now we admite that there exists a sequence xn → x ∈ ∂Ω, such that
w(xk) → K. Using the dominate convergence theorem and the fact that w
is bounded we can pass to the limit in the previous expression to infer

−
∫

Ω
J(x0−y)(w(y)−K)dy+K

∫
RN\Ω

J(x−y) dy+h(u(x0))−h(u(x0)) ≤ 0.

The contradiction follows now arguing as in the previous step.
�
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Remark 3.1. We point out that the comparison Lemma also holds even
assuming that u→∞ as x→ ∂Ω.

The solution to the following problem will be useful to construct suitable
sub and supersolutions to (1), when f is bounded.

Lemma 3.2. There exists a classical non-negative bounded solution of

−
∫

Ω
J(x− y)w(y)dy + w(x) = 1. (11)

Proof. The existence is obtained by the sub-supersolution method. First,
we note that w = 0 is a subsolution. To find a positive supersolution we
consider two cases.

i) J has compact support. Define w = kφ1, where φ1 is the first eigen-
function of the operator

L = −
∫

Ω
J(x− y)u(y) dx+ u(x)

which is continuous and strictly positive in Ω, see [5]. Since φ(x) > 0 in Ω,
we can take k large enough to get

−
∫

Ω
J(x− y)w(y)dy + w(x) = λ1kw(x) > 1.

ii) If the support of J is unbounded we take w = k. Notice that since Ω
is bounded

sup
x∈Ω

∫
Ω
J(x− y) dy = η < 1.

Then, if k is large enough we have

−
∫

Ω
J(x− y)w(y)dy + w(x) = −ηk + k ≥ 1.

�

Theorem 3.1. Let f be a continuous bounded function. Then there exists
a bounded classical solution of (1).

Proof. Let w be the function given in the previous Lemma. We claim that
the functions

u(x) = λw(x), u(x) = −µw(x)

being λ and µ positive parameters, are a supersolution and a subsolution to
Problem (1), respectively.

Moreover, clearly u ≤ u, and hence the sub-supersolution method (see
[4]) guarantees the existence of a solution such that

u(x) ≤ u(x) ≤ u(x).

Furthermore, the continuity of f and (5) ensure that u+h(u) is continuous.
Thus, u is continuous.
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We proceed now with the claim. To see that u is a supersolution, take
into account that

−
∫

Ω
J(x− y)un(y)dy + un(x) + h(un(x)) = λ+ h(λw(x)) ≥ λ+ h(0)

while on the other hand

f(x) +
∫

RN\Ω
J(x− y)g(y) dy ≤ ‖f‖L∞(Ω) + ‖J‖L∞(RN )‖g‖L1(RN\Ω).

Taking λ large this shows that u is a supersolution. The fact that u is a
subsolution follows in the same way. �

We are almost ready to characterize existence of large solutions. Let us
state first a regularity result, which follows with similar arguments that
prove Theorem 1.1.

Lemma 3.3. If u is a large solution of (1), then u ∈ L1(Ω).

Proof of Theorem 1.2. In order to prove the existence of a large solution,
let us perform the following truncation on the function f

fn(x) =
{
f(x) if f(x) ≤ n,
n if f(x) > n,

and define un as a solution to

−
∫

Ω
J(x− y)un(y)dy + un(x) + h(un(x)) = fn(x) +

∫
RN\Ω

J(x− y)g(y) dy.

(12)
Note that {un} is a family of continuous and bounded functions. Further-
more, by the comparison stated in Lemma 3.1, {un} is an increasing family
in n.

In fact, we will see that un is uniformly bounded from above. With this
purpose in mind we construct a family of supersolutions to (12), which are
bounded uniformly in n.

