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Abstract Let A be the one point extension of an algebra B by a projective B-module.
We prove that the extension of a given support τ -tilting B-module is a support τ -tilting
A-module; and, conversely, the restriction of a given support τ -tilting A-module is a sup-
port τ -tilting B-module. Moreover, we prove that there exists a full embedding of quivers
between the corresponding poset of support τ -tilting modules.
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1 Introduction

Tilting theory plays an important role in representation theory of finite dimensional alge-
bras. In particular, the concept of tilting modules were introduced in the early eighties, see
for example [5–7]. The mutation process is an essential concept in tilting theory. The basic
idea of a mutation is to replace an indecomposable direct summand of a tilting module by
another indecomposable module in order to obtain a new tilting module. In that sense, any
almost complete tilting module is a direct summand of at most two tilting modules, but it is
not always exactly two. The mutation process is possible only when we have two comple-
ments. This suggests to consider a larger class of objects. In [1], T. Adachi, O. Iyama and
I. Reiten introduced a class of modules called support τ -tilting modules, which contains
the classical tilting modules, see Definition 2.8. Furthermore, the almost complete support
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τ -tilting modules have the desired property concerning complements, that is, they have
exactly two complements. A motivation to define support τ -tilting modules come from clus-
ter tilting theory, since the mutation there is always possible to do. Moreover, in [1, Theorem
4.1] the authors showed that there is a deep connection between τ -tilting theory and cluster-
tilting theory. They also showed that the notion of support τ -tilting modules is connected
with silting theory, see [1, Theorem 3.2].

Since τ -tilting theory is a generalization of tilting theory, many properties of tilting mod-
ules are preserved by support τ -tilting modules. In [2], for one point extension algebras
I. Assem, D. Happel and S. Trepode studied how to extend and restrict tilting modules.
More precisely, if A = B[P0] is the one-point extension of an algebra B by a projective
B-module P0, they showed how to construct in a natural way a tilting A-module from a tilt-
ing B-module and conversely, given a tilting B-module they constructed a tilting A-module.
Motivated by this fact, in this article we shall study the behavior of support τ -tilting modules
for one-point extension. Let eB be the identity in B. Since eBAeB

∼= B and A/AeBA ∼= k,
we have a recollement of modA by modB and mod k as follows (see Definition 2.1)

mod k
i∗ �� modA

HomA(AeB,−) ��

k⊗A−

��

HomA(k,−)

�� modB

AeB⊗B−

��

HomB(eBA,−)

��

We denote R = HomA(AeB, −) and E = HomA(eBA,−). We prove the following
result:

Theorem A Let B be a finite dimensional k-algebra over an algebraically closed field k.
Let A = B[P0] be the one-point extension of B by a projective B-module P0 and S = i∗k.
Then,

(a) If M is a basic support τ -tilting B-module then EM ⊕ S is a support τ -tilting
A-module.

(b) If T is a basic support τ -tilting A-module thenRT is a support τ -tilting B-module.

As a direct consequence, we obtain that the functors R and E induce morphisms r from
sτ − tiltA to sτ − tiltB and e from sτ − tiltB to sτ − tiltA such that re = idsτ−tiltB ,
where sτ − tiltB (sτ − tiltA, respectively) is the set of isomorphism classes of basic support
τ -tilting modules overB (A, respectively). Moreover, as a corollary of TheoremAwe obtain
a particular case of [8, Theorem 3.15].

Corollary There is a bijection between

sτ − tiltB ↔ sτ − tilt SA := {M ∈ sτ − tiltA / S ∈ addM}

In [2, Proposition 6.1] the authors proved that if B is a hereditary algebra, A = B[P0]
and T a tilting B-module then EndAeT is a one-point extension of EndBT . In this work,
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we generalize the same result for any algebra B, A = B[P0] and T a τ -tilting B-module.
On the other hand, in [2, Theorem 5.2], the authors also showed that there exists a full
embedding of quivers between the poset of tilting modules. We prove that the above men-
tioned result still holds true for support τ -tilting modules, as we state in the next theorem.
We denote by Q(sτ − tiltB) the support τ -tilting quiver, see Definition 2.19.

Theorem B Let B be a finite dimensional k-algebra over an algebraically closed field
k and A = B[P0] be the one-point extension of B by a projective B-module P0.
Then the map e : sτ − tiltB → sτ − tiltA induces a full embedding of quivers
e : Q(sτ − tiltB) → Q(sτ − tiltA).

Finally, we point out some technical properties concerning the successors and the
predecessors of a support τ -tilting module which belong to the image of e.

We observe that most of the statements fail if we drop the assumption that the module
P0 is projective.

This paper is organized as follows. In the first section, we present some notations and pre-
liminaries results. Section 2 is dedicated to prove Theorem A and the results concerning the
relationship between the support τ -tilting B-modules and the support τ -tilting A-modules.
We study their torsion pairs and their endomorphism algebras. In Section 3, we prove
Theorem B and state some technical consequences.

2 Preliminaries

Throughout this paper, all algebras are basic connected finite dimensional algebras over an
algebraically closed field k.

2.1 Subcategories

For an algebra A we denote by modA the category of finitely generated left A-modules.
An algebra B is called a full subcategory of A if there exists an idempotent e ∈ A such
that B = eAe. An algebra B is called convex in A if, whenever there exists a sequence
ei = ei0 , ei1 , · · · eit = ej of primitive orthogonal idempotents such that eil+1Aeeil

	= 0 for
0 ≤ l < t , eei = ei and eej = ej , then eeil = eil , for each l.

