ON ROOTED DIRECTED PATH GRAPHS

MARISA GUTIERREZ ${ }^{1,2}$ AND SILVIA B TONDATO ${ }^{1}$

Abstract. An asteroidal triple is a stable set of three vertices such that each pair is connected by a path avoiding the neighborhood of the third vertex. Asteroidal triples play a central role in a classical characterization of interval graphs, which are the intersection graphs of a family of intervals on the real line, by Lekkerkerker and Boland and in a characterization of directed path graphs, which are the intersection graphs of directed paths in a directed tree, by Cameron, Hoáng and Lévêque. For this characterization, they introduce the notion of a special connection. Two non-adjacent vertices are linked by a special connection if either they have a common neighbor or they are the endpoints of two vertex-disjoint chordless paths satisfying certain technical conditions. They proved that if a pair of non adjacent vertices are linked by a special connection then in any directed path model T, the subpaths of T corresponding to the vertices forming the special connection have to overlap and they force T to be completely directed in one direction between these vertices.

On the other hand, special connections along with the concept of asteroidal quadruple play an important role to study rooted directed path graphs.

An asteroidal quadruple is a stable set of four vertices such that any three of them is an asteroidal triple.

A rooted directed path graph is the intersection graphs of directed paths in a rooted directed tree. It is easy to see that a rooted directed path graph contains no asteroidal quadruples linked by special connections [1].

A strong asteroidal is a stable set of n vertices $\left\{a_{1}, . ., a_{n}\right\}(n \geq 2)$ of G, such that $G \backslash N\left[a_{i}\right]$ is a connected graph for $i=1, . ., n$. Minimal forbidden induced subgraphs for interval graphs, for directed path graphs and for path graphs(that are the intersection graphs of subpaths in a tree) have a strong asteroidal.

In this work, we define other special connections, these special connections along with the defined by Cameron, Hoáng and Lévêque are nine in total, and we prove that every one force T to be completely directed in one direction between these vertices. Therefore, if a_{1}, a_{2}, a_{3} is a strong asteroidal and there is a special connection between a_{1} and a_{2} then none directed path model can be rooted on a maximal clique that contains a_{3}. Moreover, we prove that the converse is true in case of leafage three, i.e the model can not be rooted on a maximal clique that contains a_{3} then one of the nine special connection is linked a_{1} and a_{2}. As byproduct of our result, we build new forbidden induced subgraphs for rooted directed path graphs.

1. Introduction

A graph is chordal if it contains no cycle of length at least four as an induced subgraph. A classical result [4] states that a graph is chordal if and only if it is the (vertex) intersection graph of a family of subtrees of a tree.

Natural subclass of chordal graphs are path graphs, directed path graphs, rooted directed path graphs and interval graphs. A graph is a path graph if it is the intersection graph of a family of subpaths of a tree. A graph is a directed path
graph if it is the intersection graph of a family of directed subpaths of a directed tree. A graph is a rooted path graph if it is the intersection graph of a family of directed subpaths of a rooted tree. A graph is an interval graph if it is the intersection graph of a family of subpaths of a path.

By definition we have the following inclusions between the different considered classes (and these inclusions are strict): interval \subset rooted directed path \subset directed path \subset path \subset chordal.

Lekkerkerler and Boland [5] proved that a chordal graph is an interval graph if and only if it contains no asteroidal triple. As byproduct, they found a characterization of interval graphs by forbidden induced subgraphs.

Panda [8] found a characterization of directed path graph by forbidden induced subgraphs, and then Cameron, Hoáng and Lévêque [2] gave a characterization of directed path graph in terms of forbidden asteroids. For this purpose, they introduce the concept of a special connection. Two non adjacent vertices are linked by a special connection if they have a common neighbor or they are the endpoints of two vertex-disjoint paths of length three satisfying certain technical conditions. Special connections are interesting when considering directed path graphs because if a and b, two non adjacent vertices of a directed path graph, are linked by a special connection, then in every directed path model, the subpaths of T corresponding to the vertices forming the special connection have to overlap and they force T to be completely directed in one direction between a and b.

Clearly, rooted directed path graphs contain no asteroidal quadruples linked by special connections. The converse was conjectured by Cameron, Hoáng and Lévêque but in this original form, the conjecture is incomplete since they could not describe all the connections between two non adjacent vertices that force to any tree to be completely directed in one direction between these vertices.

In this article, we define some special connections, which along with the defines in [1] are nine in total, and we prove that every one force T to be completely directed in one direction between these vertices. Therefore, if a_{1}, a_{2}, a_{3} is a strong asteroidal and there is a special connection between a_{1} and a_{2} then none directed path model can be rooted on a maximal clique that contains a_{3}. Furthermore, we prove that the converse is true in case of leafage three, i.e the model can not be rooted on a maximal clique that contains a_{3} then one of the nine special connection is linked a_{1} and a_{2}. As byproduct of our result, we build new forbidden induced subgraphs for rooted directed path graphs.

