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A theoretical study of the core structure and composition of a hedgehog defect in a mixture of a nematic

liquid crystal and a second non-nematogenic component is presented. Fractionation of the components

between the bulk and the defect core is rigorously considered by using solution thermodynamics. Two

complementary approaches are used to analyze this problem: a multiscale model based on a Landau–de

Gennes free energy functional that is solved numerically, and a macroscopic sharp interface phase-

equilibrium model, which considers the defect core as an isotropic phase in equilibrium with a distorted

nematic phase and that under certain limiting conditions yields equations that reveal the mechanisms

that select defect core structure, geometry, and composition. It is found that the non-nematogenic

component segregates preferentially to the defect core, and the defect radius increases as the

concentration of the second component and the temperature are increased. As previously predicted for

pure liquid crystals, close to saturation conditions the radius increases significantly, and a small range

of supersaturation or superheating is observed.
1. Introduction

The study of topological defects has been long recognized as an

essential aspect of liquid crystal science, as defects are frequently

generated during mesophase formation, material processing, and

sometimes they appear as equilibrium structures.1–20 In many

applications, defects have an unfavourable effect and a defect-

free material is desired (the best known example of this are liquid

crystal display devices), but there are processing and geometric

conditions where defects appear as a part of the material struc-

ture, like in carbonaceous fibers,5,6 filled nematics,7–10 isolated

droplets11–14 or cavities15,16 with strong anchoring. In most cases,

whether they are an essential feature of the material structure or

not, defects have a very important impact on the material

properties and device performance and it is desirable to control

their nucleation, stability and core structure through an under-

standing of defect physics.

The structure and stability of different types of defects in pure

LC have been widely studied in the past.9,12–24 Effects of

temperature, transition rules between different defect structures,

and dynamic process of formation and annihilation of defects are

well known in two and three dimensions.10–12,21,23 Nevertheless,

the studies of defects in mixtures are very limited. Several studies

have focused on the formation of phase-separated morphologies

in mixtures of liquid crystals and other components, and how the
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general textures and the appearance of different defects are

affected by composition and temperature,25–27 but a systematic

study of the structure of a defect core for mixtures has not been

performed. A particular case where this has a remarkable

importance is the case of the stabilization of blue phases by the

addition of a guest component.28–31 It was shown experimentally

that the addition of polymers or nanoparticles can increase the

range of stability of this phase from a few to dozens of

degrees.28,29 Another important case where solute distribution in

a defect is crucial is the case of mitosis of living cells, where it is

hypothesized that the poles of the cell are nematic defects and the

migration of the chromosomes to the poles is just the segregation

of a solute to the defects.32

Recently, the stabilization of blue phases by the addition of

a non-mesogenic component was analyzed theoretically.30,31 It

was shown that replacing the defect core with the guest compo-

nent lowers the free energy of the blue phase, thus providing the

observed stabilizing effect, but the structure of the defect (radius,

order parameter profiles, solute distribution) was not analyzed in

these studies, and the full effect of temperature and global

composition was not analyzed.

In this work, we use two complementary approaches to study

a hedgehog defect in a mixture of a LC and a non-mesogenic

component. The first approach is based on a Landau–de Gennes

free energy functional, where the free energy density is formu-

lated in terms of homogeneous and gradient contributions and

the resulting governing equations for the continuous nematic

order and orientation are solved numerically. The second

method is a sharp interface macroscopic thermodynamic

approach where the nematic bulk and the isotropic defect core
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are treated as different phases in equilibrium. The first contin-

uous core approach allows the spatial profiles of concentration

and order parameter across the defect to be resolved in detail,

while the second sharp interface method is less detailed but leads

to revealing analytical expressions for the core composition and

radius in certain limiting cases. These two approaches have been

used previously for pure liquid crystals, for example, to analyze

the dependence of a disclination radius on temperature,19 or to

analyze the relative stabilities of different defect configuration in

radial spherulites.17,20 In this work the defect radius and spatial

distribution of the second component are analyzed for

a hedgehog configuration, as a function of temperature and

binary mixture composition.