For a subcategory C of modA, we define full subcategories

C⊥ = {X ∈ modA |HomA(C, X) = 0}
and,

C⊥1 = {X ∈ modA |Ext1A(C, X) = 0}.
Dually, the categories ⊥C and ⊥1C are defined. In particular, if X is an A-module, we

can define the full subcategories X⊥ y ⊥X of modA as follows:

X⊥ = (addX)⊥

⊥X = ⊥(addX)

where addX means the full subcategory of modA whose objects are the direct sums of
direct summands of X.
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Recall that a subcategory X of an additive category C is said to be contravariantly finite
in C if for every object M in C there exist some X ∈ X and a morphism f : X → M

such that for every X′ ∈ X the sequence HomC(X′, X)
f→ HomC(X′,M) → 0 is exact.

Dually we define covariantly finite subcategories in C. Furthermore, a subcategory of C
is said to be functorially finite in C if it is both contravariantly and covariantly finite
in C.

A full subcategory T of modA is a torsion class (torsion free class, respectively) if it
is closed under factor modules (submodules, respectively) and extensions. A pair (T ,F)

is called a torsion pair if T = ⊥F and F = T ⊥. We say that X ∈ T is Ext-projective
if Ext1A(X,T ) = 0. If T is functorially finite in modA, then there are only finitely many
indecomposable Ext-projective modules in T up to isomorphism, and we denote by P(T )

the direct sum of the Ext-projective modules in T .
We denote by D the usual standard duality Homk(−, k) : modA → modAop, see [3, I,

2.9].
For an A-module X, we denote by FacX the full subcategory of modA whose objects

are the factor modules of finite direct sums of copies of X.
Finally, we say that an A-module X is basic if the indecomposable direct summands of

X are pairwise non-isomorphic.

2.2 One-point extension algebras

Let B be an algebra and P0 be a fixed projective B-module. We denote by A = B[P0] the
one-point extension of B by P0, which is, the matrix algebra

A =
(

B P0
0 k

)

with the ordinary matrix addition and the multiplication induced by the module structure of
P0.

It is well-known that B is a full convex subcategory of A, and that there is a unique
indecomposable projective A-module P̃ which is not a projective B-module. Moreover, the
simple top S of P̃ is an injective A-module and pdAS ≤ 1, where by pdAS we mean the
projective dimension of the simple S.

On the other hand, it is known that modA has a decomposition by modB and mod k,
which is a recollement. We recall the definition of recollement between abelian categories.

Definition 2.1 A recollement of an abelian category A by abelian categories B and
C, denoted by R(B,A, C), is a diagram of additive functors as follows, satisfying the
conditions below.

B i∗ �� A j∗
��

i∗

��

i!

�� C

j!

��

j∗

��

(1) (j!, j∗, j∗) and (i∗, i∗, i!) are adjoint triples.
(2) The functors i∗, j ! and j∗ are fully faithful.
(3) Imi∗ = kerj∗.
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Let eB be the identity of B. Then, eBAeB
∼= B and A/AeBA ∼= k. We have the following

recollement

mod k
i∗ �� modA

HomA(AeB,−) ��

k⊗A−

��

HomA(k,−)

�� modB

AeB⊗B−

��

HomB(eBA,−)

��

We called the functor HomA(AeB,−) the restriction functor and we denote it by R.
Similarly, we called the functor HomA(eBA,−) the extension functor and we denote it by
E .

The next proposition lists some properties of R(B,A, C) that can be obtained from the
definition of recollement (see for instance [9]).

Proposition 2.2 The following properties hold for a recollement R(B,A, C).

a) The functors i∗ and j∗ are exact.
b) The compositions i∗j! and i!j∗ are identically zero.
c) The units IdB → i!i∗ and IdC → j∗j! and the counits i∗i∗ → IdB and j∗j∗ → IdC

are natural isomorphisms.
d) If C has enough projective and injective objects, then j! preserves projective objects

and j∗ preserves injective objects.

It follows from the definition of recollement that the restriction functor is exact and
RE ∼= IdmodB . Moreover, since eBA is a projective B-module, E is also exact. If we
consider modB embedded in modA under the usual embedding functor, then RX is a
submodule of X.

In [9], C. Psaroudakis studied homological aspects of recollements of abelian categories.
In particular, the author studied when the exact functor j∗ induces , restricted to suitable
subcategories, natural isomorphisms (j∗)m : ExtnA(Z,W) → ExtnC(j∗(Z), j∗(W)). For the
convenience of the reader, we recall here some of these results.

Definition 2.3 [9, Definition 3.1] For 0 ≤ k ≤ ∞, the right k-perpendicular subcategory
i∗(B)0⊥k of B inA is defined by

i∗(B)0⊥k = {A ∈ A | ExtnA(i∗(B),A) = 0, ∀B ∈ B and 0 ≤ n ≤ k}
and dually the left k-perpendicular subcategory 0⊥k i∗(B) of B inA is defined by

0⊥k i∗(B) = {A ∈ A | ExtnA(A, i∗(B)) = 0, ∀B ∈ B and 0 ≤ n ≤ k}

Since i∗(k) ∼= S, the right 1-perpendicular category i∗(mod k)0⊥1 is

i∗(mod k)0⊥1 = {M ∈ modA | HomA(S,M) = 0 and Ext1A(S,M) = 0} = S⊥ ∩ S⊥1

which coincides with the usual right perpendicular category of add S. We denote this sub-
category by Sperp . It follows from [9, Proposition 3.2], that if M ∈ modB then EM ∈
Sperp .

The following result describes the quotient category C of a recollement.
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Lemma 2.4 [9, Proposition 3.2] Let R(B,A, C) be a recollement of abelian categories
and assume that C has enough projective and injective objects. Then we have the following
equivalences:

j∗|0⊥1 i∗(B) : 0⊥1 i∗(B)
� �� C i∗(B)0⊥1��� : j∗|i∗(B)0⊥k

By Lemma 2.4, we have that modB and Sperp are equivalent categories. Namely, if
X ∈ Sperp then X → ERX is a funtorial isomorphism.

