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MULTIPHASE CONDUCTORS REALIZING
ALEKSANDROV’S MEAN∗
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Abstract. It is shown that Aleksandrov’s mean for the effective linear conductivity of multiphase
conductors is exact for a class of material systems with two-dimensional isotropic microstructures.
The systems are constructed by sucessive use of iterated dilute homogenization. The result provides
a more rigorous basis for the use of Aleksandrov’s mean to estimate effective properties.
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1. Introduction. The overall electrical conductivity of a multiphase material
system is to a major extent dictated by the individual conductivities of its constituent
phases and its microstructural morphology. The following developments are restricted
to two-dimensional material systems with isotropic phases and isotropic microstruc-
tural morphologies.

The simplest theories to estimate the effective conductivity in terms of the local
properties are those of Voigt [14] and Reuss [13]. These estimates are respectively
given by the arithmetic and harmonic means of the local conductivities σ(r) weighted
by the volume fractions c(r) of each constituent phase r = 1, . . . , N :

(1) σ̃V =

N∑
r=1

c(r)σ(r) and (σ̃R)−1 =

N∑
r=1

c(r)(σ(r))−1.

The Voigt and Reuss estimates actually bound from above and below the effective
conductivity of all N -phase conductors with prescribed volume fractions. However,
they both lie outside the optimal upper and lower bounds of Hashin and Shtrikman
[6] and are therefore not realizable by any multiphase conductor with isotropic mi-
crostructure.

An equally simple estimate was later proposed by Aleksandrov and Aizenberg
[2] on the purely mathematical requirement of commutation between inversion and
average operations previously advocated by Aleksandrov [1] (see also [12]), which is
given by the so-called Aleksandrov’s mean:

(2) ln σ̃A =

N∑
r=1

c(r) lnσ(r).
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1 esq. 47 S/N, La Plata B1900TAG, Argentina, and Consejo Nacional de Investigaciones Cient́ıficas
y Técnicas (CONICET), CCT La Plata, Calle 8 N◦ 1467, La Plata B1904CMC, Argentina (martin.
idiart@ing.unlp.edu.ar).

1792

D
ow

nl
oa

de
d 

09
/1

4/
16

 to
 1

31
.1

56
.2

24
.6

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/siap/76-5/M106102.html
mailto:martin.idiart@ing.unlp.edu.ar
mailto:martin.idiart@ing.unlp.edu.ar


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTIPHASE CONDUCTORS REALIZING ALEKSANDROV’S MEAN 1793

As already observed by Aleksandrov and Aizenberg [2], this estimate lies within the
Hashin–Shtrikman bounds and is therefore potentially realizable. We prove here that
this is indeed the case by first generating a sequence of two-phase conductors whose
effective conductivities asymptote to the two-phase Aleksandrov’s mean, and by then
using the resulting two-phase microstructures to generate a sequence of I-phase con-
ductors whose effective conductivities tend to the N -phase Aleksandrov’s mean as
I → N . The estimate is realizable in the strong sense that the microstructures real-
izing it are independent of the values of the local conductivities σ(r).

2. Two-phase conductors. Two-phase conductors will be generated by succes-
sive use of the iterated dilute homogenization procedure of Bruggeman [4]. This in-
cremental procedure allows the computation of the effective conductivity of two-phase
conductors with arbitrary volume fractions of the constituent phases from knowledge
of the effective conductivity of two-phase conductors with one of the phases present
in dilute, i.e., infinitesimally small, volume fraction.

Consider a two-phase conductor with a dilute volume fraction c
(2)
dil of phase r = 2,

whose effective conductivity satisfies

(3) σ̃dil = σ(1) + G
(
σ(1), σ(2)

)
c
(2)
dil + o

(
c
(2)
dil

)
.

The function G depends on the morphology of the two-phase dilute microstructure.
The incremental procedure consists in considering a sequence of two-phase conductors
with the same dilute microstructures where the nondilute phase is always made up of
material r = 1 but the dilute phase is made up of the preceeding two-phase conductor
in the sequence. The resulting material system is a two-phase conductor with an
infinite number of microstructural length scales but a finite volume fraction c(2) of
phase r = 2, whose effective conductivity is given by

(4) σ̃ = σ|t=− ln(1−c(2)) ,

where the function σ(t) is solution to the differential equation

(5) σ̇(t) = G
(
σ(t), σ(2)

)
, σ(0) = σ(1).