This paper is organized as follows. In Section 2 we present the

details of the two approaches used: Section 2.1 describes the

Landau–de Gennes continuum model, Section 2.2 describes the

macroscopic sharp interface thermodynamic model, and in

Section 2.3 we describe the conditions and parameters used in the

calculations. Section 3 presents the results and discussion of both

complementary approaches. Finally, Section 4 presents the

conclusions. In addition, two appendices with the rigorous

derivations of the model equations are included; Appendix A

gives the evolution equations for order parameter S and

composition f for the Landau–de Gennes model in radial

coordinates, and Appendix B derives the governing equations for

defect radius R and composition f for the sharp interface model.
2. Model

2.1. Multiscale model based on a Landau–de Gennes (LdG)

free energy functional

The free energy density of a binary mesogenic–non-mesogenic

mixture is given by the sum of homogeneous and gradient

contributions. The Flory–Huggins theory is used for the

isotropic free energy of the mixture, in combination with Maier–
Fig. 1 Schematics of the radial spherulite with a hedgehog defect at the

center, and the relevant geometric variables used in the sharp interface

thermodynamic approach.
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Saupe theory for nematic order.25–27 This widely used model is

simple, but it still captures the essential physics of the system; it is

able to represent the different phase transitions and it reproduces

the parametric sensitivity at least qualitatively. Taking the pure

components in the isotropic state as the reference state the free

energy reads:

f h
* ¼ vref f

h

RgasT
¼ vref fmix

RgasT
þ ð1� fÞ

rLC

fNEM

RgasT
(1)

vref fmix

RgasT
¼ 1� f

rLC
ln ð1� fÞ þ f

rI
ln ðfLCÞ þ cfð1� fÞ (2)

fNEM

RgasT
¼ 3

4
nð1� fÞQ : Q� ln ðZÞ (3)

where f is the volume fraction of the non-mesogenic species (we

will refer to this component as ‘‘I’’), the symmetric and traceless

tensor Q ¼ Snn + P(ll � mm) is the quadrupolar order param-

eter,10 where S and P are the scalar uniaxial and biaxial param-

eters, n,m and l are the eigenvectors ofQ, rLC and rI are the ratios

of molar volume of LC and I components with respect to the

reference volume vref, c is the mixing interaction parameter, n ¼
4.54TNI/T is the Maier–Saupe quadrupolar interaction param-

eter, Rgas is the gas constant, T is the temperature and TNI is the

isotropic–nematic temperature for the pure LC. The orienta-

tional partition function Z was approximated by an eighth-

degree polynomial in terms of the invariants of Q (obtaining

a ‘‘Landau’’ polynomial expression) using a least-square fit to

obtain the polynomial coefficients.33 In eqn (1)–(3) the usual

characteristic free energy density RgasT/vref was used to make the

equations non-dimensional. The gradient free energy is given by

gradients in concentration and order:25,26

fg ¼ Lf(Vf)
2 + LQ1VQ«VQ + LQ2(VQ)(VQ) + LQf(VQ)Vf (4)

The gradients can be made non-dimensional by defining

a characteristic length l ¼ (vref (LQ1 + LQ2)/RgasTNI)
1/2, and eqn

(4) becomes

f g* ¼ vref

RgT
f g

¼ L*
f

T*

�
V*f

�2þL*
Q1

T*
V*Q«V*Qþ L*

Q2

T*

�
V*Q

��
V*Q

�
þ L*

Qf

T*

�
V*Q

�
V*f (5)

where Li* ¼ Li/(LQ1 + LQ2) for i ¼ f, Q1, Q2 and Qf, T* ¼ T/

TNI, and V* ¼ lV is the gradient with respect to the non-

dimensional spatial coordinates. Note that the characteristic

length defined here is related to the elastic constants, while the

reference volume defined previously is an arbitrary molar volume

(originally arising from the cell volume in a lattice model), and

they are not related.

The evolution of Q and f is given by:25–27

vQ

vt*
¼ vf *

vQ
� V* vf *

vV*Q
vf

vt*
¼ MrV

*2

�
vf *

vf
� V* vf *

vV*f

� (6)
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where t* is the dimensionless time and Mr is a mobility ratio.

Although the stationary solution is the objective of this work, the

dynamic evolution is calculated, as relaxation techniques can have

serious convergence problems if the initial guess is not adequate.

Note that the stationary solution is independent of Mr.

As the objective of this work is to analyze a radially symmetric

system, eqn (1)–(6) are written in spherical coordinates and only

the derivatives with respect to r are kept. In addition it is assumed

that P is 0 (uniaxial state). The full equations written in radial

coordinates are presented in Appendix A. Symmetric breaking

and biaxiality effects are left for future work.
2.2 Macroscopic sharp interface model based on phase

equilibrium thermodynamics

In the sharp interface approach, following Mottram and

Sluckin,19 the defect core is considered as fully isotropic, so the

whole defect is treated as a region of isotropic phase, as shown in

Fig. 1. The full derivation of the model equations is presented in

Appendix B, here we present the main concepts and equations.

