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THE BOHNENBLUST-HILLE INEQUALITY

COMBINED WITH AN INEQUALITY OF HELSON

DANIEL CARANDO, ANDREAS DEFANT, AND PABLO SEVILLA-PERIS

(Communicated by Alexander Iosevich)

Abstract. We give a variant of the Bohenblust-Hille inequality which, for
certain families of polynomials, leads to constants with polynomial growth in
the degree.

1. Introduction

Hardy and Littlewood showed in [7] that there exists a constant K > 0 such that
for every f ∈ H1 we have(∫

D

|f(z)|2dm(z)

)1/2

≤ K

∫
T

|f(w)|dσ(w) ,

where dm and dσ denote respectively the normalised Lebesgue measures on the
complex unit disc D and the torus (or unit circle) T. Equivalently, this means
that the Hardy space H1(T) is contained in the Bergman space B2(D). Shapiro
[12, pp. 117-118] showed that the inequality holds with K = π, and Mateljević [10]
(see also [11, 13]) showed that actually the constant could be taken to be K = 1.
A simple reformulation of the Bergman norm then gives that if

∑∞
n=0 anz

n is the
Fourier series expansion of f ∈ H1(D), we have( ∞∑

n=0

|an|2
n+ 1

)1/2

≤
∫
T

|f(w)|dσ(w).

A few years later Helson in [9] generalised this inequality to functions inN variables.
For n ∈ N denote by d(n) the number of divisors and by pα = pα1

1 · · · pαk

k the prime
decomposition of n. Then we have that for every f ∈ H1(TN ) with Fourier series
expansion

∑
α∈NN

0
cαz

α

(1.1)

( ∑
α∈NN

0

|cα|2
d(pα)

)1/2

≤
∫
TN

|f(w)|dσ(w).

Given a multiindex α, we write α+ 1 = (α1 + 1) · · · (αk + 1). Note that, with this
notation, we have d(pα) = α+ 1.
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On the other hand, by the Bohnenblust-Hille inequality [4] as presented in [5]
there is a constant C > 0 such that for every m-homogeneous polynomial in N
variables P (z) =

∑
|α|=m cαz

α with z ∈ C
N we have

(1.2)

( ∑
|α|=m

|cα|
2m

m+1

)m+1
2m

≤ Cm sup
z∈DN

|P (z)|.

The proof of this inequality given in [5] consists basically of two steps: first to
decompose the sum in (1.2) as the product of certain mixed sums and second to
bound each one of these sums by a term including ‖P‖, the supremum of |P | on
DN . For this second step usually the following result of Bayart [1] is used: for every
m-homogeneous polynomial in N variables we have

(1.3)

( ∑
|α|=m

|cα|2
)1/2

≤ 2m/2

∫
TN

∣∣∣ ∑
|α|=m

cαw
α
∣∣∣dσ(w).

Very recently, it was proved in [2, Corollary 5.3] that for every ε > 0 there exists
κ > 0 such that we can take κ(1+ε)m as the constant in (1.2). Our aim in this note
is to get a variant of (1.2) by using (1.1) instead of (1.3). With this variant, we
see that for polynomials P , each of whose monomials involve a uniformly bounded
number of variables, the obtained constants have polynomial growth in m.

2. Main result and some remarks

The following is our main result.

Theorem 2.1. Let Λ ⊆ {α ∈ NN
0 : |α| = m} be an indexing set. Then for every

family
(
cα
)
α∈Λ

we have

(∑
α∈Λ

( |cα|√
α+ 1

) 2m
m+1

)m+1
2m

≤ m
m−1
2m

(
1− 1

m− 1

)m−1

sup
z∈DN

∣∣∣∑
α∈Λ

cαz
α
∣∣∣.

We give several remarks before we present the proof.

Remarks 2.2.

(1) It is easy to see that
√
α+ 1 ≤

√
2
m
. Hence the preceding inequality

includes the hypercontractive version of the Bohnenblust-Hille inequality
from (1.2) as a special case.

(2) Thanks to the term
√
α+ 1, the constants in the previous inequality grow

much more slowly than the constants in (1.2). Actually, we have

m
m−1
2m

(
1− 1

m− 1

)m−1
=

√
m

e

(
1 + o(m)

)
.