The paper is organized as follows: in Section 2, we give some definitions and background. In Section 3, we define special connections and prove that if a pair of non adjacent vertices are linked by a special connection then in any directed path model T, the subpaths of T corresponding to the vertices forming the special connection have to overlap and they force T to be completely directed in one direction between these vertices. In section 4, we give some properties about model that can not be rooted on bold maximal clique. Finally, in Section 5, we proved that G is a directed path graph with leafage three, and it has a strong asteroidal triple a_{1}, a_{2}, a_{3} such that there is a special connection between a_{1} and a_{2} if and only if none directed path model can be rooted on the maximal clique that contains a_{3}.

2. Definitions and Background

If G is a graph and $V^{\prime} \subseteq V(G)$, then $G \backslash V^{\prime}$ denotes the subgraph of G induced by $V(G) \backslash V^{\prime}$. If $E^{\prime} \subseteq E(G)$, then $G-E^{\prime}$ denotes the subgraph of G induced by $E(G) \backslash E^{\prime}$. If G, G^{\prime} are two graphs, then $G+G^{\prime}$ denotes the graph whose vertices are $V(G) \cup V\left(G^{\prime}\right)$ and edges are $E(G) \cup E\left(G^{\prime}\right)$. Note that if T, T^{\prime} are two trees such that $\left|V(T) \cap V\left(T^{\prime}\right)\right|=0$, then $T+T^{\prime}$ is a forest.

A clique in a graph G is a set of pairwise adjacent vertices. Let $\boldsymbol{C}(G)$ be the set of all maximal cliques of G.

The neighborhood of a vertex x is the set $N(x)$ of vertices adjacent to x and the closed neighborhood of x is the set $N[x]=\{x\} \cup N(x)$. A vertex is simplicial if its closed neighborhood is a maximal clique. Two adjacent vertices x and y are twins if $N[x]=N[y]$.

A strong asteroidal of a graph G is a stable set $\left\{a_{1}, . ., a_{n}\right\}(n \geq 2)$ of vertices of G such that $G \backslash N\left[a_{i}\right]$ is a connected graph for $i=1, . ., n$.

A clique tree T of a graph G is a tree whose vertices are the elements of $\boldsymbol{C}(G)$ and such that for each vertex x of G, those elements of $\boldsymbol{C}(G)$ that contain x induce a subtree of T, which we will denote by T_{x}. Note that G is the intersection graph of the subtrees $\left(T_{x}\right)_{x \in V(G)}$. In this paper, whenever we talk about the intersection of subgraphs of a graph we mean that the vertex sets of the subgraphs intersect.

Given two non adjacent vertices a, b of G, and a clique tree T of G, it is defined $T(a, b)$ to be the subtree of T of minimum size that contains at least a vertex of T_{a} and T_{b}.

Gavril [4] proved that a graph is chordal if and only if it has a clique tree. Clique trees are called models of the graph.

Observe that if G has a strong asteroidal $a_{1}, . ., a_{n}$ then every clique tree has $N\left[a_{i}\right]$ as a leaf for $i=1, . ., n$. So a_{i} is a simplicial vertex of G for $i=1, . ., n$.

In [7], Monma and Wei introduced the notation UV, DV and RDV to refer to the classes of path graphs, directed path graphs and rooted directed path graphs respectively. They also proved the following clique tree characterizations for these classes. A graph is a path graph or a $U V$ graph if it admits a $U V$-model, i.e. a clique tree T such that T_{x} is a subpath of T for every $x \in V(G)$. A graph is a directed path graph or a $D V$ graph if it admits a $D V$-model, i.e a clique tree T whose edges can be directed such that T_{x} is a directed subpath of T for every $x \in V(G)$. A graph is a rooted path graph or an $R D V$ graph, if it admits an $R D V$-model, i.e a clique tree T that can be rooted and whose edges are directed from the root toward the leaves such that T_{x} is a directed subpath of T for every $x \in V(G)$.

It has been proved in [3] that if G is a DV-graph, then any UV-model of G can be directed to obtain a DV-model of G. We say that a DV-model T of a DV graph G can be rooted if T can be rooted on a vertex such that it becomes an RDV-model of G.

Let T be a clique tree. We often use capital letters to denotes the vertices of a clique tree as this vertices correspond to maximal cliques of G. In order to simplify the notation, we often write $X \in T$ instead of $X \in V(T)$, and $e \in T$ instead of $e \in E(T)$. If T^{\prime} is a subtree of T, then $G_{T^{\prime}}$ denotes the subgraph of G that is induced by the vertices of $\cup_{X \in V\left(T^{\prime}\right)} X$.