Proposition 2.5 [9, Theorem 3.10] Let R(B,A, C) be a recollement of abelian categories
and assume that A and C have enough projective and injective objects. Then the following
statements are equivalent.

i) The map j∗
Z,W : ExtnA(Z,W) → ExtnC(j∗(Z), j∗(W)) is invertible, ∀W ∈ A (resp.

∀Z ∈ A), and 0 ≤ n ≤ k.
ii) Z ∈ i∗(B)0⊥k (resp. W ∈0⊥k i∗(B)).

Remark 2.6 We state here some particular cases of Proposition 2.5 that are going to be
useful in this work.

1. Ext1A(X, EM) ∼= Ext1B(RX,M).
2. If X ∈ Sperp , then Ext1A(EM, X) ∼= Ext1B(M,RX).

Lemma 2.7 [2, Proposition 2.5] Let X be an A-module. HomA(S,X) = 0 if and only if S

is not a direct summand of X.

2.3 τ -tilting Theory

We recall some results on τ -tilting modules. For a detail account on τ -tilting theory we refer
the reader to [1].

Definition 2.8 [1, Definition 0.1] Let A be a finite dimensional algebra.

(a) An A-module M is τ -rigid if HomA(M, τM) = 0.
(b) An A-module M is τ -tilting (almost complete τ -tilting, respectively) if M is τ -rigid

and |M| = |A| (|M| = |A| − 1, respectively).
(c) An A-module M is support τ -tilting if there exists an idempotent e of A such that M

is a τ -tilting A/〈e〉-module.

For the convenience of the reader we state [4, Proposition 5.8] and [1, Proposition 2.4]
which will be useful for our further purposes.

Proposition 2.9 [4, Proposition 5.8] Let X, Y ∈ modA. The following conditions hold.

1. HomA(X, τY ) = 0 if and only if Ext1A(M,FacN) = 0.
2. M is τ -rigid if and only if M is Ext-projective in FacM .

Lemma 2.10 [1, Proposition 2.4] Let A be a finite dimensional algebra. Let X be in modA

with a projective presentation P1
p→ P0 → X → 0. For Y ∈ modA, we have that if the

map HomA(p, Y ) is surjective, then HomA(Y, τX) = 0. Moreover, the converse holds if the
projective presentation is minimal.
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The next result gives a relationship between the torsion classes and the support τ -tilting
modules. We denote by sτ − tiltA the set of isomorphism classes of basic support τ -tilting
A-modules and by f − torsA the set of functorially finite torsion classes in modA.

Theorem 2.11 [1, Theorem 2.7] There is a bijection between f − torsA and sτ − tiltA
given by T → P(T ) with inverse M → FacM .

Remark 2.12 Note that the inclusion in f − torsA gives rise to a partial order on sτ − tiltA,
as follows: “U ≤ T if and only if FacU ⊂ Fac T ”. Then, sτ − tiltA is a partially ordered
set.

For τ -tilting modules, we have a result which is an analog to Bongartz’s Lemma for
tilting modules. For the convenience of the reader we state it below.

Theorem 2.13 [1, Theorem 2.10] Let U be a τ -rigid A-module. Then, T = ⊥(τU) is a
sincere functorially finite torsion class and T = P(T ) is a τ -tilting A-module satisfying
U ∈ add T and ⊥(τU) = Fac T .

The support τ -tilting module P(⊥(τU)) is said to be the Bongartz completion of U .

We have the following characterizations for a τ -rigid module to be a τ -tilting module.

Theorem 2.14 [1, Theorem 2.12] The following conditions are equivalent for a τ -rigid
module T .

(a) T is τ -tilting.
(b) T is maximal τ -rigid, i.e., if T ⊕ X is τ -rigid for some A-module X, then X ∈ add T .
(c) ⊥(τT ) = Fac T .

In [8], G. Jasso proved another criterion to decide when a τ -rigid module is a support
τ -tilting module, as we state below.

Lemma 2.15 Let A be a finite dimensional algebra. Let M be a τ -rigid A-module. Then
the following are equivalent:

(1) M is a support τ -tilting A-module.
(2) There exists an exact sequence

A
f→ M0 → M1 → 0

where M0,M1 ∈ addM and f is a left addM-approximation of A.

Sometimes, it is convenient to see the support τ -tilting A-modules and the τ -rigid
A-modules, as certain pair of A-modules. More precisely,

Definition 2.16 [1, Definition 0.3] Let (M,P ) be a pair with M ∈ modA and P a
projective A-module.

(a) If M is τ -rigid and HomA(P,M) = 0 then (M,P ) is a τ -rigid pair.
(b) If (M,P ) is τ -rigid and |M| + |P | = |A| (|M| + |P | = |A| − 1, respectively) then

(M,P ) is a support τ -tilting (almost complete support τ -tilting, respectively) pair.
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It follows from [1, Proposition 2.3], that the notions of support τ -tilting modules and of
support τ -tilting pairs are essentially the same.

We say that (X, 0) ((0, X), respectively) with X an indecomposable module is a com-
plement of an almost complete support τ -tilting pair (U, Q) if (U ⊕ X,Q) ((U, Q ⊕ X),
respectively) is a support τ -tilting pair.

Theorem 2.17 [1, Theorem 2.18] Any basic almost complete support τ -tilting pair for
modA has exactly two complements.