The system is considered as two separated phases, a uniaxial

nematic phase with radial orientation and an isotropic phase

representing the defect, separated by a well defined interface.

This is shown schematically in Fig. 1.

The total free energy of this radial spherulite is:

F ¼ 4

3
pR3fi þ 4

3
p
�
D3 � R3

�
fn þ 4pR2s

þ 16pðL1 þ L2ÞS2ðD� RÞ (7)

The first term is the energy of the defect core, the second term

is the homogeneous contribution from the nematic region, the

third term is the interfacial energy between the core and the

nematic phase, and the last term is the gradient energy from the

distortions of the director in the nematic phase due to curvature,

from integration of eqn (A3) (it is assumed that the value of the

scalar order parameter is constant in the nematic phase). As

noted by Mottram and Sluckin,19 the last term favours a large

radius, while the first terms (free energy difference and surface

tension) favour small defect cores. The mass balance imposes

a restriction on the volume and concentrations of the phases:

f0D
3 ¼ fiR

3 + fn(D
3 � R3) (8)

where 0, i, and n correspond to initial, isotropic and nematic

phases, respectively. Thus, for a given value ofD, only two of the

three variables fn, fi and R are independent. The equilibrium

conditions are given by the minimization of the free energy, given

by eqn (7). For a defect in a nematic spherulite, the assumptionD

[ R can be made. From eqn (8), this assumption leads to fn ¼
f0. This results in the equilibrium conditions for the defect

composition and radius (see eqn (9) and (10) in Appendix B for

detailed derivations):
R* ¼
s* �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s*2 � ð4=T*Þ�� f *NEM þ �1þ rI

�
vf *NEM=

q
�f *NEM þ �1þ rI

�
vf *NEM=vf

�� ex
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vf *i
vf

� vf *n
vf

þ 3

R*

vs*

vDf
¼ 0 (9)

�
f *i � f *n

�þ vf *
n

vf
ðfn � fiÞ þ 2

s*

R*
� 4T* S

2

R*2
¼ 0 (10)

where the dimensionless variables are fi* ¼ vreffi/RgasT, fn* ¼
vreffn/RgasT, s* ¼ (1/l)vrefs/RgasT, and R* ¼ R/l. These equations

will in general not have an analytical solution, but nevertheless

simplifications can be made for two important limiting cases: (i)

near saturation conditions and (ii) small solute concentration, as

follows. (i) In the case the mixture is close to bulk saturation

conditions (this means close to the boundaries of the region of

phase coexistence), the free energy can be expanded as a function

of concentration in the vicinity of saturation conditions and (see

Appendix B) the following equations are obtained:

fi � fi;sat ¼
v2f *n;sat=vf

2

v2f *i;sat=vf
2

�
fn � fn;sat

�
(11)

R* ¼

s* �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s*2 � ð4=T*Þ

�
v2f *n;sat=vf

2
��

fi;sat � fn;sat

��
fn � fn;sat

�
S2

r
�
v2f *n;sat=vf

2
��

fi;sat � fn;sat

��
fn � fn;sat

�
(12)

where the subscript ‘‘sat’’ means that the variable is evaluated in

bulk saturation conditions. These equations are independent of

the particular model used to describe the free energy. If the

surface tension s* and the order parameter S are approximated

by the values at saturation, then fi and R are given in terms of

thermodynamic properties at the saturation conditions, which

are functions of temperature only and can be easily calculated or

measured experimentally. In order to derive these equations the

assumption that the effects of interfacial tension can be neglected

in eqn (11) has been made (see Appendix B); the validity of this

assumption will be addressed a posteriori.

Eqn (12) shows that, even for a supersaturated nematic phase,

a finite radius defect can exist, so a supersaturated nematic phase

can be metastable. This is analogous to the case of the pure liquid

crystal.19 There are two possible values for the radius R, one of

them corresponds to a stable defect, the other corresponds to

a maximum in the free energy and is thus unstable.

(ii) In the case of very low concentration of I, eqn (9) and (10)

can be simplified, but some expression must be assumed for the

mixing free energy in order to obtain an analytical solution.

Using Flory–Huggins energy of mixing the result is

(Appendix B):

fi ¼ fn exp

	
rI

�
ð1� fnÞ

vf *NEM

vf
� f *NEM

�

(13)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vf
�� exp

�
rI
��
vf *NEM=vf

�� f *NEM

���ðfn=rI Þ
�
S2

p
�
rI
��
vf *NEM=vf

�� f *NEM

���ðfn=rI Þ
(14)
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In order to calculate all the parameters appearing in eqn (13)

and (14) we make the following assumptions. (1) Considering

that the interfacial tension is proportional to the integral of the

gradient energy, for small concentrations the main contribution

will be the integral of (dS(x)/dx)2, which is equivalent to the

surface tension of the pure LC. Assuming that the function S(x)

does not change very much across the interface, the interface

tension is proportional to S2 evaluated in the nematic phase.

