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• We study the singularities of the q-partition function of the Harmonic Oscillator.
• We use Dimensional Regularization
• We study the poles of the theory.
• We discover interesting dimensional effects.
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a b s t r a c t

When one integrates the q-exponential function of Tsallis’ so as to get the partition function
Z , a gamma function inevitably emerges. Consequently, poles arise.We investigate here the
thermodynamic significance of these poles in the case of n classical harmonic oscillators
(HO). Given that this is an exceedingly well known system, any new feature that may arise
can safely be attributed to the poles’ effect. We appeal to the mathematical tools used in
Plastino et al. (2016) and Plastino and Rocca (2017), and obtain both bound and unbound
states. In the first case, we are then faced with a classical Einstein crystal. We also detect
what might be interpreted as pseudo gravitational effects.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Tsallis’ q-statisticalmechanics yielded variegated applications in the last 25 years [1–12]. This statistics is of great importance
for astrophysics, in what respects to self-gravitating systems [13–15]. Further, it was shown to be useful in diverse scientific
fields. It has to its credit several thousands of papers and authors [2]. Investigating its structural characteristics should
be important for astronomy, physics, neurology, biology, economic sciences, etc. [1]. Paradigmatic example is found in its
application to high energy physics, where the q-statistics seems to describe well the transverse momentum distributions of
different hadrons [16–18].
In this work we use standard mathematical tools described in [19,20] to investigate interesting properties of the Tsallis
statistics of n harmonic oscillators.
The central point is the fact that the integrals used to evaluate the partition function Z and the mean energy ⟨U⟩ diverge for
specific q-values. These divergences can be overcome as described in [19,20].
A basic result to be obtained here is that the number of classical oscillators, n, is strongly limited by the dimensionality ν

and the Tsallis parameter q. For ⟨U⟩ > 0 and Z > 0, i.e., the conventional theory, nmust be finite and bounded.
A different panorama emerges by recourse to analytical extension in ν. Then it is possible to have a situation in which Z > 0,
⟨U⟩ < 0, C < 0, with n finite and bounded. Thus, our systems are here bound, representing a ‘‘classical crystal’’, and also

* Corresponding author.
E-mail address:mariocarlosrocca@gmail.com (M.C. Rocca).

http://dx.doi.org/10.1016/j.physa.2017.06.026
0378-4371/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physa.2017.06.026
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2017.06.026&domain=pdf
mailto:mariocarlosrocca@gmail.com
http://dx.doi.org/10.1016/j.physa.2017.06.026


A. Plastino, M.C. Rocca / Physica A 487 (2017) 196–204 197

Fig. 1. c/k at the pole q = 1/2 versus β with n = 100. The right branch corresponds to Z > 0, i.e., the physical branch.

self-gravitating [15]. Finally, we will study the theory’s poles by recourse to dimensional regularization [19,20]. We find at
the poles, that (i) the specific heat C is temperature (T ) dependent (classically!), and, (ii) again, gravitational effects. Note the
C can be T -dependent only due to internal degrees of freedom, and that this is a quantum effect. We detect this dependence
here at a purely classical level.
We are motivated by the need of trying to determine what kind of hidden correlations are entailed by the non additivity of
Tsallis’ entropy Sq for two independent systems A, B, i.e.,

Sq(A, B) = Sq(A) + Sq(B) + (1 − q)Sq(A)S : q(B); q ∈ R.