Let T be a tree. For $V^{\prime} \subseteq V(T)$, let $T\left[V^{\prime}\right]$ be the minimal subtree of T containing V^{\prime}. Then for $X, Y \in V(T), T[X, Y]$ is the subpath of T between X and Y. Let $T[X, Y)=T[X, Y] \backslash Y, T(X, Y]=T[X, Y] \backslash X$ and $T(X, Y)=T[X, Y] \backslash\{X, Y\}$.

Note that some of these paths may be empty or reduced to a single vertex when X and Y are equal or adjacent. If $X \in V(T)$ and $e \in E(T)$ with $e=A B$ and $A \in T[X, B]$, then let $T[X, e]=T[X, B], T[X, e)=T[X, A], T(X, e]=T(X, B]$ and $T(X, e)=T(X, A]$. Given a vertex $X \in V(T(Y, Z))$, we say that there is a vertex crossing X in $T[Y, Z]$ if $X^{\prime} \cap X^{\prime \prime} \neq \emptyset$ where X^{\prime} and $X^{\prime \prime}$ are the two neighbors of X in $T[Y, Z]$.

Let T be a tree, we denote by $\ln (T)$ the number of leaves of T. The leafage of a chordal graph G is a minimum integer ℓ such that G admits a model T with $\ln (T)=\ell$. Note that if G has a strong asteroidal a_{1}, \ldots, a_{n} then $l(G) \geqq n$.

In a clique tree T, the label of an edge $A B$ of T is defined as $\operatorname{lab}(A B)=A \cap B$. We will say that e, e^{\prime} in the same clique tree T are twin edges if $\operatorname{lab}(e)=\operatorname{lab}\left(e^{\prime}\right)$

Let T be a $D V$-model of G, let Q be a vertex of T, and let e be an edge of T. Let T_{1} and T_{2} be the two connected components of $T-e$ where Q is in T_{1}. We say that vertices in $\operatorname{lab}(e)$ have the same end with respect to Q if there exists a vertex Q^{\prime} in T_{1}, possibly $Q^{\prime}=Q$, such that for each $x \in \operatorname{lab}(e)$, one endpoint of T_{x} is Q^{\prime}

We say that $X \in V(T)$ dominates $e \in E(T)$ if $\operatorname{lab}(e) \subseteq X$. On the other hand, an edge e satisfying a given property P is maximally farthest from a vertex C if there is no edge e^{\prime}, different from e, satisfying this property and such that e is between C and e^{\prime}.

3. Special connections

Let a and b be two non adjacent vertices of a graph G. We will define nine type of connection between these vertices. Observe that Type 1, 2 and 3 were already defined in [2]

- Type 1: there exists a path $P=a, x, b$ in G.
- Type 2: there exist two paths $P=a, y_{1}, y_{2}, b$ and $Q=a, x_{1}, x_{2}, b$ in G such that $\left\{x_{1}, y_{1}, y_{2}\right\}$ and $\left\{x_{1}, x_{2}, y_{2}\right\}$ are cliques of G.
- Type 3: there exist two paths $P=a, y_{1}, y_{2}, b, Q=a, x_{1}, x_{2}, b$, and two vertices s_{1}, s_{2} in G such that $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\left\{x_{1}, y_{1}, y_{2}, s_{1}\right\}$ and $\left\{x_{1}, x_{2}\right.$, $\left.y_{2}, s_{2}\right\}$ are cliques of G. In this case it is said that $\left\{x_{1}, x_{2}, y_{1}, y_{2}, s_{1}, s_{2}\right\}$ induces an antenna.

In the follows we define new special connections.

- Type 4: there exist two paths $P=a, y_{1}, y_{2}, b, Q=a, x_{1}, x_{2}, b$, and vertices in $G: t, u, z_{i}$ for $i \in\{1, . ., o\}$ such that $\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{o}\right\},\left\{x_{1}, y_{1}, z_{i}\right.$, $\left.z_{i+1}\right\}_{i=1, . ., o-1},\left\{y_{1}, z_{1}, u\right\}$ and $\left\{x_{1}, x_{2}, y_{1}, t\right\}$ are cliques of G. Figure 1.
- Type 5: there exist two paths $P=a, y_{1}, y_{2}, b, Q=a, x_{1}, x_{2}, b$, and vertices in G : s_{1}, s, t, t_{i} for $i \in\{1, . ., p\}, u, z_{i}$ for $i \in\{1, . ., o\}$ such that $\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{o}, s_{1}\right\},\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{o}, t_{p}\right\},\left\{x_{1}, x_{2}, y_{1}, z_{o}, t_{p}, s\right\},\left\{x_{1}, y_{1}, z_{i}\right.$, $\left.z_{i+1}\right\}_{i=1, . ., o-1},\left\{y_{1}, z_{1}, u\right\},\left\{x_{1}, y_{1}, z_{o}, t_{i}, t_{i+1}\right\}_{i=1, \ldots, p-1}$ and $\left\{x_{1}, y_{1}, t_{1}, t\right\}$ are cliques of G. Figure 2.
- Type 6: there exist two paths $P=a, y_{1}, y_{2}, b, Q=a, x_{1}, x_{2}, b$, and vertices in $G: t, t_{i}$ for $i \in\{1, . ., p\}, u, z_{i}$ for $i \in\{1, . ., o\}$ such that $\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{o}\right\}$, $\left\{x_{1}, x_{2}, y_{1}, z_{o}, t_{p}\right\},\left\{x_{1}, y_{1}, z_{i}, z_{i+1}\right\}_{i=1, . ., o-1},\left\{x_{1}, y_{1}, z_{o}, t_{i}, t_{i+1}\right\}_{i=1, . ., p-1}$, $\left\{y_{1}, z_{1}, u\right\}$ and $\left\{x_{1}, y_{1}, t_{1}, t\right\}$ are cliques of G. Figure 3.
- Type 7: there exist two paths $P=a, y_{1}, y_{2}, b, Q=a, x_{1}, x_{2}, b$, and vertices in $G: s, t, t_{i}$ for $i \in\{1, . ., p\}, u, u^{\prime}, z_{i}$ for $i \in\{1, . ., o\}, z_{i}^{\prime}$ for $i \in$ $\{1, . ., q\}$ such that $\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{o}, t_{p}, z_{q}^{\prime}\right\},\left\{x_{1}, x_{2}, y_{1}, z_{o}, t_{p}, s\right\},\left\{y_{1}, z_{1}, u\right\}$,