Consequently, for T < 1 we can write s(T) ¼ s(T ¼ 1, f ¼ 0)(S/S

(T ¼ 1, f ¼ 0))2, and the only value of surface tension that needs

to be known is the one corresponding to the pure LC at TNI. (2)

Usually the properties of the mixtures can be easily related to the

properties of the pure LC at some different temperature, for

example, in Maier–Saupe theory, S(T, f) ¼ S(T/(1 � f), 0),

fNEM(T, f) ¼ fNEM(T/(1 � f), 0) and (1 � f)vfNEM/vf ¼
TvfNEM/vT; if this assumption can be made, all the properties

appearing in eqn (13)–(14) can be evaluated for the pure liquid

crystal (no properties of the mixture are involved). (3) As an

alternative, if the free energy and its derivative are difficult or

costly to calculate or measure, this function can be linearly

expanded as a function of f in the vicinity of 0, and eqn (13) and

(14) become

fi ¼ C1fn � C2fn
2 (15)
R* ¼
s* �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s*2 � ð4=T*Þ�� f *NEMj0 þ ð1� C1Þðfn=rI Þ þ

�
rI
�
v2f *NEM=vf

2
�



0
þ C2

��
f2
n=rI

��
S2

q
�f *NEMj0 þ ð1� C1Þðfn=rI Þ þ

�
rI
�
v2f *NEM=vf

2
�



0
þ C2

��
f2
n=rI

� (16)
where

C1 ¼ exp
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vf *NEM

vf






0

� f *NEMj0
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;
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v2f *NEM

vf2






0

� 2
vf *NEM

vf






0

�
exp

	
rI

�
vf *NEM

vf






0

� f *NEMj0
�


and the subscript ‘‘0’’ means for f ¼ 0. In this case, the free

energy and its derivatives have to be measured or evaluated only

at f ¼ 0, or they could be treated as adjustable parameters. Only

linear terms could be retained in eqn (15) and (16), but it was

found that this limits significantly the range in which these

equations can be applied. Eqn (13)–(14) and (15)–(16) were

found to give equivalent results in the conditions analyzed in this

work. The full derivation of eqn (11)–(16) given in Appendix B

shows how the defect structure can be made more explicit by

using the sharp interface model.
2.3. Simulation details

The construction of the phase diagram follows standard proce-

dures: the equilibrium condition at each temperature is given by

the equality of chemical potentials of each component and the

minimization of the free energy with respect to the order

parameter, in each phase.
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Simulations with the LdG model were performed in radial

coordinates, using a domain comprised between r* ¼ 0 and 2000

(for this value of r*, the defect structure is independent of domain

size). The initial condition was a smooth step function in S at

r* ¼ 2, and homogeneous composition. Natural and no-flux

boundary conditions were used. The equations were solved with

COMSOL Multiphysics, using quadratic Lagrange basis func-

tions; standard numerical techniques were used to ensure

convergence and stability.

Surface tensions were calculated from the LdG model, for

a planar equilibrium interface, as:

s* ¼ 2

ðN
�N

f g*dx (17)

for different temperatures. These values were used in eqn (11)–

(16) as indicated. The following dimensionless parameters were

used: rLC¼ 2, rI¼ 1, c¼ 0.8/T*, Lf*¼ LQ1*¼ LQ2*¼ 0.50 (with

these parameter values, equilibrium isotropic–isotropic phase

separation does not take place). If dimensional parameters

matching some representative values of existing LC are used, the

calculated defect core radius and interface tensions reproduce the

experimentally observed values. For example, for Li z 10�11 J

m�1, vref ¼ 100 cm3 mol�1 (which means that the LC has a specific
volume of 200 cm3 mol�1), TNI ¼ 300 (these values are approx-

imately the corresponding values for 5CB) a value of lz 1 nm is

obtained. This leads to defect cores of radius between 2 and 50

nm and interfacial tensions between 5 � 10�5 and 5 � 10�4 J m�2,

which are in the order of magnitude of experimental

measurements.
3. Results and discussion

Fig. 2 shows the thermodynamic phase diagram used in this

study computed using eqn (1)–(3). Two types of phases exist:

isotropic (Q ¼ 0) and nematic (Q > 0).