(3) Let vars(α) denote the number of different variables involved in the mono-
mial zα. In other words, vars(α) = card

{
j : αj �= 0

}
. Given M we consider

the set

ΛN,M =
{
α ∈ N

N
0 : |α| = m and vars(α) ≤ M

}
(note that if M ≥ N , then ΛN,M = ΛN,N ). An application of Lagrange
multipliers gives that for any α ∈ ΛN,M we have for every N and M ,

α+ 1 = (α1 + 1) · · · (αk + 1) · · · ≤
(m

M
+ 1

)M

.
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Combining this with Theorem 2.1 we obtain for every m, N , M ,
( ∑

α∈ΛN,M

|cα|
2m

m+1

)m+1
2m

≤
(m

M
+ 1

)M/2
( ∑

α∈ΛN,M

( |cα|√
α+ 1

) 2m
m+1

)m+1
2m

≤
(m

M
+ 1

)M/2

m
m−1
2m

(
1− 1

m− 1

)m−1

sup
z∈DN

∣∣∣ ∑
α∈ΛN,M

cαz
α
∣∣∣;

hence( ∑
α∈ΛN,M

|cα|
2m

m+1

)m+1
2m

≤ 2
M
2 m

M+1
2 sup

z∈DN

∣∣∣ ∑
α∈ΛN,M

cαz
α
∣∣∣.(2.1)

This means that for polynomials whose monomials have a uniformly boun-
ded number M of different variables, we get a Bohnenblust-Hille type in-
equality with a constant of polynomial growth in m. We remark that the
dimension N plays no role in this inequality; the only important point
here is the number of different variables in each monomial. As a conse-
quence, an analogue of (2.1) holds for m-homogeneous polynomials on c0:
let P : c0 → C be an m-homogeneous polynomial and

ΛM = {α ∈ N
(N)
0 : |α| = m and vars(α) ≤ M}.

Then for every M and m

( ∑
α∈ΛM

|cα(P )|
2m

m+1

)m+1
2m

≤ 2
M
2 m

M+1
2 ‖P‖,

where the cα(P ) are the coefficients of P and ‖P‖ is the supremum of |P |
on the unit ball of c0.

(4) In [6, Theorem 5.3] a very general version of the Bohnenblust-Hille in-
equality is given, involving operators with values on a Banach lattice. A
straightforward combination of the proof of Theorem 2.1 (see the final sec-
tion) and the arguments presented in [6, Theorem 5.3] easily gives a version
of Theorem 2.1 in that setting.

3. The proof

Let us fix some notation before we prove our main result. We are going to use
the following indexing sets:

M(m,N) = {i = (i1, . . . , im) : 1 ≤ ij ≤ N, j = 1, . . . ,m},
J (m,N) = {i ∈ M(m,N) ∈ : 1 ≤ i1 ≤ · · · ≤ im ≤ N}.

In M(m,N) we define an equivalence relation by i ∼ j if there is a permutation
σ of {1, . . . , N} such that jk = iσ(k) for every k. With this, if matrix

(
ai1,...,im

)
is

symmetric, then we have∑
i∈M(m,N)

ai =
∑

i∈J (m,N)

∑
j∈[i]

aj =
∑

i∈J (m,N)

card[i]ai.

Also, given i ∈ M(m − 1, N) and j ∈ {1, . . . , N}, for 1 ≤ k ≤ m − 1 we define
(i,k j) = (i1, . . . , ik−1, j, ik, . . . , im−1) ∈ M(m,N) (that is, we put j in the k-th
position, shifting the rest to the right).
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There is a one-to-one correspondence between J (m,N) and {α ∈ NN
0 : |α| = m}

defined as follows. For each i we define α = (α1, . . . , αN ) by αr = card{j : ij = r}
(i.e. αr counts how many times r appears in i); on the other hand, given α we
define i = (1, α1. . ., 1, . . . , N, αN. . ., N) ∈ J (m,N).

Each m-homogeneous polynomial on N variables has a unique symmetric m-
linear form L : CN ×· · ·×CN → C such that P (z) = L(z, . . . , z) for every z. If (cα)
are the coefficients of the polynomial and ai1,...,im = L(ei1 , . . . , eim) is the matrix
of L, we have cα = card[i]ai, where α and i are related to each other.

Finally, if α and i are related and p1 < p2 < · · · denotes the sequence of prime
numbers, we will write pα = pα1

1 · · · pαN

N = pi1 · · · pim = pi.

Proof of Theorem 2.1. We follow essentially the guidelines of the proof of the
Bohnenblust-Hille inequality as presented in [5]. First of all let us assume that
cα = 0 for every α �∈ Λ; then we have

(∑
α∈Λ

( |cα|√
α+ 1

) 2m
m+1

)m+1
2m

=

( ∑
i∈J (m,N)

∣∣∣ card[i] ai√
d(pi)

∣∣∣
2m

m+1

)m+1
2m

=

( ∑
i∈M(m,N)

1

card[i]

∣∣∣ card[i] ai√
d(pi)

∣∣∣
2m

m+1

)m+1
2m

=

( ∑
i∈M(m,N)

∣∣∣ card[i]1−m+1
2m

ai√
d(pi)

∣∣∣
2m

m+1

)m+1
2m

.