Figure 1. Type 4 and an RDV-model. In the graph, we leave out edges of cliques of size greater or equal than four.

Figure 2. Type 5 and an RDV-model. In the graph, we leave out edges of cliques of size greater or equal than four.
$\left\{x_{1}, y_{1}, z_{o}, z_{i}^{\prime}, z_{i+1}^{\prime}, t_{p}\right\}_{i=1, . ., q-1},\left\{x_{1}, y_{1}, z_{o}, z_{1}^{\prime}, u^{\prime}\right\},\left\{x_{1}, y_{1}, z_{i}, z_{i+1}\right\}_{i=1, . ., o-1}$, $\left\{x_{1}, y_{1}, t_{1}, t\right\}$ and $\left\{x_{1}, y_{1}, z_{o}, t_{i}, t_{i+1}\right\}_{i=1, \ldots, p-1}$ are cliques of G. Figure 4.

- Type 8: there exist two paths $P=a, y_{1}, y_{2}, b, Q=a, x_{1}, x_{2}, b$, and vertices in $G: t, t^{\prime}, t_{i}$ for $i \in\{1, . ., p\}, t_{i}^{\prime}$ for $i \in\{1, . ., r\}, u, u^{\prime}, z_{i}$ for $i \in\{1, . ., o\}, z_{i}^{\prime}$ for $i \in\{1, . ., q\}$ such that $\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{o}, t_{p}, z_{q}^{\prime}\right\},\left\{x_{1}, x_{2}, y_{1}, z_{o}, z_{q}^{\prime}, t_{p}, t_{r}^{\prime}\right\}$, $\left\{x_{1}, y_{1}, z_{o}, t_{p}, t_{1}^{\prime}, t^{\prime}\right\},\left\{x_{1}, y_{1}, z_{o}, t_{i}, t_{i+1}\right\}_{i=1, . ., p-1},\left\{y_{1}, z_{1}, u\right\},\left\{x_{1}, y_{1}, z_{o}, z_{q}^{\prime}\right.$, $\left.t_{p}, t_{i}^{\prime}, t_{i+1}^{\prime}\right\}_{i=1, . ., r-1},\left\{x_{1}, y_{1}, z_{o}, z_{1}^{\prime}, u^{\prime}\right\},\left\{x_{1}, y_{1}, z_{i}, z_{i+1}\right\}_{i=1, . ., o-1},\left\{x_{1}, y_{1}\right.$, $\left.t_{1}, t\right\}$, and $\left\{x_{1}, y_{1}, z_{o}, t_{p}, z_{i}^{\prime}, z_{i+1}^{\prime}\right\}_{i=1, \ldots, q-1}$ are cliques of G. Figure 5 .
- Type 9: there exist two paths $P=a, y_{1}, y_{2}, b, Q=a, x_{1}, x_{2}, b$, and vertices in $G: s, s_{1}, t, t^{\prime}, t_{i}$ for $i \in\{1, . ., p\}, t_{i}^{\prime}$ for $i \in\{1, . ., r\}, u, u^{\prime}$, z_{i} for $i \in\{1, . ., o\}, z_{i}^{\prime}$ for $i \in\{1, . ., q\}$ such that $\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{o}, t_{p}\right.$, $\left.z_{q}^{\prime}, t_{r}^{\prime}, s_{1}\right\},\left\{x_{1}, x_{2}, y_{1}, z_{o}, z_{q}^{\prime}, t_{p}, t_{r}^{\prime}, s\right\},\left\{x_{1}, y_{1}, z_{o}, t_{p}, t_{1}^{\prime}, t^{\prime}\right\},\left\{x_{1}, y_{1}, z_{o}, t_{i}\right.$, $\left.t_{i+1}\right\}_{i=1, \ldots, p-1},\left\{x_{1}, y_{1}, z_{o}, z_{q}^{\prime}, t_{p}, t_{i}^{\prime}, t_{i+1}^{\prime}\right\}_{i=1, . ., r-1},\left\{x_{1}, y_{1}, t_{1}, t\right\},\left\{x_{1}, y_{1}\right.$, $\left.z_{i}, z_{i+1}\right\}_{i=1, . ., o-1},\left\{y_{1}, z_{1}, u\right\},\left\{x_{1}, y_{1}, z_{o}, z_{1}^{\prime}, u^{\prime}\right\}$ and $\left\{x_{1}, y_{1}, z_{o}, t_{p}, z_{i}^{\prime}, z_{i+1}^{\prime}\right\}$ $i=1, . ., q-1$ are cliques of G. Figure 6.