Simulations were performed for different values of f0 at

constant temperatures (horizontal lines at 0.7, 0.775, 0.85 and

0.925) and at constant f0 (vertical lines at 0.005, 0.01, 0.02 and

0.05) for different temperatures. All these (f0, T) points lie in the

dotted lines shown in the inset in Fig. 2. All the results shown

correspond to dimensionless variables.

Fig. 3 shows profiles of concentration and order parameter at

T ¼ 0.925 for different values of f0, and Fig. 4 for f0 ¼ 0.02 at

different temperatures. The radius of the defect increases when

the temperature or concentration increases (that is, as the system

approaches to saturation conditions), and the concentration of

the second component is always higher in the defect core than in

the nematic bulk (as this component is non-mesogenic it segre-

gates preferentially to the isotropic phase). This is in accordance
This journal is ª The Royal Society of Chemistry 2012



Fig. 4 Profiles of order parameter (a) and concentration (b), for f0 ¼
0.02, and the following values of T*, increasing in the direction of the

Fig. 2 Phase diagram used in this work, calculated with c¼ 0.8/T*, rI ¼
1, rLC ¼ 2. The temperature axis is normalized with respect to TNI of the

pure LC. Regions of existence of the homogeneous isotropic phase (I),

homogeneous nematic phase (N), and coexistence (I + N) are indicated.

The inset shows the small composition range. The simulations were run

using (f0, T) located in the dotted lines in the inset.
with the argument that high-energy defect cores are ‘‘replaced’’

by the guest component, as discussed for stabilized blue pha-

ses,29–31 lowering the free energy of the core (although it is clear

that the replacement is not complete). The increase of the radius

with concentration, as observed in eqn (6), could be explained

considering that the free energy of the core, which favours small

radius, is decreased by this preferential segregation; consequently
Fig. 3 Profiles of order parameter (a) and concentration (b), for T/TNI¼
0.925, and the following values of f0, increasing in the direction of the

arrow: 0, 0.01, 0.03, 0.05, 0.06 and 0.063 (note in b that for f0¼ 0, fI¼ 0).

arrow: 0.8, 0.85, 0.9, 0.94, 0.97 and 0.9775.

This journal is ª The Royal Society of Chemistry 2012
the terms favouring large radius become relatively more

important.

Fig. 5 shows the excess free energy of the equilibrium defect

(defined as the difference between the total free energy of the

radial spherulite, calculated with the LdG model, and the free

energy of the same volume of homogeneous nematic phase), as

a function of concentration. The defect free energy decreases

with concentration in the temperature range explored, in accor-

dance with the previous argument. The stabilization is more

noticeable at higher temperatures (lower curve with squares),

when the free energy of the defect is lower.

In order to better characterize the effects of concentration and

temperature, the defect radius R and concentration fi at the

defect core are plotted as a function of these variables in Fig. 6

and 7, using both the Landau–de Gennes model and the sharp

interface model. Fig. 6 shows plots at constant temperatures, as

a function of concentration close to the saturation conditions

and Fig. 7 shows plots at constant small concentrations as

a function of temperature.

Fig. 6a shows the concentration of the isotropic core

(expressed as a deviation from the saturation concentration),

and Fig. 6b shows the dimensionless radius, as a function of

f0 � fn,sat. The results from simulations and from the analytical

theory (eqn (11) and (12)) are presented. The concentration of the

isotropic core in the simulations was measured at r ¼ 0, and the

radius was taken as the position at which the second derivative of

S(x) is a minimum.19 A good agreement between simulations and
Soft Matter, 2012, 8, 1395–1403 | 1399



Fig. 5 Excess free energy of the equilibrium defect as a function of

concentration. The different temperatures are T ¼ 0.925 (squares), 0.85

(triangles), 0.775 (circles), and 0.7 (diamonds).
analytical theory is observed, this agreement gets worse outside

the range of compositions analyzed in each plot.

Fig. 6a shows how the concentration in the defect core depends

on the concentration of the nematic phase for different
Fig. 6 Deviations of the concentration of the isotropic core with respect

to saturation conditions (a), and defect core radius (b), as a function of

the deviation of the global concentration from saturation conditions. The

dashed lines show saturation compositions. The insets correspond to the

areas in the vicinity of saturation, as indicated by the dotted squares. The

points are the result from LdG simulations; the full lines are the results

from the analytical theory. The lines are plotted up to the limit of

maximum stability (beyond this point the model has no solution for finite

radius). The different temperatures are T ¼ 0.925 (squares), 0.85 (trian-

gles), 0.775 (circles), and 0.7 (diamonds).