Here, the overdot denotes differentiation with respect to t. A rigorous basis for this
procedure has been given by Avellaneda [3] along with a fairly general expression for
G in the context of elasticity—see Proposition 7 and Theorem 9 in that work. A
simplified version of that expression to the present context is given in the appendix.
In what follows we construct a class of two-phase conductors starting out of a ma-
trix containing a dilute suspension of circular inclusions and making iterative use of
expression (4). This iterative process amounts to considering a function G with an
explicit dependence on t.

Iteration k = 1. The effective conductivity of a dilute suspension of circular
inclusions of material r = 2 embedded in a matrix of material r = 1 is given by (see,
for instance, expression (3) in [4])

(6) σ̃0 = σ(1) + 2σ(1)σ
(2) − σ(1)

σ(2) + σ(1)
c
(2)
0 + o

(
c
(2)
0

)
.

This two-phase conductor clearly belongs to the class (3). Thus, we can use it as
the dilute system of the incremental procedure to generate a set of two-phase con-
ductors with finite volume fractions. In view of expressions (4) and (5), the effective
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conductivity of the resulting two-phase conductor is given by

(7) σ̃1 = σ|
t=− ln(1−c(2)1 )

, σ̇(t) = 2σ(t)
σ(2) − σ(t)

σ(2) + σ(t)
, σ(0) = σ(1),

and, upon integration of this differential equation,

σ̃1 =

c(1)1

2

σ(1) − σ(2)

(σ(1))1/2
+

√√√√(c(1)1

2

σ(1) − σ(2)

(σ(1))1/2

)2

+ σ(2)


2

,(8)

where c
(1)
1 = 1 − c(2)1 is the finite volume fraction of phase r = 1 in the two-phase

systems k = 1. This result is known as Bruggeman’s differential scheme [4, 11].

Iteration k = 2. As c
(1)
1 → 0, the effective conductivity σ̃1 is given by

(9) σ̃1 = σ(2) + σ(2) σ(1) − σ(2)(
σ(1)σ(2)

)1/2 c(1)1 + o
(
c
(1)
1

)
.

Clearly, the two-phase conductor constructed in the first iteration belongs to the class
(3) with phases r = 1 and r = 2 interchanged. Thus, we can use it as the dilute
system of an incremental process to construct a new set of two-phase conductors with
finite volume fractions. In view of expressions (4) and (5), the effective conductivity
of such two-phase conductors is given by

(10) σ̃2 = σ|
t=− ln(1−c(1)2 )

, σ̇(t) = σ(t)
σ(1) − σ(t)(
σ(1)σ(t)

)1/2 , σ(0) = σ(2),

and, upon integration of this differential equation,

σ̃2 = σ(1)

([
(σ(1))1/2 + (σ(2))1/2

]
− c(2)2

[
(σ(1))1/2 − (σ(2))1/2

][
(σ(1))1/2 + (σ(2))1/2

]
+ c

(2)
2

[
(σ(1))1/2 − (σ(2))1/2

])2

,(11)

where c
(2)
2 is the finite volume fraction of phase r = 2 in the two-phase systems k = 2.

Note that this result no longer corresponds to Bruggeman’s differential scheme, even
though it is closely related.

Iteration k = 3. As c
(2)
2 → 0, the effective conductivity σ̃2 is given by

(12) σ̃2 = σ(1) + 4σ(1) (σ(2))1/2 − (σ(1))1/2

(σ(1))1/2 + (σ(2))1/2
c
(2)
2 + o

(
c
(2)
2

)
.

Clearly, the two-phase conductor constructed in the second iteration also belongs to
the class (3). Thus, we can use it as the dilute system of an incremental process to
construct yet another set of two-phase conductors with finite volume fractions. In view
of expressions (4) and (5), the effective conductivity of such two-phase conductors is
given by

(13) σ̃3 = σ|
t=− ln(1−c(2)3 )

, σ̇(t) = 4σ(t)
(σ(2))1/2 − (σ(t))1/2

(σ(t))1/2 + (σ(2))1/2
, σ(0) = σ(1),
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and, upon integration of this differential equation,

σ̃3 =

c(1)3

2

(σ(1))1/2 − (σ(2))1/2

(σ(1))1/4
+

√√√√(c(1)3

2

(σ(1))1/2 − (σ(2))1/2

(σ(1))1/4

)2

+ (σ(2))1/2


4

,

(14)

where c
(1)
3 = 1 − c(2)3 is the finite volume fraction of phase r = 1 in the two-phase

systems k = 3.