We now use an inequality due to Blei [3, Lemma 5.3] (see also [5, Lemma 1]): for
any family of complex numbers

(
bi
)
i∈M(m,N)

we have

(3.1)
∑

i∈M(m,N)

|bi|
2m

m+1 ≤
m∏

k=1

( N∑
j=1

( ∑
i∈M(m−1,N)

|b(i,kj)|2
)1/2

) 2
m−1

.

Using this and the fact that card[(i,k j)] ≤ m card[i] we get

( ∑
α∈Λ

( |cα|√
α+ 1

) 2m
m+1

)m+1
2m

≤
m∏

k=1

( N∑
j=1

( ∑
i∈M(m−1,N)

∣∣∣ card[(i,k j)]m−1
2m

a(i,kj)√
d(p(i,kj))

∣∣∣2)1/2
) 1

m

≤
m∏

k=1

( N∑
j=1

( ∑
i∈M(m−1,N)

∣∣∣ card[i]m−1
2m m

m−1
2m

a(i,kj)√
d(p(i,kj))

∣∣∣2)1/2
) 1

m

= m
m−1
2m

m∏
k=1

( N∑
j=1

( ∑
i∈M(m−1,N)

card[i]
∣∣∣ a(i,kj)√

d(p(i,kj))

∣∣∣2)1/2
) 1

m

.

We now bound each one of the sums in the product. We use the fact that the
coefficients aj are symmetric. Also, if q divides pi1 · · · pim = pi, then it also di-
vides pi1 · · · pimpj = p(i,kj); hence d(pi) ≤ d(p(i,kj)) for every i and every j. This
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altogether gives

N∑
j=1

( ∑
i∈M(m−1,N)

card[i]
∣∣∣ a(i,kj)√

d(p(i,kj))

∣∣∣2)1/2

=
N∑
j=1

( ∑
i∈J (m−1,N)

card[i]2
|a(i,kj)|2
d(p(i,kj))

)1/2

≤
N∑
j=1

( ∑
i∈J (m−1,N)

| card[i]a(i,kj)|2
d(pi)

)1/2

.

Let us note that what we have here are the coefficients of an (m− 1)-homogeneous
polynomial in N variables. We now use (1.1) to conclude our argument:

N∑
j=1

( ∑
i∈J (m−1,N)

| card[i]a(i,kj)|2
d(pi))

)1/2

≤
N∑
j=1

∫
TN

∣∣∣ ∑
i∈J (m−1,N)

card[i]a(i,kj)wi1 · · ·wim−1

∣∣∣dσ(w)

≤
∫
TN

N∑
j=1

∣∣∣ ∑
i∈M(m−1,N)

a(i,kj)wi1 · · ·wim−1

∣∣∣dσ(w)

≤ sup
z∈DN

N∑
j=1

∣∣∣ ∑
i∈M(m−1,N)

a(i,kj)zi1 · · · zim−1

∣∣∣

= sup
z∈DN

sup
y∈DN

∣∣∣
N∑
j=1

∑
i∈M(m−1,N)

a(i,kj)zi1 · · · zim−1
yj

∣∣∣

≤
(
1− 1

m− 1

)m−1

sup
z∈DN

∣∣∣∑
α∈Λ

cαz
α
∣∣∣ ,

where the last inequality follows from a result of Harris [8, Theorem 1] (see also
[5, (13)]). This completes the proof. �

As we have already mentioned, very recently [2, Corollary 5.3] has shown that
for every ε > 0 there exists κ > 0 such that (1.2) holds with κ(1 + ε)m. The main
idea for the proof is to replace (3.1) by a similar inequality in which we have mixed
sums with k and m − k indices (instead of 1 and m − 1, as we have here). This
allows us to use instead of (1.3) the following inequality:

( ∑
|α|=m

|cα|2
)1/2

≤ cmp

(∫
TN

∣∣∣ ∑
|α|=m

cαw
α
∣∣∣pdσ(w)

) 1
p

for 1 ≤ p ≤ 2.

A good control on the constants cp (that tend to 1 as p goes to 2) gives an im-
provement on the constant in (1.2) presented in [2]. In our setting, by dividing by
α + 1, we are using (1.1), which already has constant 1. Hence this new approach
does not improve the constants in our setting.
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