Two completions (T , P ) and (T ′, P ′) of an almost complete support τ -tilting pair (U, Q)

are called mutations one of each other. We write (T ′, P ′) = μ(X,0)(T , P ) ((T ′, P ′) =
μ(0,X)(T , P ), respectively) if (X, 0) ((0, X), respectively) is a complement of (U,Q) giving
rise to (T , P ).

Definition 2.18 [1, Definition 2.28] Let T = X⊕U and T ′ be support τ -tilting A-modules
such that T ′ = μXT for some indecomposable A-module X. We say that T ′ is a left muta-
tion (right mutation, respectively) of T and we write T ′ = μ−

XT (T = μ+
XT , respectively)

if the following equivalent conditions are satisfied.

(a) T > T ′ (T < T ′, respectively).
(b) X /∈ FacU (X ∈ FacU , respectively).
(c) ⊥(τU) ⊆ ⊥(τX) (⊥(τU) � ⊥(τX), respectively).

Definition 2.19 [1, Definition 2.29] The support τ -tilting quiver Q(sτ − tiltA) of A is
defined as follows:

• The set of vertices consists of the isomorphisms classes of basic support τ -tilting
A-modules.

• There is an arrow from T to U if U is a left mutation of T .

Remark 2.20 Note that this exchange graph is n-regular, where n = |A| is the number of
non-isomorphic simple A-modules.

It follows from [1, Corollary 2.34] that the exchange quiver Q(sτ − tiltA) coincides with
the Hasse quiver of the partially ordered set sτ − tiltA.

3 Extension and Restriction Maps

Throughout this section, we assume that A is the one-point extension of B by a projective
B-module P0. We study the relationship between the support τ -tilting B-modules and the
support τ -tilting A-modules.

We start with a remark which shall be very useful for our purposes.

Remark 3.1 Let Y be an A-module such that Ext1A(S, Y ) = 0. Then Y = Y ′ ⊕ Sr with
Y ′ ∈ Sperp and r ≥ 0. In fact, first assume that HomA(S, Y ) = 0. Then, by Lemma (2.7)
we have that Y = Y ′ and r = 0. Now if HomA(S, Y ) 	= 0, then again, by Lemma (2.7) we
have that S is a direct summand of Y , namely, Y = S ⊕ Z. Note that Ext1A(S,Z) = 0. If
HomA(S, Z) = 0 we are done. Otherwise, S is a direct summand of Z and Z = Z1 ⊕ S.
Moreover, Y = S2 ⊕ Z′. Iterating this argument over Zi , for i = 1, . . . , r − 1, we get
Y = Y ′ ⊕ Sr .
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Proposition 3.2 Let B be an algebra and A = B[P0]. Then,
(a) If (M,Q) is a basic τ -rigid (support τ -tilting, respectively) pair for modB, then

(EM ⊕ S,Q) is a τ -rigid (support τ -tilting, respectively) pair for modA.
(b) If (T , P ) is a basic τ -rigid (support τ -tilting, respectively) pair for modA, then

(RT , P ∗) is a τ -rigid (support τ -tilting, respectively) pair for modB, where P ∗ is the
projective B-module which is obtained by P removing the projective A-module P̃ .

Proof (a). Consider (M,Q) a τ -rigid pair for modB. By Proposition 2.9, we have that
Ext1B(M, FacM) = 0. Let us show that Ext1A(EM ⊕ S, Fac (EM ⊕ S)) = 0.

Note that, Fac (EM ⊕ S) = Fac (EM) ⊕ Fac S. That is, if N ∈ Fac (EM ⊕ S), then N =
N ′⊕Sr with N ′ ∈ FacM and r ≥ 0. Indeed, if HomA(S,N) = 0, then according to Lemma
(2.7) S is not a direct summand of N and therefore N ∈ Fac (EM). Otherwise, S is a direct
summand of N . Then, N = N ′ ⊕ Sk with HomA(S,N ′) = 0. Since N ∈ Fac (EM ⊕ S),
we have N ′ ∈ Fac (EM ⊕ S). Therefore, since HomA(S,N ′) = 0, N ′ ∈ Fac (ES)

and the assertion is shown. Conversely, it is clear that if N ∈ Fac (EM) ⊕ Fac S, then
N ∈ Fac (EM ⊕ S). Then, Ext1A(EM ⊕ S,Fac (EM ⊕ S)) = Ext1A(EM ⊕ S,Fac (EM) ⊕
Fac S) and, moreover, both equal to Ext1A(EM,Fac (EM)) ⊕ Ext1A(S,Fac (EM)) ⊕
Ext1A(EM ⊕ S,Fac S). If X ∈ Fac S, then X ∼= Sk , with k ≥ 0. Since S is an injective
module, we have that Ext1A(EM ⊕ S,Fac S) = 0.

Now, we show that Ext1A(S,Fac (EM)) = 0. Consider Y ∈ Fac (EM). By definition,
there exists an epimorphism f : N → Y , with N ∈ add (EM). Applying HomA(S,−) we
have

Ext1A(S,N) → Ext1A(S, Y ) → Ext2A(S,Kerf )

since N ∈ add (EM) and pdAS ≤ 1 then Ext1A(S,N) = 0 and Ext2A(S,Kerf ) = 0,
respectively . Thus, Ext1A(S, Y ) = 0. Then, Ext1A(S,Fac (EM)) = 0.

Finally, we prove that Ext1A(EM, Fac (EM)) = 0. Let W ∈ Fac (EM). By definition,
there exists an epimorphism g : Z → W , with Z ∈ add (EM). Applying the functor R to
g, we get thatRW ∈ FacM , becauseRZ ∈ add (M). Since M is a τ -rigid B-module, then
Ext1B(M,RW) = 0.