Iteration k = 4. As c
(2)
3 → 0, the effective conductivity (14) is given by

(15) σ̃3 = σ(2) + 2σ(2) (σ(1))1/2 − (σ(2))1/2(
σ(1)σ(2)

)1/4 c
(1)
3 + o

(
c
(1)
3

)
,

and so, once again, the two-phase conductor constructed in the previous iteration
belongs to the class (3). Making use of it as the dilute system of an incremental
process we construct a new set of two-phase conductors whose effective conductivity
is given by

(16) σ̃4 = σ|
t=− ln(1−c(1)4 )

, σ̇(t) = 2σ(t)
(σ(1))1/2 − (σ(t))1/2(

σ(1)σ(t)
)1/4 , σ(0) = σ(2),

and, upon integration of this differential equation,

σ̃4 = σ(1)

([
(σ(1))1/4 + (σ(2))1/4

]
− c(2)4

[
(σ(1))1/4 − (σ(2))1/4

][
(σ(1))1/4 + (σ(2))1/4

]
+ c

(2)
4

[
(σ(1))1/4 − (σ(2))1/4

])4

,(17)

where c
(2)
4 is the finite volume fraction of phase r = 2 in the two-phase systems k = 4.

Iteration k. Following this iterative process k times it is easy to verify that the
effective conductivities of those two-phase conductors with odd k are given by

σ̃k =

c(1)k
2

(σ(1))αk − (σ(2))αk

(σ(1))αk/2
+

√√√√(c(1)k
2

(σ(1))αk − (σ(2))αk

(σ(1))αk/2

)2

+ (σ(2))αk


2/αk

(18)

with αk = (1/2)
k−1
2 , while the effective conductivities of those with even k are given

by

(19) σ̃k = σ(1)

[[
(σ(1))βk + (σ(2))βk

]
− c(2)k

[
(σ(1))βk − (σ(2))βk

][
(σ(1))βk + (σ(2))βk

]
+ c

(2)
k

[
(σ(1))βk − (σ(2))βk

]]1/βk

with βk = (1/2)
k
2 .

Iteration k →∞. As k →∞ the exponents αk and βk in the previous expressions

tend to zero. Therefore, if c
(r)
k → c(r), the sequence of σ̃k given by (18)–(19) is such

that

(20) σ̃k → σ̃A,

where σ̃A is Aleksandrov’s mean (2) with N = 2. These limiting material systems
will be referred to as two-phase Aleksandrov conductors.
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3. N-phase conductors. By means of a second iterative process, the above
class of two-phase Aleksandrov conductors can be used to generate N -phase conduc-
tors whose effective conductivities are given by Aleksandrov’s mean (2).

Iteration i = 1. Consider a two-phase Aleksandrov conductor whose constituent
phases are made up of materials r = 1 and r = 2; the effective conductivity of this
material system is then given by

ln σ̃1 = c
(1)
1 lnσ(1) + c

(2)
1 lnσ(2),(21)

where c
(r)
1 denotes the volume fraction of each phase r in the two-phase conductor

i = 1.
Iteration i = 2. Now consider a two-phase Aleksandrov conductor made up of

material r = 3 and of the two-phase Aleksandrov conductor of the previous iteration.
The effective conductivity σ̃2 of this three-phase conductor is then given by

ln σ̃2 = (1− c(3)2 ) ln σ̃1 + c
(3)
2 lnσ(3)

= (1− c(3)2 )c
(1)
1 lnσ(1) + (1− c(3)2 )c

(2)
1 lnσ(2) + c

(3)
2 lnσ(3)

= c
(1)
2 lnσ(1) + c

(2)
2 lnσ(2) + c

(3)
2 lnσ(3),(22)

where c
(r)
2 refers to the volume fraction of material r in the three-phase conductor

i = 2.
Iteration N . Performing this iterative process N times leads to an N -phase

conductor with effective conductivity given by

ln σ̃N =

N∑
r=1

c
(r)
N lnσ(r),(23)

where c
(r)
N refers to the volume fraction of material r in theN -phase system. Evidently,

if c
(r)
N = c(r), the effective conductivity σ̃N is such that

(24) σ̃N = σ̃A,

where σ̃A is Aleksandrov’s mean (2) for an N -phase conductor.