Fig. 7 Concentration jump in the isotropic core, fi � f0 (a), and defect

core radius (b) as a function of temperature, for different values of f0.

The points are the result from the LdGmodel, the full lines are the results

from the analytical theory. The lines are plotted up to the limit of

maximum stability (beyond this point the model has no solution for finite

radius). The dotted line in (a) shows the saturation composition. The

values of initial concentration are f0¼ 0 (diamonds), 0.005 (crosses), 0.01

(triangles), 0.02 (squares), and 0.05 (circles).
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temperatures. For high temperatures (close to TNI), the slope of

the line is close to 1, meaning that the deviation from saturation

is similar in both phases. For lower temperatures, the deviation

in the isotropic phase is higher than the deviation in the nematic

phase (nevertheless, the concentration in the core is always larger

as fi,sat is larger for lower temperatures). The linear approxi-

mation works quite well in the analyzed range. As can be

observed in the simulation results, when the nematic phase is

saturated, the concentration in the core corresponds very

approximately to fi,sat, which means that the assumption of

neglecting interfacial effects in eqn (11) (see Appendix B and

Section 2.2) is adequate for real systems (recall that the values

used for the physical parameters in this work match approxi-

mately with those of experimental systems, see Section 2.3), and

solute distribution is driven by bulk thermodynamics.

The defect core radius, as shown in Fig. 6b, increases abruptly

in the vicinity of saturation. As shown in the inset, the nematic

phase can be supersaturated up to a value that depends on the

temperature (note that the value of the radius at the maximum

supersaturation is finite). Far from saturation, the dependence of

the radius on the concentration is not as dramatic, but still the

radius is affected by the presence of the second component.
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Fig. 7a shows the increase of the concentration in the core with

respect to the nematic phase, for the case of low global concen-

trations of guest component. The concentration difference

increases when the temperature decreases, with a slope that is

higher for higher values of f0. The core radius as a function of

temperature is shown in Fig. 7b. The behaviour is similar to that

observed in Fig. 6, the radius increases abruptly when approaching

the saturation temperature, with the possibility of a small super-

saturation. Far from the saturation temperature, increasing f0
increases slightly the radius.

All these results are in accordance with what Mottram and

Sluckin observed in pure liquid crystals.19 The behaviour of

mixtures is similar in that the radius increases abruptly close to

equilibrium conditions. The main effect of adding a second, non-

nematogenic component is its preferential segregation to the

defect (to a degree that depends on temperature and composi-

tion), producing a stabilizing effect and an increase in the defect

core radius. This shows not only that the defect structure can be

affected by the presence of a second component (as in the

stabilization effect reported in blue phases), but also that the

spatial distribution of a solute can be controlled by controlling

the defect distribution.
Conclusions

Theory and simulations of a hedgehog defect in a mixture of

a nematic LC and a non-nematogenic component were performed,

for different compositions and temperatures. The analytical theory

was based on a sharp interface macroscopic thermodynamic

approach, considering the defect and the bulk as different ther-

modynamic phases, and the numerical simulations were based on

a continuous Landau–de Gennes free energy functional. These two

complementary methods, that have been previously used to analyze

defects in pure liquid crystals by Mottram and Sluckin,19 were

adapted for mixtures of a nematogen and an isotropic material, in

the present work. It was shown that the non-nematogenic compo-

nent segregates preferentially to the defect, lowering the defect free

energy, and producing an increase in defect radius. As in the case of

pure liquid crystals, it was observed that the effect of the second

component on the radius is dramatic close to saturation conditions,

where the defect radius can change by an order of magnitude with

very small variations in temperature or composition. A small degree

of supersaturation is possible, like in pure LCs.19

This study shows, with rigorous models, that the defect

structure can be altered by the presence of a second component

or, conversely, the solute distribution can be controlled by the

defect structure. The models and theory presented can be

extended to more complex defect structures, like disclination

lines or three dimensional structures as in blue phases. Future

work will use the present methodology to describe the role of

a non-mesogenic solute on disclination interactions and dis-

clination loop line tension.34,35
Appendix A: Landau–de Gennes equations in radial
coordinates

In this appendix, the equations corresponding to the continuum

LdG model in a radially symmetric geometry are derived.
This journal is ª The Royal Society of Chemistry 2012
Considering that, in radial coordinates, V ¼ dr
v

vr
þ dq

1

r

v

vq

þ d4
1

rsin q

v

v4
;
vdrdr

vq
¼ dqdrþdrdq;

vdrdr

vf
¼ sin qd4dr þsin qdrd4;

and for the uniaxial, radially symmetric case,Q¼ S(r, t)(drdr� I/

3), where dr, dq, and d4 are the unit vectors in r, q and 4 directions

and I is the identity matrix, the gradient and divergence ofQ are:

VðQÞ ¼ drdrdr
2vS

3vr
þ Sdq

1

r

vðdrdrÞ
vq

þ Sd4
1

rsin q

vðdrdrÞ
v4

(A1)

VQ ¼ dr
2vS

3vr
þ 2S

r
ðdrÞ (A2)

Inserting in the dimensionless gradient free energy (below

we drop the asterisks when referring to dimensionless

variables):

f g ¼ LQ1

"
4

�
S
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�2

þ 4

9

�
vS
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�2#
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#

þ LfQ2

vf
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�
S

r
þ 1

3

vS
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�
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�
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(A3)

The dynamic equations can be written as:

vS

vt
¼ � vf h

vS
� 8
�
LQ1 þ LQ2

� S

r 2
� 8

3

LQ2

r

vS

dr
� LQf

2

r
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þ v
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vf

v

�
vS
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�
2
664

3
775þ 2

r

vf

v
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vS

vr
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vf

vt
¼ MR

�
v2

dr 2
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r

v

dr

�
vf h

vf
� v

dr

2
64 vf

v

�
vf

vr

�
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75� 2

r
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v

�
vf

vr

�
0
BB@

1
CCA (A5)

Appendix B: derivation of analytical solutions in the
macroscopic phase equilibrium approach

The purpose of this appendix is to present the full and detailed

derivation of eqn (9)–(16) from eqn (7) and (8), with the

adequate simplifications. First, eqn (7) and (8) are non-

dimensionalized by using the characteristic length and free

energy defined previously:

F* ¼ 4

3
pR*3f *i þ 4

3
p
�
D*3 � R*3

�
f *n þ 4pR*2s*

þ 16pS2

T*

�
D* � R*

�
(B1)

f0D*3 ¼ fiR*
3 + fn(D*3 � R*3) (B2)

Below, we drop the asterisks when referring to dimensionless

variables. As mentioned previously, the mass balance imposes

a restriction so that only two variables are independent, if we

consider fn ¼ f(fi, R), then:
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vfn

vR
¼ vfn

vfn

vfn

vR
;

vfn

vfi

¼ vfn

vfn

vfn

vfi

(B3)

In addition, it is assumed that the order parameter takes the

bulk value (the distortions in the nematic phase are not strong

enough to affect the degree of order) so S is a function of the

composition of the nematic phase.

vS

vR
¼ vSeq

vfn

vfn

vR
;

vS

vfi

¼ vSeq

vfn

vfn

vfi

(B4)

The surface tension is a function of the concentration jump at

the interface, fI � fn.

vs

vR
¼ � vs

vDf

vfn

vR
;

vs

vfi

¼ vs

vDf

�
1� vfn

vfi

�
(B5)

The derivatives of fn are obtained from eqn (A2)

vfn

vfi

¼ �R3

ðD3 � R3Þ;
vfn

vR
¼ 3R2ðfn � fiÞ

D3 � R3
(B6)

The equilibrium conditions are obtained by making the

derivatives of the free energy with respect to the two independent

variables equal to 0:

vfi

vf
� vfn

vf
þ 3

R

vs

vDf

 
1þ 1

ðD=RÞ3�1

!
� 24

T
S
vSeq

vf

ðD� RÞ
ðD3 � R3Þ ¼ 0

(B7)

fi � fn þ vfn

vf
ðfn � fiÞ þ 2s

R
� 3

R

vs

vDf

ðfn � fiÞ
ðD=RÞ3�1

þ 4S

T

	
6
vSeq

vf

ðD� RÞ
D3 � R3

ðfn � fiÞ �
S

R2



¼ 0 (B8)

Eqn (B7) and (B8) are the general equations describing equi-

librium of a nematic and an isotropic phase in a radial configu-

ration as given in Fig. 1. For a defect, the assumption D [ R

(which leads to fn ¼ f0) can be made, resulting in the previously

shown equations:

vfi

vf
� vfn

vf
þ 3

R

vs

vDf
¼ 0 (B9)

ð fi � fnÞ þ vfn

vf
ðfn � fiÞ þ 2

s

R
� 4

T

S2

R2
¼ 0 (B10)