On the other hand, since W ∈ Fac (EM) and EM ∈ Sperp, then Ext1A(S,W) = 0. By
Remark 3.1, we have that W = Sj ⊕ W ′, with W ′ ∈ Sperp and j ≥ 0. Thus, by Proposition
(2.5),

Ext1A(EM,W) = Ext1A(EM, W ′) ⊕ Ext1A(EM,Sj )

= Ext1B(M,RW ′)
= 0.

Therefore, Ext1A(EM ⊕ S,Fac (EM ⊕ S)) = 0. Moreover, by Proposition 2.9, EM ⊕ S is a
τ -rigid A-module. It is left to show that HomA(Q, EM ⊕ S) = 0. We have that

HomA(Q, EM ⊕ S) ∼= HomA(Q, EM) ⊕ HomA(Q, S)

∼= HomB(RQ,M)

∼= HomB(Q,M)

∼= 0

where HomA(Q, S) = 0 because Q is a B-module. Hence (EM ⊕ S,Q) is a τ -rigid pair
for modA.
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In addition, if (M,Q) is a support τ -tilting pair, then |M| + |Q| = |B|. Since E is a
faithful functor, then |M| = |EM|. Moreover, since EM ∈ Sperp then S is not a direct
summand of EM . Hence, |EM ⊕ S| = |EM| + 1 and

|EM ⊕ S| + |Q| = 1 + |EM| + |Q|
= 1 + |B|
= |A|.

(b). Let (T , P ) be a τ -rigid pair for modA. Consider

P1
p→ P0 → T → 0 (1)

a minimal projective presentation of T . Then, since R preserves projective modules we
have that

RP1
Rp→ RP0 → RT → 0

is a projective presentation of RT . According to Lemma 2.10, we have to show that
Hom(Rp,RT ) is a surjective map. Let f ∈ HomB(RP1,RT ). Since S is a injective sim-
ple A-module, then RP1 ∼= P1. The morphism f induces a morphism f̃ ∈ HomA(P1, T )

given by f̃ = if , where i : RT → T is the natural inclusion. Since T is a τ -rigid
A-module and Eq. 1 is a minimal projective presentation it follows from Lemma (2.10) that
there exists a morphism g : P0 → T such that f̃ = gp. Then, we have thatRf̃ = RgRp.
Therefore, f = g̃Rp with g̃ ∈ HomB(RP0,RT ). Hence,RT is a τ -rigid B-module.

Since RT is a submodule of T , it follows that HomA(P ∗,RT ) = 0. Therefore,
(RT , P ∗) is a τ -rigid pair for modB.

In addition, if (T , P ) is a support τ -tilting pair for modA, we shall show that (RT , P ∗)
is a support τ -tilting pair for modB. It follows from Lemma 2.15, that there exists an exact
sequence

A
f→ T0 → T1 → 0 (2)

where T0, T1 ∈ add T and f is a left add T -approximation of A. Since B is a direct sum-

mand of A, we have morphisms B
i→ A and A

π→ B where i is the natural inclusion, π the
canonical projection and πi = IdB . Thus, we obtain the following exact sequence

B
Ri Rf→ RT0 → RT1 → 0 (3)

It is left to prove that Ri Rf is a left addRT -approximation of B. Let h : B → U , with
U ∈ addRT . Then, there exists U ′ ∈ add T such that U is a direct summand ofRU ′. Then
we have a morphism h̃ = i2i1hπ : A → U ′, where i1 : U → RU ′ and i2 : RU ′ → U ′ are
the natural inclusions. Since f is a left add T -approximation of A, there exists g : T0 → U ′
such that

gf = h̃. (4)

Applying the functorR to Eq. 4 we obtain a morphism g̃ : RT0 → U such that g̃RfRi = h.
Hence, (RT , P ∗) is a support τ -tilting pair for modB.

It follows from Proposition 3.2 that we get morphisms between the corresponding posets
of support τ -tilting modules, as we state in the following theorem.

Theorem 3.3 The functors E andR induce two maps:

e : sτ − tiltB → sτ − tiltA

(M,Q) → (EM ⊕ S,Q)
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and,

r : sτ − tiltA → sτ − tiltB

(T , P ) → (T̂ , P ∗)
where T̂ is a (unique up to isomorphism) basic τ -rigid B-module such that add T̂ =
addRT . Moreover, the composition re = idsτ−tiltB .

Proof By Theorem 3.2, r and e are maps. Moreover, since RE ∼= idmodB we have that
re = idsτ−tiltB .

In [8], G. Jasso studied which are all the basic support τ -tilting modules that have
as direct summand a given basic τ -rigid A-module. More precisely, let U be a τ -
rigid A-module and denote by TU the Bongartz completion of U in modA. Consider
C = EndATU/ < eU >, where eU is the idempotent corresponding to the projective
EndATU -module HomA(TU ,U). Then, the author proved that there exists a bijection
between sτ − tiltC and

sτ − tiltU A := {M ∈ sτ − tiltA / U ∈ addM}.
In particular, if we consider U = S then, C is isomorphic to B. As a corollary of Theorem
3.2, we obtain a special case of [8, Theorem 3.15].

Corollary 3.4 There is a bijection between

sτ − tiltB ↔ sτ − tilt SA = {M ∈ sτ − tiltA / S ∈ addM}
Proof Let T ∈ sτ − tiltS A. Then T = T ′ ⊕ S. We have to show that there exists a B-
module M such that T = EM ⊕ S. Since T is basic, then HomA(S, T ′) = 0. Since also
Ext1A(S, T ′) = 0, we have that T ′ ∈ Sperp. The B-moduleM = RT ′ satisfies T = S⊕T ′ ∼=
S ⊕ EM . Moreover, since T is basic so is EM , hence so is M ∼= REM ∼= RT .