4. Discussion. The microstructures produced by the above contruction process
are of granular character in the sense that there is no continuous phase playing the role
of a matrix. Alexandrov estimates are therefore expected to be accurate for granular
systems. These estimates are compared with various bounds and estimates for two-
phase conductors in Figure 1. Part (a) shows plots of the effective conductivity as
a function of volume fraction c(2) for the choice σ(1) = 5σ(2). It is observed that
Aleksandrov estimates (AL) lie within the bounds of Hashin and Shtrikman (HS)
as expected in view of their realizability. In addition, it is seen that Aleksandrov
estimates lie close to the effective medium approximation (EMA) of Bruggeman [4] and
agree exactly with this approximation when both phases are present at equal volume
fractions (c(1) = c(2) = 1/2). Recall that the EMA estimate is also realizable by a
class of granular systems [10]. That Aleksandrov and EMA estimates agree exactly
when both volume fractions are equal is a consequence of the fact that the two-phase
conductors realizing these estimates have symmetric microstructures in that case and
their effective conductivities must therefore be given by the Keller–Dykhne formula
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(a) (b)

Fig. 1. Various bounds and estimates for the effective conductivity of two-phase conductors:
(a) as a function of volume fraction c(2) for the choice σ(1) = 5σ(2), and (b) as a function of local
conductivity contrast for the choice c(2) = 0.3.

for symmetric materials [5, 7] (σ̃ =
√
σ(1)σ(2)). Part (b) shows plots of the effective

conductivity as a function of local conductivity contrast for the choice c(2) = 0.3. It
is observed that Aleksandrov and EMA estimates give similar predictions for low to
moderate contrasts but diverge for large contrasts. This is a consequence of the fact
that these estimates exhibit different percolation thresholds for infinitely contrasted
systems: the EMA estimates percolate at c(2) = 1/2, while Aleksandrov estimates
percolate at c(2) = 0. In any case, the fact that Aleksandrov estimates are realized
by two-dimensional systems provides a more rigorous basis for its use to estimate
effective properties, at least for model systems of interest to theoretical studies in
linear as well as nonlinear homogenization [8, 9, 11].

We conclude by recalling that the Voigt, Reuss, and Aleksandrov estimates are
all particular instances of the more general family of geometric estimates given by

(25) (σ̃G)γ =

N∑
r=1

c(r)(σ(r))γ ,

with the Voigt and Reuss estimates corresponding to γ = 1 and γ = −1, respectively,
and the Aleksandrov estimate corresponding to γ → 0. Letting σ(r) = σ0+t δσ(r) and
expanding to second order in t the geometric estimate (25) along with the Hashin–
Shtrikman upper and lower bounds we obtain

σ̃G = 〈σ〉 − 1

2
(1− γ)

〈σ2〉 − 〈σ〉2

σ0
+O(t3),(26)

σ̃+
HS = σ̃−

HS = 〈σ〉 − 1

2

〈σ2〉 − 〈σ〉2

σ0
+O(t3),(27)

where angular brackets denote volume average over the composite. Since the Hashin–
Shtrikman upper and lower bounds agree exactly to second order in t, any realizable
estimate must also agree with these bounds to second order in t. Thus, the geometric
estimate (25) can be realizable only when the exponent γ → 0, i.e., when it reduces
to Aleksandrov’s mean.
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Appendix. Avellaneda [3] derived an expression for G in the context of linear
elasticity under the assumption that the domain Ω(2) occupied by the dilute phase
is a bounded subset of Rn with Lipschitz boundary. In the case of two-dimensional
(n = 2) conductors with isotropic phases and isotropic microstructural morphologies,
that expression can be written as

G
(
σ(1), σ(2)

)
= (σ(2) − σ(1))

[
1 + e · 〈∇φ〉(2)

]
,(28)

where e is a unit vector, 〈·〉(2) denotes averaging over Ω(2), and φ(x) satisfies the field
equations

∇ · [σ(x)(e +∇φ)] = 0 in R2,

∫
R2

|∇φ|2 <∞,(29)

with

σ(x) = χ(1)(x)σ(1) + χ(2)(x)σ(2).(30)

Here, χ(2)(x) = 1− χ(1)(x) denotes the characteristic function of Ω(2). The function
G is independent of e in view of the assumed overall isotropy.
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