Figure 3. Type 6 and an RDV-model. In the graph, we leave out edges of cliques of size greater or equal than four.

Figure 4. Type 7 and an RDV-model. In the graph, we leave out edges of cliques of size greater or equal than four.

Figure 5. Type 8 and an RDV-model. In the graph, we leave out edges of cliques of size greater or equal than four.

Figure 6. Type 9 and an RDV-model. In the graph, we leave out edges of cliques of size greater or equal than four.

Theorem 1. Let G be a $D V$ graph, and let a, b be two non adjacent vertices of G that are linked by Type i with $1 \leq i \leq 9$. Then, for every T, $D V$-model of G, the subpath $T(a, b)$ is a directed path.

Proof. Let Q_{a} be a maximal clique that contains a, and Q_{b} be a maximal clique that contains b.
(1) Types $1,2,3$. In [2] was proved that if a and b are linked by Type i with $i \in\{1,2,3\}$ then $T\left[Q_{a}, Q_{b}\right]$ is a directed path of T.
(2) We can assume that there is a special connection of Type $4,5,6,7,8$ or 9 .

The edge of $T\left[Q_{a}, Q_{b}\right]$ incidents to Q_{a} must have in its label S at least one vertex of $\left\{x_{1}, x_{2}\right\}\left(\left\{y_{1}, y_{2}\right\}\right)$, otherwise a and b are in two different components of $G \backslash S$ contradicting that $a, x_{1}, x_{2}, b\left(a, y_{1}, y_{2}, b\right)$ is a path. Analogously, the edge incidents to Q_{b} must have in its label at least one vertex of $\left\{y_{1}, y_{2}\right\}\left(\left\{x_{1}, x_{2}\right\}\right)$. Vertex a is not adjacent to x_{2}, and b is not adjacent to y_{1} then $Q_{a} \cap\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}=\left\{x_{1}, y_{1}\right\}$ and $Q_{b} \cap\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}=$ $\left\{x_{2}, y_{2}\right\}$.
(a) Suppose that the connections is of Type 4.

Let Q^{\prime}, Q_{o}, Q and Q_{i} be maximal cliques of G such that $Q^{\prime} \supset\left\{x_{1}, x_{2}\right.$, $\left.y_{1}, t\right\}, Q_{o} \supset\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{o}\right\}, Q \supset\left\{y_{1}, z_{1}, u\right\}$, and $Q_{i} \supset\left\{x_{1}, y_{1}, z_{i}\right.$, $\left.z_{i+1}\right\}$ for $i=1, . ., o-1$.
We will prove that $Q_{a}, Q^{\prime}, Q_{o}, Q_{b}$ appear in this order in T.
As a is not adjacent to x_{2}, b is not adjacent to x_{1} and x_{1}, x_{2} are vertices in $Q_{o} \cap Q^{\prime}$, then we have $Q_{a} \notin T\left[Q_{o}, Q^{\prime}\right]$ and $Q_{b} \notin T\left[Q_{o}, Q^{\prime}\right]$. Observe that x_{1} and y_{1} are vertices in $\left(Q^{\prime} \cap Q_{a}\right)-\left(Q_{o} \cap Q_{b}\right), x_{2}$ and y_{2} are in $\left(Q_{o} \cap Q_{b}\right)-\left(Q^{\prime} \cap Q_{a}\right), x_{2} \in Q^{\prime} \cap Q_{b}$ but neither x_{1} or y_{1} or y_{2} are in $Q^{\prime} \cap Q_{b}$. Thus $Q_{a}, Q^{\prime}, Q_{o}, Q_{b}$ appear in this order in T. Since $x_{1} \in Q_{a} \cap Q_{o}$ and $x_{2} \in Q^{\prime} \cap Q_{b}$ it is follows that $T\left[Q_{a}, Q_{b}\right]$ is a directed path of T.
On the other hand $Q_{i} \notin T\left[Q^{\prime}, Q_{o}\right]$ for $i \neq o$ since x_{2} is not adjacent to z_{i} for $i \neq o$. As x_{1}, y_{1} and z_{i} are vertices in $Q_{i} \cap Q_{i+1}$ for $i=1, . ., o-1$,
x_{1} and y_{1} are in $Q_{i} \cap Q_{a}$, and z_{1}, y_{1} are vertices in $Q_{1} \cap Q$, then $Q_{a}, Q^{\prime}, Q_{o}, Q_{o-1}, . ., Q_{1}, Q$ appear in this order in T. Vertex b is not adjacent to y_{1}, so $Q_{b} \notin T\left[Q_{a}, Q\right]$.
(b) Suppose that the connection is of Type 5.