Now, we discuss the torsion pairs corresponding to a τ -tilting module T . We recall that
if T is a τ -tilting module over an algebra C, then T determines a torsion pair (⊥τT , T ⊥) in
modC. We start with the following lemma.

Lemma 3.5 Let T be a τ -rigid A-module and X be a B-module. If X ∈ ⊥(τBRT ) then
EX ∈ ⊥(τAT ).

Proof Let X ∈ ⊥(τBRT ). Then, HomB(X, τBRT ) = 0. By Proposition 2.9, we have that
Ext1B(RT , FacX) = 0. We shall prove that Ext1A(T ,Fac (EX)) = 0.

Let Y ∈ Fac (EX), then there exists an epimorphism f : M → Y , with M ∈ add (EX).
Since EX ∈ Sperp, then Ext1A(S, Y ) = 0. Thus, by Remark (3.1), we have that Y = Y ′ ⊕Sr ,
with Y ′ ∈ Sperp and r ≥ 0.

Applying the functorR to the morphism f : M → Y ′ ⊕ Sr , we obtain thatRY ′ ∈ FacX,
and thus Ext1B(RT ,RY ′) = 0. Then, by Proposition 2.5 Ext1A(T , ERY ′) = 0. Since Y ′ ∈
Sperp, then Ext1A(T , Y ′) = 0. Therefore,

Ext1A(T , Y ) ∼= Ext1A(T , Y ′ ⊕ Sr)

∼= Ext1A(T , Y ′) ⊕ Ext1A(T , Sr)

∼= 0

because S is an injective module.
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Then, Ext1A(T , Fac (EX)) = 0 and, by Proposition 2.9, we get the result.

Definition 3.6 Let (T ,F) be a torsion pair for modA.

1. If each indecomposable A-module lies either in T or in F , then (T ,F) is called
splitting.

2. If T is closed under submodules then (T ,F) is called hereditary.

Theorem 3.7 (i) Let T be a τ -tiltingB-module andX be aB-module. Then the following
conditions hold.

(a) X ∈⊥ τBT if and only if EX ∈⊥ (τAET ).
(b) X ∈ T ⊥ if and only if EX ∈ ET ⊥.

(ii) Let T be a τ -tilting A-module. Then the following conditions hold.

(a) If (⊥τAT , T ⊥) is a hereditary torsion pair for modA then (⊥(τBRT ), (RT )⊥)

is an hereditary torsion pair for modB.
(b) If (⊥τAT , T ⊥) is a splitting torsion pair for modA then (⊥(τBRT ), (RT )⊥) is

a splitting torsion pair for modB.

Proof (i).(a). Since T is a τ -tilting A-module, we know that ⊥τAT = Fac T . Then the
result follows from the fact that X ∈ Fac T if and only if EX ∈ Fac ET .

(i).(b). Follows from the fact that

HomA(ET , EX) ∼= HomB(RET , X)

∼= HomB(T , X).

(ii).(a). Consider (⊥τAT , T ⊥) a hereditary torsion pair for modA. Let X ∈⊥ (τBRT )

and Y be a submodule of X. Then, we shall show that Y ∈⊥ (τBRT ).
Since X ∈⊥ (τBRT ), by Lemma 3.5, we have that EX ∈⊥ τAT . Then EN ∈⊥ τAT ,

because EN is a submodule of EM . Since ⊥τAT = Fac T , then EN ∈ Fac T . Thus,
N ∈ FacRT =⊥ (τBRT ). Therefore (⊥(τBRT ), (RT )⊥) is a hereditary torsion pair for
modB.

(ii).(b). Suppose (⊥τAT , T ⊥) is a splitting torsion pair for modA and consider
X ∈ modB. Since EX ∈ modA, we have that either EX ∈⊥ τAT = Fac T or EX ∈ T ⊥.
Therefore, X ∈⊥ (τBRT ) or X ∈ (RT )⊥ and the assertion is shown.

We end this section computing the endomorphism algebra of eT , when T is a τ -tilting
B-module. Recall that νC = DC ⊗C is the Nakayama functor for an algebra C.

Theorem 3.8 Let T be a τ -tilting B-module. Then, EndAeT is the one-point extension of
EndBT by the module HomB(T , νBP0).

Proof Note that

EndAeT = EndA(ET ⊕ S) ∼=
(
EndA(ET ) HomA(ET , S)

HomA(S, ET ) EndAS

)
.

Since EndAS ∼= k and ET ∈ Sperp, it is left to prove that HomA(ET , S) ∼= HomB(T , νBP0).
Consider the Auslander-Reiten sequence

0 → τAS → E → S → 0 (5)
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in modA. By [3, IV, 3.9], E is an injective module. We claim that RE ∼= νBP0. Indeed,
applyingR to the sequence (5), we obtainRE ∼= R(τAS).

On the other hand, consider the projective resolution of S,

0 → P0 → P → S.

By [3, IV, 2.4], there exists an exact sequence

0 → τASνAP0 → νAP → νAS → 0 (6)

where νAP ∼= S and νAP0 = ⊕
x IA

x , if P0 = ⊕
x P A

x where P A
x is the indecomposable

projective A-module at the vertex x. By [2, Lemma 4.5], IA
x = EIB

x . Then, applying the
functorR to Eq. 6 we obtain thatR(τAS) ∼= R(νAP0) ∼= νBP0. Therefore,

RE ∼= R(τAS)

∼= νBP0.

Applying HomA(ET , −) to the sequence (5) yields an exact sequence as follows

0 → HomA(ET , τAS) → HomA(ET ,E) → HomA(ET , S) → Ext1A(ET , τAS).