Declare
un(x) := H(fn(x)) + λw,

where λ is a positive parameter, w is the solution to (11) and H is defined
in (7). Let us show that un is the desired supersolution, namely

−
∫

Ω
J(x− y)un(y)dy + un(x) + h(un(x)) ≥ fn(x) +

∫
RN\Ω

J(x− y)g(y) dy,

(13)
by choosing λ sufficiently large. Indeed, assumption (8) yields∫

Ω
J(x− y)H(fn(y)) dy ≤ ‖J‖L∞(Ω)

∫
Ω
|H(fn(y))| dy ≤ K.
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Recalling that g ∈ L1(RN \ Ω), we have that (13) is fulfilled if

−K + λ+H(fn(x)) + h
(
H(fn(x)) + λw(x)

)
≥ fn(x) + Cg.

Whenever x is taken far away from the boundary, this inequality is trivial,
for λ large, independent of n, (notice that fn(x) = f(x) for n large and x
away from ∂Ω). As x approaches the boundary, notice that

H(fn(x)) + h
(
H(fn(x)) + λw(x)

)
− fn(x) ≥ 0,

thus the above inequality holds taking λ > Cg +K.
Furthermore, applying the comparison principle we infer that

un(x) ≤ un(x) ≤ u := H(f(x)) + λw.

As a result, the increasing family {un} is uniformly bounded by u, and
we can define the pointwise limit

u(x) = lim
n→∞

un(x).

Monotone convergence returns easily that u is a solution of (1), which

u ≤ H(f(x)) + λw. (14)

To see that indeed, u is a large solution, we compare it with an appropriate
subsolution. Define

un(x) := H (δfn(x))− λw(x),

where w is once more the nonnegative solution to Problem (11) and δ > 0
will be conveniently chosen.

In order to show that un is a subsolution, we need to verify

−
∫

Ω
J(x−y)un(y)dy+un(x)+h(un(x))−fn(x)−

∫
RN\Ω

J(x−y)g(y) dy ≤ 0.

(15)
The first two terms can be estimated thanks to the uniform boundedness

of fn from below. In consequence, there exists a constant K independent
on n such that

−
∫

Ω
J(x− y)un(y)dy + un(x) ≤ K − λ+H (δfn(x)) .

With respect to the third term, recall that h is increasing, hence h(un(x)) ≤
h (H (δfn(x))). Thus, taking into account that g ∈ L1(RN \ Ω) and the
former considerations, the inequality (15) is equivalent to

Cg +K − λ+H (δfn(x)) + h (H (δfn(x)))− fn(x) ≤ 0.

As before, by choosing the parameter λ large enough, the above inequality
holds away from the boundary. Close to the boundary we claim that it is
possible to find an appropriate value for δ > 0, independent of n, such that

H (δfn(x)) + h (H (δfn(x)))− fn(x) ≤ 0.
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Taking λ > Cg + K the function un is a subsolution and accordingly by
comparison, un ≥ un. Recalling that {un} is an increasing sequence, we
indeed obtain that

u(x) ≥ un(x) ≥ un(x). (16)
Now we prove the claim arguing by contradiction. Suppose that

lim sup
s→∞

(
H(δs) + h(H(δs))− s

)
= 2L > 0,

which implies that there exists a sequence, sj →∞, such that

H(δsj) + h(H(δsj))− sj > L. (17)

If H(s) = s, the above inequality reads as

h(δsj)− (1− δ)sj ≥ L,
or equivalently

h(δsj)
δsj

− 1− δ
δ
≥ L

δsj
.

Since h(s)/s < C we get the desired contradiction taking δ = 1/(1 + C).
Then, by comparison

un(x) ≥ 1
1 + C

fn(x)− λw(x).

Passing to the limit in (16) shows that

u(x) ≥ 1
1 + C

f(x)− λw(x). (18)

If on the contrary H(s) = h−1(s), inequality (17) can be expressed as

h−1(δsj)− (1− δ)sj ≥ L.
Recall that h−1(t)/t→ 0 as t goes to infinity, which contradicts the previous
inequality taking δ ∈ (0, 1). The comparison result implies that

un(x) ≥ h−1(δfn(x))− λw(x) for δ ∈ (0, 1).