Some further simplifications are made in order to obtain

analytical solutions for some specific cases.
1 Close to saturation conditions

The free energy and its derivative can be linearized in the vicinity

of saturation concentrations:

fi z fi;sat þ vfi;sat

vf

�
fi � fi;sat

�
;

vfi

vf
z

vfi;sat

vf
þ v2fi;sat

vf2

�
fi � fi;sat

�
(B11)
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fn z fn;sat þ vfn;sat

vf

�
fn � fn;sat

�
;
vfn

vf
z

vfn;sat

vf
þ v2fn;sat

vf2

�
fn � fn;sat

�
(B12)

Introducing eqn (B11) and (B12) in eqn (B9) and (B10):

vfi;sat

vf
þ v2fi;sat

vf2

�
fi � fi;sat

� �
"
vfn;sat

vf
þ v2fn;sat

vf2

�
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�#
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R
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¼ 0 (B13)

fi;sat þ vfi;sat

vf

�
fi � fi;sat

�� 	 fn;sat þ vfn;sat

vf

�
fn � fn;sat

�


þ
 
vfn;sat
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þ v2fn;sat

vf2

�
fn � fn;sat

�!ðfn � fiÞ þ 2
s

R
� 4

T

S2

R2
¼ 0

(B14)

From bulk equilibrium conditions (eqn (B7) and (B8)

neglecting surface and distortion terms), the following equalities

hold: vfi,sat/vfi ¼ vfn,sat/vfn, and fi,sat ¼ fn,sat + vfn,sat/vfn (fi,sat �
fn,sat). Introducing these relations in eqn (B13) and (B14),

introducing eqn (B13) into (B14) and neglecting terms that are

second order in (fn � fn,sat)

fi � fi;sat ¼
v2fn;sat=vf

2

v2fI ;sat=vf
2

�
fn � fn;sat

�� 3

R

vs=vDf

v2fI ;sat=vf
2

(B15)

2s� 3ðvs=vDfÞ�v2fn;sat=vf2
���

v2fI ;sat=vf
2
��
fn � fn;sat

�
R

� 4

T

S2

R2
¼ v2fn;sat

vf2

�
fI ;sat � fn;sat

��
fn � fn;sat

�
(B16)

The first equation shows that the curvature might have an

effect on the concentration in the isotropic phase, given by the

fact that the interfacial tension is a function of the concentration.

This term is difficult to calculate or to measure experimentally. In

case that the variation of the interfacial tension with composition

is not significant (compared to the other terms), the equations

simplify to eqn (B17) and (B18):

fi � fi;sat ¼
v2fn;sat=vf

2

v2fI ;sat=vf
2

�
fn � fn;sat

�
(B17)

R ¼
s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � ð4=TÞ�v2fn;sat=vf2

��
fi;sat � fn;sat

��
fn � fn;sat

�
S2

q
�
v2fn;sat=vf

2
��
fi;sat � fn;sat

��
fn � fn;sat

�
(B18)

According to the simulations, the concentration in the

isotropic core is very well reproduced by eqn (B17), which means

that the effect of the variation of the surface energy is indeed

unimportant.
2 For small concentrations

In this case, in order to find a simplified expression, some

expression for the free energy of mixing has to be considered
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a priori. Using Flory–Huggins solution theory, the free energies

and the derivatives for each phase can be calculated:

fI � fn ¼ fI

vi
ln fI �

fn

rI
ln fn þ

1� fI

rLC
ln ð1� fiÞ

� 1� fn

rLC
lnð1� fnÞ þ c½fið1� fiÞ� fnð1� fnÞ� � ð1� fnÞ fNEM

(B19)
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Replacing in the equilibrium equations (eqn (B9) and (B10)),

and rearranging:

1
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ln
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vfNEM
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For small concentrations, the following simplifications can be

made: in the first equation the second and fourth terms will go to

zero; in the second equation, the second logarithm can be line-

arized, and then all the terms that are second order in f can be

neglected. If, in addition, the variation of the surface tension with

concentration is neglected as we did before, the equations reduce

to:

fI ¼ fnexp

	
vi

�
ð1� fnÞ

vfNEM

vf
� fNEM

�

(B24)
R ¼ s� 
s2 � ð4=TÞ½ � fNEM þ ð1þ rI ðvfNEM=vfÞ � exp ½rI ððvfNEM=vfÞ � fNEMÞ�Þðfn=rI Þ�S2

p
�fNEM þ ð1þ rI ðvfNEM=vfÞ � exp ½rI ððvfNEM=vfÞ � fNEMÞ�Þðfn=rI Þ

(B25)
All the effect of the second component is comprised in the

terms multiplied by fn, that add to the free energy of the nematic

phase.
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