Let $Q_{o}, Q_{o}^{\prime}, Q_{p}^{\prime}, Q_{i}, Q, Q_{i}^{\prime}$ and Q^{\prime} be maximal cliques of G such that $Q_{o} \supset\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{o}, s_{1}\right\}, Q_{o}^{\prime} \supset\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{o}, t_{p}\right\}, Q_{p}^{\prime} \supset\left\{x_{1}, x_{2}\right.$, $\left.y_{1}, z_{o}, t_{p}, s\right\}, Q_{i} \supset\left\{x_{1}, y_{1}, z_{i}, z_{i+1}\right\}$ for $i=1, . ., o-1, Q \supset\left\{y_{1}, z_{1}, u\right\}$, $Q_{i}^{\prime} \supset\left\{x_{1}, y_{1}, z_{o}, t_{i}, t_{i+1}\right\}$ for $i=1, . ., p-1$, and $Q^{\prime} \supset\left\{x_{1}, y_{1}, t_{1}, t\right\}$.
We will prove that $Q_{a}, Q^{\prime}, Q_{1}^{\prime}, . ., Q_{p}^{\prime}, Q_{o}^{\prime}, Q_{o}, Q_{b}$ appear in this order in T.
Vertex s_{1} is not adjacent to t_{p}, and s is not adjacent to y_{2} then $Q_{o} \notin$ $T\left[Q_{o}^{\prime}, Q_{p}^{\prime}\right]$ and $Q_{p}^{\prime} \notin T\left[Q_{o}^{\prime}, Q_{o}\right]$ respectively. Observe that x_{1}, x_{2}, y_{1}, z_{o} and t_{p} are vertices in $Q_{o}^{\prime} \cap Q_{p}^{\prime}$ but $y_{2} \notin Q_{o}^{\prime} \cap Q_{p}^{\prime}$. Also x_{1}, x_{2}, y_{1}, y_{2} and z_{o} are in $Q_{o}^{\prime} \cap Q_{o}$ but $t_{p} \notin Q_{o}^{\prime} \cap Q_{o}$. Thus $Q_{p}^{\prime}, Q_{o}^{\prime}, Q_{o}$ appear in this order in T. On the other hand, $Q_{i}^{\prime} \notin T\left[Q_{p}^{\prime}, Q_{o}\right]$ for $i \neq p$ since t_{i} is not adjacent to x_{2}. As $\left\{x_{1}, y_{1}, z_{o}, t_{i}\right\} \subset Q_{i}^{\prime} \cap Q_{i+1}^{\prime}$ and $\left\{x_{1}, y_{1}, z_{o}\right\} \subset Q_{i}^{\prime} \cap Q_{o}$, but $t_{i} \notin Q_{o}$ for $i \neq p$ it is follows that $Q_{1}^{\prime}, . ., Q_{p}^{\prime}, Q_{o}^{\prime}, Q_{o}$ appear in this order in T. Note that $Q^{\prime} \notin T\left[Q_{1}^{\prime}, Q_{o}\right]$ since z_{o} is not adjacent to $t ;\left\{x_{1}, y_{1}, t_{1}\right\} \subset Q^{\prime} \cap Q_{1}^{\prime}, x_{1}$ and y_{1} are in $Q^{\prime} \cap Q_{o}$ but $t_{1} \notin Q_{o}$, so $Q^{\prime}, Q_{1}^{\prime}, . ., Q_{p}^{\prime}, Q_{o}^{\prime}, Q_{o}$ appear in this order in T. Since a is not adjacent to t_{i} for $i=1, . ., p$, and is also not adjacent to x_{2} then $Q_{a} \notin T\left[Q^{\prime}, Q_{o}\right]$. Vertex b is not adjacent to t_{i} for $i=1, . ., p$ and is also not adjacent to y_{1}, so $Q_{b} \notin T\left[Q^{\prime}, Q_{o}\right]$. As $x_{1}, y_{1} \in\left(Q_{a} \cap Q^{\prime}\right)-\left(Q_{o} \cap Q_{b}\right)$ and $x_{2}, y_{2} \in\left(Q_{o} \cap Q_{b}\right)-\left(Q_{a} \cap Q^{\prime}\right)$, it is follows that $Q_{a}, Q^{\prime}, Q_{1}^{\prime}, . ., Q_{p}^{\prime}, Q_{o}^{\prime}, Q_{o}, Q_{b}$ appear in this order in T. Since $x_{1} \in Q_{a} \cap Q_{o}$ and $x_{2} \in Q^{\prime} \cap Q_{b}$ then $T\left[Q_{a}, Q_{b}\right]$ is a directed path of T.
Using the same argument of Case $2 \mathrm{a}, Q_{a}, Q^{\prime}, Q_{1}^{\prime}, . ., Q_{o}^{\prime}, Q_{o}, Q_{o-1}, .$. , Q_{1}, Q appear in this order in T and also $Q_{b} \notin T\left[Q_{a}, Q\right]$.
(c) Suppose that the connection is of Types 6 or 7.