Since pdAS ≤ 1, the Auslander-Reiten formula yields HomA(ET , τAS) = 0. On the
other hand, since Ext1A(ET , τAS) ∼= DHomA(S, ET ) and HomA(S, ET ) = 0, we obtain
that Ext1A(ET , τAS) = 0. Thus, HomA(ET , E) ∼= HomA(ET , S).

Finally, since E ∈ Sperp, then

HomA(ET , S) ∼= HomA(ET ,E)

∼= HomA(T ,RE)

∼= HomB(T , νBP0)

proving the result.

4 The Quiver of Support τ -Tilting Modules

Now we focus our attention on the quivers of the support τ -tilting modules. We shall com-
pare Q(sτ − tiltB) and Q(sτ − tiltA). Our aim is to show that the morphism e states in
Corollary 3.3 is a full embedding between the posets of support τ -tilting modules. We start
with the following theorem.

Theorem 4.1 (a) The maps e : sτ − tiltB → sτ − tiltA and r : sτ − tiltA → sτ − tiltB
are morphisms of posets.

(b) An arrow α : (M1,Q1) → (M2,Q2) in Q(sτ − tiltB) induces an arrow
eα : e(M1, Q1) → e(M2,Q2) in Q(sτ − tiltA).

Proof (a). Let (M1,Q1) and (M2,Q2) be support τ -tilting pairs for modB such that
(M1,Q1) < (M2,Q2). We have to prove that (EM1 ⊕ S,Q1) < (EM2 ⊕ S, Q2), or equiv-
alently, Fac (EM1 ⊕ S) ⊆ Fac (EM2 ⊕ S). Since Fac (EM1 ⊕ S) = Fac (EM1) ⊕ Fac S, we
only have to show that Fac (EM1) ⊆ Fac (EM2).

Since FacM1 ⊆ FacM2, there exists an epimorphism f : Z → M1, with Z ∈ addM2.
Applying the exact functor E to f , we obtain an epimorphism Ef : EZ → EM1, where
EZ ∈ addEM2. Then, EM1 ∈ Fac (EM2). Therefore, Fac (EM1) ⊆ Fac (EM2).
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Conversely. Let (T1, P1) and (T2, P2) be support τ -tilting pairs for modA, such that
(T1, P1) < (T2, P2). We claim that RT1 ∈ FacRT2. In fact, since Fac T1 ⊆ Fac T2, there
exists an epimorphism g : W → T1, with W ∈ add T2. Applying the exact functor R
to g, we obtain an epimorphism Rg : RW → RT2, where RW ∈ addRT2. Therefore,
RT1 ∈ Fac (RT2).

(b). Let α : (M1,Q1) → (M2,Q2) be an arrow in Q(sτ − tiltB). Then, there exists
an almost complete support τ -tilting pair for modB, let denote it (U, P ), which is a
direct summand of (M1,Q1) and (M2,Q2). Since e is a morphism of posets, we have
e(M1,Q1) < e(M2,Q2). Observe that e(U, P ) = (EU ⊕ S, P ) is an almost complete
support τ -tilting pair for modA, since

|EU ⊕ S| + |Q| = |EU | + 1 + |Q|
= |U | + |Q| + 1

= n − 1.

Moreover, e(U, P ) = (EU⊕S, P ) is a direct summand of e(M1,Q1) and e(M2, Q2). Thus,
by definition, we have that e(M2, Q2) = μ−

EXe(M1,Q1). Hence, there exists an arrow
eα : e(M1,Q1) → e(M2, Q2) in Q(sτ − tiltA).

Remark 4.2 The above theorem shows that the extension functor behaves well respect to
the mutation of support τ -tilting modules. In some way, the extension functor commutes
with the mutation.

Proof of Theorem B By Theorem 4.1 and since re = Idsτ−tiltB , the map e is an embedding
of quivers. Hence, we only have to show that if there exists an arrow e(M,P ) → e(N,Q)

in Q(sτ − tiltA), then there exist an arrow (M,P ) → (N,Q) in Q(sτ − tiltB).
We know that e(M,P ) = (EM ⊕ S, P ) and e(N,Q) = (EN ⊕ S,Q). Since there

exists an arrow from e(M,P ) to e(N,Q), then there is an almost complete support τ -tilting
module, (U, L), which is a direct summand of e(M,P ) and e(N,Q). Since S is a direct
summand of e(M,P ) and e(N,Q), then S is a direct summand of U . Thus U = U ′ ⊕ S,
with U ′ ∈ Sperp . Then, |RU | + |L| = |RU ′| + |L| = |U ′| + |L| = n − 2. Note that
L is a projective B-module, since HomA(L, S) = 0. Therefore, we have that (U ′, L) is
an almost complete support τ -tilting pair for modB which is a direct summand of (M,P )

and (N,Q). Since r is a morphism of posets, there exists an arrow (M,P ) → (N,Q) in
Q(sτ − tiltB).

We illustrate the above theorem with the following example.

Example 4.3 Let B be the algebra given by the quiver 1
β

�� 2
α

		
with the relation αβ = 0.

We denote all the modules by their composition factors. Consider A = B[P2], the one-
point of B by the projective P2 = 2

1
. Then A is given by the quiver 1

β

�� 2
α

		
3

γ��

with relation the αβ = 0.
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The quiver Q(sτ − tiltA) is the following

Then, the image of the quiver Q(sτ − tiltB) under e is the subquiver indicated by dotted
lines.

For the remainder of this section, we state some technical results about the local behavior
of Q(sτ − tiltA). We are interested to know when the image of e is closed under successors.
The next theorem gives us an answer for a particular case.