This is conveniently done by appeal to quite simple systems, whose physics is well known. Any divergence from this physics
will originate in the hidden correlations. This is why we employ a system of n HOs here.
Divergences constitute an important theme of theoretical physics. The study and elimination of these divergences may be
one of the most relevant tasks of theoretical endeavor. The typical example is the (thus far failed, alas) attempt to quantify
the gravitational field. Examples of divergences-elimination can be found in references [21–25].
We use here an quite simplified version (see [26]), of the methodology of [21–25] with regards to Tsallis statistics [1,2],
focusing on its applicability to self-gravitation [13–15]. Divergence’s removal will be seen to yield quite interesting insights.
These emerge using mathematics well known for the last 40 years ago. Their development allowed M. Veltman and G.
t’Hooft to be awarded with the Nobel prize of physics in 1999. Comfortable acquaintance with these mathematics is not
a prerequisite to follow this paper. However, onemust accept that their physical significance is not now to kin doubt. In fact,
one just needs (i) analytical extensions and (ii) dimensional regularization [21–25].
We will here analyze the behavior of Z and ⟨U⟩ in connection with three zones of possible arguments of the Γ -function that
appears in Z and ⟨U⟩. These arguments of the Γ -function rule the Z − ⟨U⟩ behavior, that in turn produces three distinct
zones, for a given spatial dimension ν, Tsallis’ index q and number of particles N . The zone’s specifics are:
(1) 1

1−q − nν − 1 > 0

(2) 1
1−q − nν < 0 Γ

(
1

1−q − nν
)

> 0

(3) 1
1−q − nν = −p p = 0, 1, 2, 3, 4 . . .

Normal behavior is found in zone (1). Something resemblingwhatmight constitute gravitational effects (GE) are encountered
in zone (2). In zone (3) we find both normal behavior and also GE (Also known as gravothermal effects).
Remark than in instance (3) we are performing a regularization of the corresponding theory, not a renormalization
(see Figs. 1 and 2).

2. The harmonic oscillator

It has to be noted, from the beginning, that we use in this contribution normal (linear in the probability) expectation values.
For simplicity reasons, we do not appeal to the weighted ones, customarily attached to Tsallis-related papers [1]. In this case
one restricts oneself to the interval [0 < q ≤ 1], and, consequently, the so-called Tsallis cut-off problem [1] is avoided.
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Fig. 2. c/k at the pole q = 2/3 versus β , with n = 99. The right branch corresponds to Z > 0, i.e., the physical branch.

For the q-partition function one has

Z = V n
∫

∞

−∞

[
1 + β(1 − q)(p21 + · · · p2n + q21 + · · · q2n)

] 1
q−1 ⊗ dνp1 · · · dνpndνq1 · · · dνqn. (2.1)

Or

Z =
2π νn

Γ (νn)

∫
∞

−∞

[
1 + β(1 − q)p2

] 1
q−1 p2νn−1dp. (2.2)

We have integrated over the angles and taken p2 = p21 + · · · p2n + q21 + · · · q2n. Changing variables in the fashion x = p2, the
last integral becomes

Z =
π νn

Γ (νn)

∫
∞

−∞

[1 + β(1 − q)x]
1

q−1 xνn−1dx, (2.3)

that evaluated, yields

Z =

[
π

β(1 − q)

]νn Γ

(
1

1−q − νn
)

Γ

(
1

1−q

) . (2.4)

Similarly we have

Z⟨U⟩ =

∫
∞

−∞

[
1 + β(1 − q)(p21 + · · · p2n + q21 + · · · q2n)

] 1
q−1 (p21 + · · · p2n + q21 + · · · q2n)d

νp1 · · · dνqn. (2.5)

In spherical coordinates this becomes

Z⟨U⟩ =
2π νn

Γ
(

νn
2

) ∫
∞

−∞

[
1 + β(1 − q)p2

] 1
q−1 p2νn+1dp, (2.6)

and setting x = p2 this is now

Z⟨U⟩ =
π νn

Γ (νn)

∫
∞

−∞

[1 + β(1 − q)x]
1

q−1 xνndx, (2.7)

that evaluated yields

⟨U⟩ =
1
Z

νn
β(1 − q)

[
π

β(1 − q)

]νn Γ

(
1

1−q − νn − 1
)

Γ

(
1

1−q

) , (2.8)
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or

⟨U⟩ =
νn

β[q − νn(1 − q)]
. (2.9)

The derivative with respect to T yields for the specific heat C at constant volume

C =
νnk

q − νn(1 − q)
. (2.10)

3. Limitations that restrict the particle-number

We saw in Ref. [26], for an ideal q-gas, that its number of particles N becomes restricted due to hidden q-correlations. Some
related work by Livadiotis, McComas, and Obregon, should be mentioned [27–29].