In case that the connection is of Type 6, let $Q_{o}, Q_{p}^{\prime}, Q_{i}, Q, Q_{i}^{\prime}$ and Q^{\prime} be maximal cliques of G such that: $Q_{o} \supset\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{o}\right\}, Q_{p}^{\prime} \supset$ $\left\{x_{1}, x_{2}, y_{1}, z_{o}, t_{p}\right\}, Q_{i} \supset\left\{x_{1}, y_{1}, z_{i}, z_{i+1}\right\}$ for $i=1, . ., o-1, Q \supset$ $\left\{y_{1}, z_{1}, u\right\}, Q_{i}^{\prime} \supset\left\{x_{1}, y_{1}, z_{o}, t_{i}, t_{i+1}\right\}$ for $i=1, . ., p-1$, and $Q^{\prime} \supset$ $\left\{x_{1}, y_{1}, t_{1}, t\right\}$.
In case that the connection is of Type 7, let $Q_{o}, Q_{p}^{\prime}, Q_{i}^{\prime \prime}, Q^{\prime \prime}, Q_{i}, Q_{i}^{\prime}$ and Q^{\prime} be maximal cliques of G such that: $Q_{o} \supset\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{o}, t_{p}, z_{q}^{\prime}\right\}$, $Q_{p}^{\prime} \supset\left\{x_{1}, x_{2}, y_{1}, z_{o}, t_{p}, s\right\}, Q_{i}^{\prime \prime} \supset\left\{x_{1}, y_{1}, z_{o}, z_{i}^{\prime}, z_{i+1}^{\prime}, t_{p}\right\}$ for $i=1, . ., q-$ $1, Q^{\prime \prime} \supset\left\{x_{1}, y_{1}, z_{o}, z_{1}^{\prime}, u^{\prime}\right\}, Q^{\prime} \supset\left\{x_{1}, y_{1}, t_{1}, t\right\}, Q \supset\left\{y_{1}, z_{1}, u\right\}, Q_{i} \supset$ $\left\{x_{1}, y_{1}, z_{i}, z_{i+1}\right\}$ for $i=1, . ., o-1$, and $Q_{i}^{\prime} \supset\left\{x_{1}, y_{1}, z_{o}, t_{i}, t_{i+1}\right\}$ for $i=1, \ldots, p-1$.
In both cases, we will prove that $Q_{a}, Q^{\prime}, Q_{1}^{\prime}, . ., Q_{p}^{\prime}, Q_{o}, Q_{b}$ appear in this order in T.
We know that $\left\{x_{1}, x_{2}, y_{1}, z_{o}, t_{p}\right\} \subset Q_{o} \cap Q_{p}^{\prime}$ if the connection is of Type 7, and $\left\{x_{1}, x_{2}, y_{1}, z_{o}\right\} \subset Q_{o} \cap Q_{p}^{\prime}$ if the connection is of Type 6. But in both cases we have $y_{2} \notin Q_{o} \cap Q_{p}^{\prime}$. Vertex t_{i} is not adjacent to x_{2} for $i \neq p$ then $Q_{i}^{\prime} \notin T\left[Q_{o}, Q_{p}^{\prime}\right]$. Observe that $\left\{x_{1}, y_{1}, z_{o}, t_{i}\right\} \subset Q_{i}^{\prime} \cap Q_{i+1}^{\prime}$, $\left\{x_{1}, y_{1}, z_{o}\right\} \subset Q_{i}^{\prime} \cap Q_{o}$ but $t_{i} \notin Q_{o}$ for $i \neq p$. Thus $Q_{1}^{\prime}, . ., Q_{p}^{\prime}, Q_{o}$ appear
in this order in T. Note that $Q^{\prime} \notin T\left[Q_{1}^{\prime}, Q_{o}\right]$ since z_{o} is not adjacent to t. Vertices x_{1}, y_{1} and t_{1} are in $Q^{\prime} \cap Q_{1}^{\prime}, x_{1}$ and y_{1} are $Q^{\prime} \cap Q_{o}$ but $t_{1} \notin Q_{o}$, so $Q^{\prime}, Q_{1}^{\prime}, . ., Q_{p}^{\prime}, Q_{o}$ appear in this order in T. Vertex a is not adjacent to t_{i} for $i=1, . ., p$, and is also not adjacent to x_{2} then $Q_{a} \notin T\left[Q^{\prime}, Q_{o}\right]$. Since b is not adjacent to t_{i} for $i=1, . ., p$ and b is not adjacent to y_{1} so $Q_{b} \notin T\left[Q^{\prime}, Q_{o}\right]$. As $x_{1}, y_{1} \in\left(Q_{a} \cap Q^{\prime}\right)-\left(Q_{o} \cap Q_{b}\right)$ and $x_{2}, y_{2} \in\left(Q_{o} \cap Q_{b}\right)-\left(Q_{a} \cap Q^{\prime}\right)$, then $Q_{a}, Q^{\prime}, Q_{1}^{\prime}, . ., Q_{p}^{\prime}, Q_{o}, Q_{b}$ appear in this order in T. Since $x_{1} \in Q_{a} \cap Q_{o}$ and $x_{2} \in Q^{\prime} \cap Q_{b}$ it follows that $T\left[Q_{a}, Q_{b}\right]$ is a directed path of T.
On the other hand, in case that the connection is of Type 6, using the same argument of Case 2a, we have $Q_{a}, Q^{\prime}, Q_{1}^{\prime}, \ldots, Q_{o}, Q_{o-1}, . ., Q_{1}, Q$ appear in this order in T. And as b is not adjacent to y_{1} then $Q_{b} \notin$ $T\left[Q_{a}, Q\right]$.
In case that the connection is of Type 7, as z_{i}^{\prime} is not adjacent to z_{j} for $j \in\{1, \ldots, o-1\}$ and $i \in\{1, \ldots, q\}$ it follows that $Q_{1}^{\prime \prime \prime}, Q_{i}^{\prime \prime} \notin T\left[Q_{j}, Q_{j+1}\right]$. Also $Q_{i}^{\prime \prime} \notin T\left[Q_{1}^{\prime}, Q_{o}\right]$ since z_{i}^{\prime} is not adjacent to t_{j} for $i \in\{1, . ., q-1\}$ and $j \in\{1, \ldots, p-1\}$. Observe that $\left\{x_{1}, y_{1}, z_{o}, t_{p}, z_{i}^{\prime}\right\} \subset Q_{i}^{\prime \prime} \cap Q_{i+1}^{\prime \prime}$ for $i \neq q,\left\{x_{1}, y_{1}, z_{o}, t_{p}\right\} \subset Q_{i}^{\prime \prime} \cap Q_{o},\left\{x_{1}, y_{1}\right\} \subset Q_{a} \cap Q_{i}^{\prime \prime}$, and $\left\{x_{1}, y_{1}, z_{o}\right\} \subset$ $Q_{i}^{\prime \prime} \cap Q_{o-1}$ then $Q_{a}, Q_{1}^{\prime}, . ., Q_{o}, Q_{q}^{\prime \prime}, . ., Q_{1}^{\prime \prime}, Q_{o-1}, . ., Q$ appear in this order in T, and also $Q_{b} \notin T\left[Q_{a}, Q\right]$.
(d) Suppose that the connection is of Type 8 or 9 .