Making δ → 1, we obtain the inequality

u(x) ≥ un(x) ≥ h−1(fn(x))− λw(x),

which as n→∞ reads

u(x) ≥ h−1(f(x))− λw(x). (19)

We conclude the proof looking for a nonexistence result. Arguing by
contradiction, if we assume that there exists a large solution the comparison
Lemma (see Remark 3.1) implies that the lower estimate (16) holds. Thus,
if (8) does not occur then u /∈ L1(Ω) and no large solution exists, see Lemma
3.3. �

Remark 3.2. Let us observe that if v is a large solution, then un ≤ v and
passing to the limit u ≤ v. Thus, u is the minimal large solution.



A NONLOCAL OPERATOR BREAKING THE KELLER-OSSERMAN CONDITION 11

Proof of Theorem 1.3. For the minimal large solution, the estimate
(9) is deduced directly from (14), (18) and (19).

For a general large solution v ∈ L1(Rn) the lower estimate follows by the
definition of minimal large solution

v ≥ u ≥ H(δf)− C1.

In order to prove the upper estimate we define

Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε},

fε ∈ C(Ωε) such that fε(x) ≥ f(x) in Ωε, fε → f as ε→ 0 and

lim
x→∂Ωε,x∈Ωε

fε(x) = +∞,
∫

Ωε

H(fε(x)) dx ≤ K <∞.

We consider the problem

−
∫

Ωε

J(x− y)uε(y) dy+ uε(x) + h(uε(x)) = fε(x) +
∫

Rn\Ωε
J(x− y)v(y) dy.

(20)
Since v ∈ L1(Rn) and∫

Rn\Ωn
J(x− y)v(y) dy ≤ ‖J‖L∞(Rn)

(
‖v‖L1(Ω) + ‖g‖L1(Rn\Ω)

)
:= Cv,

according to Theorem 1.2, if we take λ > K + Cv there exists a minimal
solution of (20) satisfying{

uε(x) ≤ H(fε(x)) + λw(x) x ∈ Ωε,
u(x) = v(x) x ∈ Rn \ Ωε.

Furthermore, since fε(x) ≥ f(x) in Ωε it is easy to see that v is indeed
a subsolution to (20) in Ωε. Moreover, v is bounded in Ωε. Hence, the
comparison principle (see Remark 3.1) implies that v(x) ≤ uε(x) and then

v(x) ≤ H(fε(x)) + λw(x) in Ωε.

Since H(fε) → H(f) as ε → 0, passing to the limit in the above inequality
shows that v verifies (9). �

Remark 3.3. Taking

fε1(x) ≥ fε2(x) + ‖J‖L∞(Rn)K
∣∣Ωε2 \ Ωε1

∣∣, for ε1 > ε2,

it is easy to prove that uε is decreasing in ε. Thus, the maximal large solution
can be obtained as the limit of uε.

4. Uniqueness

We devote this part of the work to the analysis of uniqueness of large
solutions. We start by treating the case f ≥ 0 and h(s)/s being unbounded
and non-decreasing.
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Proof of Theorem 1.4 (1). Suppose that u, v are two solutions to
Problem (1). Denote

A := {x ∈ Ω such that u(x) > v(x)},
and assume that A 6= ∅. Thus, there exists k > 1 for which the set

Ak := {x ∈ Ω such that wk(x) := u(x)− kv(x) > 0} 6= ∅.
The blow-up rates in Theorem 1.3 imply that

lim
x→∂Ω,x∈Ω

wk(x)
H(f(x))

= 1− k < 0.

Hypothesis (6) guarantees that H(f) > 0 close to boundary (indeed, H(f) =
+∞ on ∂Ω). Accordingly, wk < 0 approaching the boundary, thusAk ⊂⊂ Ω.
Furthermore, there exists x̂ ∈ Ω such that wk(x̂) = max

Ak
wk. The fact that

wk ≤ 0 in Ack entails that x̂ ∈ Ak and then wk(x̂) = max
RN

wk.