Our original presentation begins here. We detect a similar effect below for our system of n classical HOs. We analyze first
the Gamma functions involved in evaluating Z and ⟨U⟩, for the zone [0 < q ≤ 1]. Starting from (3.1) we get, for a positive
Gamma-argument

1
1 − q

− νn > 0. (3.1)

In analogous fashion we have from (3.2)
1

1 − q
− νn − 1 > 0. (3.2)

We are confronted then with two conditions that strictly limit the particle-number n, that is,

1 ≤ n <
q

ν(1 − q)
. (3.3)

There is a maximum allowable n. For instance, if q = 1 − 10−3, ν = 3, we have

1 ≤ n < 333, (3.4)

and one cannot exceed 332 particles.

4. The dimensional analytical extension of divergent integrals [21–25]

We study first negative Gamma arguments in (2.4). They will demand analytical extension/dimensional regularization of
the integrals (2.4) and (2.8). Accordingly,

1
1 − q

− νn < 0, (4.1)

together with

Γ

(
1

1 − q
− νn

)
> 0. (4.2)

Utilize now

Γ (z)Γ (1 − z) =
π

sin(πz)
, (4.3)

to encounter

Γ

(
1

1 − q
− νn

)
= −

π

sinπ

(
νn −

1
1−q

)
Γ

(
νn + 1 −

1
1−q

) > 0. (4.4)

The above is true if

sinπ

(
νn −

1
1 − q

)
< 0, (4.5)

so that

2p + 1 < νn −
1

1 − q
< 2(p + 1) (4.6)

where p = 0, 1, 2, 3, 4, 5 . . ., or equivalently
2p + 1

ν
+

1
ν(1 − q)

< n <
2(p + 1)

ν
+

1
ν(1 − q)

. (4.7)
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We note that, from (4.1), (4.2), and (4.4) we find (1) Z > 0, (2) ⟨U⟩ < 0 (Einstein crystal), (3) C < 0, which entails bound
states, on account of (2) and self-gravitation according to (3) [15].

5. The poles of the harmonic oscillator treatment

If the Gamma’s argument is such that
1

1 − q
− νn = −p for p = 0, 1, 2, 3, . . . , (5.1)

Z exhibits a single pole.
For ν = 1 one has

1
1 − q

− n = −p for p = 0, 1, 2, 3, . . . . (5.2)

Given that 0 ≤ q < 1, the pertinent q values become

q =
1
2
,
2
3
,
3
4
,
4
5
, . . . , (5.3)

n ≥ 2.
For ν = 2

1
1 − q

− 2n = −p for p = 0, 1, 2, 3, . . . . (5.4)

Once more, since 0 ≤ q < 1,

q =
1
2
,
2
3
,
3
4
,
4
5
, . . . , (5.5)

n ≥ 1.
For ν = 3

1
1 − q

− 3n = −p for p = 0, 1, 2, 3, . . . , (5.6)

and since 0 ≤ q < 1,

q =
1
2
,
2
3
,
3
4
,
4
5
, . . . , (5.7)

n ≥ 1.
We tackle now poles in ⟨U⟩. They result from

1
1 − q

− νn − 1 = −p for p = 0, 1, 2, 3, . . . , (5.8)

for ν = 1.
1

1 − q
− n − 1 = −p for p = 0, 1, 2, 3, . . . . (5.9)

Since 0 ≤ q < 1, one has

q =
1
2
,
2
3
,
3
4
,
4
5
, . . . , (5.10)

for ν = 2.
1

1 − q
− 2n − 1 = −p for p = 0, 1, 2, 3, . . . , (5.11)

q =
1
2
,
2
3
,
3
4
,
4
5
, . . . , (5.12)

For ν = 3
1

1 − q
− 3n − 1 = −p for p = 0, 1, 2, 3, . . . , (5.13)

q =
1
2
,
2
3
,
3
4
,
4
5
, . . . . (5.14)
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6. The three-dimensional scenario

As an illustration of dimensional regularization [21–25] we discuss into some detail the dealing with the poles at q =
1
2 and

q =
2
3 .