Theorem 4.4 Let (T , P ) and (T ′, P ′) be basic support τ -tilting pairs for modA such that
there exists an arrow (T , P ) → (T ′, P ′) in Q(sτ − tiltA). If (T , P ) = e(M,Q) and
HomA(EM, S) 	= 0 then there exists a support τ -tilting pair (N,R) in sτ − tiltB such that
(T ′, P ′) = e(N,R).
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Proof Let (T , P ) = e(M,Q) be a support τ -tilting pair for modA such that
HomA(EM, S) 	= 0. Then, by Shur’s Lemma S ∈ Fac (EM). We claim that S is a direct
summand of T ′ where (T ′, P ′) is a support τ -tilting pair such that there exists an arrow from
(T , P ) to (T ′, P ′) inQ(sτ−tiltA). In fact, otherwise (T ′, P ′) = μS(T , P ). Moreover, since
there exists an arrow from (T , P ) to (T ′, P ′) in Q(sτ − tiltA) then (T ′, P ′) = μ−

S (T , P ).
Therefore, it follows by Definition 2.18 that S /∈ Fac (EM), which is a contradiction. Hence,
T ′ = S ⊕ Y .

Since S ⊕Y is a basic τ -rigid module, then Ext1A(S, Y ) = 0 and HomA(S, Y ) = 0. Then
Y ∈ Sperp and therefore Y ∼= ERY . Furthermore, since HomA(P ′, S ⊕ Y ) = 0 we have
that P ′ is a projective B-module. Considering the support τ -tilting pair (RY, P ′) we obtain
the result.

The following example shows that the condition HomA(EM,S) 	= 0 in Theorem 4.4 can
not be removed.

Example 4.5 Consider the following algebras:

B : 1

3β



����

γ�����
�

4
α

��

2

B[P3] : 1 4
α

�����
�

3

β

����

γ�����
�

2 5δ



����

αβ = 0 αβ = 0

It is not hard to see that (1 ⊕ 4, P2 ⊕ P3) is an almost complete support τ -tilting pair
for modA and their complements are (5, 0) and (0, P5). Moreover, there exists an arrow
(1 ⊕ 5 ⊕ 4, P2 ⊕ P3) → (1 ⊕ 4, P2 ⊕ P3 ⊕ P5) in Q(sτ − tiltA).

Note that a support τ -tilting pair, (U, P ), belongs to the image of e if and only if S

is a direct summand of U . Then, (1 ⊕ 5 ⊕ 4, P2 ⊕ P3) belongs to the image of e, but
(1 ⊕ 4, P2 ⊕ P3 ⊕ P5) does not belong to the image of e.

Suppose that we have a pair (M,Q) in Q(sτ − tiltA) which belongs to the image of e.
Then, the following result gives information about the predecessors of (M,Q).

Theorem 4.6 Let (T , P ) be a support τ -tilting pair such that there exists a support τ -tilting
pair (M,Q) in sτ − tiltB with (T , P ) = e(M,Q) = (EM ⊕ S, P ). Then there is exactly
one immediate predecessor of (T , P ) in Q(sτ − tiltA) which does not belong to the image
of e if and only if HomA(EM, S) 	= 0.

Proof Suppose that there is exactly one immediate predecessor of (T , P ) in Q(sτ − tiltA)

which does not belong to the image of e and assume that Hom(EM, S) = 0. Then,
S /∈ Fac (EM). By definition μS(T , P ) is a left mutation of (T , P ) and there exists an
arrow from (T , P ) to μS(T , P ) in Q(sτ − tiltA). Therefore, all the predecessors (T ′, P ′)
of (T , P ) satisfy that T ′ = S ⊕ M with M ∈ Sperp . Then, all the predecessors belong to
the image of e, which is a contradiction.

Conversely. Let (T , P ) ∈ sτ − tiltA such that (T , P ) = (EM ⊕ S, P ) and
HomA(EM, S) 	= 0. We show that there is only one immediate predecessor of (T , P ) which
does not have S as a direct summand.

By definition of Q(sτ − tiltA), there is at most one immediate predecessor of (T , P )

such that S is not a direct summand. Assume that all immediate predecessors of (T , P )

Author's personal copy



τ -Tilting Modules Over One-Point Extensionsby a Projective Module

have the simple S as a direct summand. Then there exists an immediate successor of
(T , P ), let say (T ′, P ′) in Q(sτ − tiltA), such that S is not a direct summand of (T ′, P ′).
Thus, by construction, we have (T ′, P ′) = μ+

S (T , P ). It follows by Definition 2.18 that
S /∈ Fac (EM) and thus HomA(EM,S) = 0, which is a contradiction. Therefore, we
prove that there is exactly one immediate predecessor of (T , P ) such that S is not a direct
summand.

We end up this section showing an example that if we extend by a non-projective module,
then neither the restriction nor the extension define maps between the corresponding posets
of support τ -tilting modules.

Example 4.7 Let B be the following algebra

1

3β



����

γ�����
�

4
α

��

2

and let A = B[X], where X = 3
2
. Then A is given by the quiver

1 4
α

�����
�

3

β

����

γ�����
�

2 5δ



����

with the relation δβ = 0.

1. Extending the τ -tilting B-module M = 4
3
2

⊕ 3 ⊕ 4
3

⊕ 4
3
1
we get the A-module eM =

45
3
2

⊕ 5
3

⊕ 45
3

⊕ 4
3
1

⊕ 5 which is not τ -tilting because HomA(
4
3
1
, τA 5) 	= 0.

2. Restricting the τ -tilting A-module T = 4 ⊕ 5 ⊕ 45
3

⊕ 45
3
2

⊕ 1 yields the B-module

RT = 4 ⊕ 4
3

⊕ 4
3
2

⊕ 1 which is not τ -tilting because HomB(1, τB
4
3
2
) 	= 0.
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