On the other hand, recall that h(s) is increasing and we are considering
that h(s)/s is nondecreasing. In this case it holds that

kh(v(x)) ≤ h(kv(x)) ≤ h(u(x)) x ∈ Ak.
Evaluate now at x̂ the equation for wk and use the positivity of f to get

−
∫

RN
J(x̂− y)(wk(y)−wk(x̂))dy = −h(u(x̂)) + kh(v(x̂)) + (1− k)f(x̂) ≤ 0

However, x̂ is a point of maximum hence

−
∫

RN
J(x̂− y)(wk(y)− wk(x̂))dy ≥ 0.

These inequalities imply that wk is a constant function, which is a contra-
diction with the fact that wk(x̂) > 0 and wk < 0 close to the boundary.
�

If we assume that the kernel J is symmetric, fact that allows an integration
by parts in our equation, we prove uniqueness without extra hypothesis on
h and f .

Proof of Theorem 1.4 (2). Recall that by Lemma 3.3 any large solu-
tion must belong to L1(Ω). Uniqueness is then a direct consequence of the
following version of the comparison principle for sub and supersoluions in
L1(Ω). �

Lemma 4.1. Assume that J is symmetric. Let u and u be a classical L1(Ω)
supersolution and subsolution of (1), respectively. Then, u ≤ u.

Proof. The function w(x) = u(x)− u(x) satisfies

−
∫

Ω
J(x−y)(w(y)−w(x))dy+w(x)

∫
RN\Ω

J(x−y)dy+h(u(x))−h(u(x)) ≤ 0,
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Multiplying by zM (x) = min{w+(x),M} where w+ = max{0, w} and inte-
grating in Ω gives

I1 + I2 + I3 ≤ 0, (21)
being

I1 = −
∫

Ω
zM (x)

∫
Ω
J(x− y)(w(y)− w(x))dydx

I2 =
∫

Ω
zM (x)w(x)

∫
RN\Ω

J(x− y)dydx,

I3 =
∫

Ω

(
h(u(x))− h(u(x))

)
zM (x)dx.

Using the hypothesis that J is symmetric and since zM ∈ L∞(Ω), we get
that

I1 =
1
2

∫
Ω

∫
Ω
J(x− y)(w(y)− w(x))(zM (y)− zM (x))dydx.

Recall that the integrands in I2 and I3 are nonnegative, as well as the
function T (x, y) = (w(y) − w(x))(zM (y) − zM (x)). As a result the three
integrals above must vanish. From I3 = 0 we infer that zM ≡ 0, hence
w+ ≡ 0. This implies that w ≤ 0 as desired. �

5. Breakage of the Keller-Osserman condition for integrable
symmetric kernels

We conclude this work showing that, even when we allow the kernel to
be singular at the origin, it is still not possible to reach a balance between
this nonlocal diffusion and any absorption term, to obtain large solutions,
without the action of an explosive source.

More precisely we consider Problem (1) with a probability density which
is symmetric, singular at the origin and it satisfies J(x) > α > 0 in a small
ball centered at the origin.

As we already observed in Section 2, if a large solution exists, it must be
in L1(Ω). However, since J is just integrable, the term J ∗ u in equation
(1) is not necessarily continuous, hence neither the solution is automatically
continuous.

On the other hand, since J ∗u ∈ L1(Ω) if we admit that f ∈ L∞(Ω) yields
that h(u) ∈ L1(Ω). Arguing now as in Lemma 4.1 we obtain a comparison
principle and consequently, uniqueness of L1(Ω) solutions.

At this stage, it is not difficult to see that if h(s) → ±∞ as s → ±∞,
then u = −K and u = K are a sub and a supersolution to Problem (1),
respectively. The sub-super solutions method guarantees the existence of a
bounded weak solution. By uniqueness, no large solution exists.
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