6.1. Pole at q = 1/2

One has

Z =

(
2π
β

)νn

Γ (2 − νn) . (6.1)

Using

Γ (2 − νn) Γ (νn − 1) = −
π

sin (πνn)
(6.2)

or, equivalently

Γ (2 − νn) Γ (νn − 1) =
(−1)3n+1π

sin [πn(ν − 3)]
, (6.3)

so that

Z =

(
2π
β

)νn (−1)3n+1π

sin[πn(ν − 3)]Γ (νn − 1)
. (6.4)

Given that

sin[πn(ν − 3)] = πn(ν − 3)

{
1 +

∞∑
m=1

(−1)m

(2m + 1)!
[πn(ν − 3)]2m

}
(6.5)

= πn(ν − 3)X, (6.6)

with

X =

{
1 +

∞∑
m=1

(−1)m

(2m + 1)!
[πn(ν − 3)]2m

}
, (6.7)

we obtain

Z =

(
2π
β

)3n (−1)n+1

Γ (νn − 1) Xn(ν − 3)

[
1 + n(ν − 3) ln

(
2π
β

)
+ · · ·

]
. (6.8)

The term independent of ν − 3 is, according to dimensional regularization recipes [21–25]

Z =

(
2π
β

)3n (−1)n+1

Γ (3n − 1)
ln

(
2π
β

)
. (6.9)

This Z is then the physical one at the pole [21–25]. Now, for the mean energy one has

Z⟨U⟩ =
2nν
β

(
2π
β

)νn

Γ (1 − νn) . (6.10)

Employing

Γ (1 − νn) Γ (νn) =
π

sin (πνn)
(6.11)

or, equivalently

Γ (1 − νn) Γ (νn) =
(−1)3nπ

sin [πn(ν − 3)]
(6.12)

we encounter for ⟨U⟩

Z⟨U⟩ =
2nν
β

(
2π
β

)νn (−1)3nπ
sin[πn(ν − 3)]Γ (νn)

. (6.13)

⟨U⟩ can be rewritten in the fashion

Z⟨U⟩ =
n(ν − 3)

β

(
2π
β

)νn (−1)3nπ
sin[πn(ν − 3)]Γ (νn)

+
6n
β

(
2π
β

)3n (−1)3nπ
sin[πn(ν − 3)]Γ (νn)

. (6.14)
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Recalling the Z-procedure gives for ⟨U⟩

Z⟨U⟩ =
2
β

(
2π
β

)3n (−1)3n

Γ (3n)
+

6n
β

(
2π
β

)3n (−1)3n

Γ (3n)
ln

(
2π
β

)
(6.15)

or, equivalently

Z⟨U⟩ =
2
β

(
2π
β

)3n (−1)3n

Γ (3n)

[
1 + 3n ln

(
2π
β

)]
. (6.16)

Remembering now (6.9) for the physical Z on arrives at

⟨U⟩ =
2

β(3n − 1)

[
1

lnβ − ln 2π
− 3n

]
. (6.17)

one treats first (−1)3n+1
= −1, so that n = 2, 4, 6, 8, . . ., and

Z =
1

Γ (3n − 1)

(
2π
β

)3n

ln
(

β

2π

)
. (6.18)

If (−1)3n+1
= 1, then n = 1, 3, 5, 7 . . . and

Z =
1

Γ (3n − 1)

(
2π
β

)3n

ln
(
2π
β

)
. (6.19)

According to (6.17)–(6.18) and asking Z > 0 and ⟨U⟩ > 0 one finds
1

2πke
1
3n

< T <
1

2πk
. (6.20)

From (6.17)–(6.19) and requiring Z > 0 y ⟨U⟩ < 0 (Einstein crystal) one encounters

0 ≤ T <
1

2πke
1
3n

. (6.21)

The specific heat is derived from (6.17) for ⟨U⟩. We have

C =
2k

3n − 1

[
1

lnβ − ln 2π
+

1
(lnβ − ln 2π )2

− 3n
]

. (6.22)

C depends on T and this is a quantum effect, since classically C is a constant. Also, C depends on T because of the excitation
of internal degrees of freedom, which the poles somehow detect.

6.2. The pole at q = 2/3

Now Z is

Z =

(
3π
β

)νn
Γ (3 − νn)

Γ (3)
. (6.23)

Employing once again

Γ (3 − νn) Γ (νn − 2) =
π

sin (πνn)
, (6.24)

or, equivalently

Γ (3 − νn) Γ (νn − 2) =
(−1)3nπ

sin [πn(ν − 3)]
, (6.25)

so that we have

Z =
1
2

(
3π
β

) νn
2 (−1)3nπ
sin[πn(ν − 3)]Γ (νn − 1)

. (6.26)

One then dimensionally regularizes Z − ⟨U⟩ as done for the previous pole, to reach

Z =
1
2

(
3π
β

)3n (−1)3n

Γ (3n − 2)
ln

(
3π
β

)
, (6.27)

⟨U⟩ =
3

2β(3n − 2)

[
1

lnβ − ln 3π
− 3n

]
. (6.28)
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We seal first with (−1)
3n−1

2 = −1 and then n = 1, 3, 5, 7, 9 . . ., so that

Z =
1

2Γ (3n − 2)

(
3π
β

)3n

ln
(

β

3π

)
. (6.29)

For (−1)3n = 1, one has n = 2, 4, 6, 8 . . . and

Z =
1

2Γ (3n − 2)

(
3π
β

)3n

ln
(
3π
β

)
. (6.30)

According to (6.28)–(6.29) and asking
Z > 0 − ⟨U⟩ > 0 we encounter

1

3πke
1
3n

< T <
1

3πk
. (6.31)

From (6.28)-y (6.30) and asking Z > 0 − ⟨U⟩ < 0 we obtain

0 ≤ T <
1

3πke
1
3n

. (6.32)

As for C we have

C =
3k

2(3n − 2)

[
1

lnβ − ln 3π
+

1
(lnβ − ln 3π )2

− 3n
]

. (6.33)

7. Conclusions

Here one has appealed to an elementary regularization method to study the poles in both the partition function Z and the
mean energy ⟨U⟩ for particular, discrete values of Tsallis’ parameter q in a non additive q-scenario. After investigating the
thermal behavior at the poles, we found interesting features, likewhatmight possibly constitute self-gravitation or quantum
effects. The analysis was made for one, two, three, and N dimensions. We discover pole-characteristics that are unexpected
but true. In particular:

• An upper bound to the temperature at the poles, in agreement with the findings of Ref. [30].
• In some circumstances, Tsallis’ entropies are positive only for a restricted temperature-range.
• Negative specific heats, which might constitute signatures of self-gravitating systems [15], are encountered.
• If the system is bound, we can regard it as a ‘‘classical’’ Einstein-crystal. But we have for it a temperature dependence

of the specific heat.
• Thus, we find at the poles, that (i) the specific heat C is temperature (T ) dependent (classically!), and, (ii) self-

gravitational effects. Note that C can become T -dependent only due to internal degrees of freedom, and that this
is a quantum effect. We detect this dependence here at a purely classical level.

These physical results are collected employing just statistical consideration, notmechanical ones. Thismight perhaps remind
one of a similar feature associated to the entropic force conjectured by Verlinde [31].
The Tsallis’ rule

Sq(A, B) = Sq(A) + Sq(B) + (1 − q)Sq(A)S : q(B); q ∈ R,

is seen here to erect a far from trivial scenario, in which strange effects take place.
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