In case that the connection is of Type 8, let $Q_{o}, Q_{p}^{\prime}, Q^{i v}, Q_{i}^{\prime}, Q_{i}^{\prime \prime \prime}, Q^{\prime}$, $Q^{\prime \prime}, Q, Q_{i}$ and $Q_{i}^{\prime \prime}$ be maximal cliques of G such that $Q_{o} \supset\left\{x_{1}, x_{2}, y_{1}\right.$, $\left.y_{2}, z_{o}, t_{p}, z_{q}^{\prime}\right\}, Q_{p}^{\prime} \supset\left\{x_{1}, x_{2}, y_{1}, z_{o}, z_{q}^{\prime}, t_{p}, t_{r}^{\prime}\right\}, Q^{i v}\left\{x_{1}, y_{1}, z_{o}, t_{p}, t_{1}^{\prime}, t^{\prime}\right\}$, $Q_{i}^{\prime} \supset\left\{x_{1}, y_{1}, z_{o}, t_{i}, t_{i+1}\right\}$ for $i=1, . ., p-1, Q_{i}^{\prime \prime \prime} \supset\left\{x_{1}, y_{1}, z_{o}, z_{q}^{\prime}, t_{p}, t_{i}^{\prime}\right.$, $\left.t_{i+1}^{\prime}\right\}$ for $i=1, . ., r-1, Q^{\prime} \supset\left\{x_{1}, y_{1}, t_{1}, t\right\}, Q^{\prime \prime} \supset\left\{x_{1}, y_{1}, z_{o}, z_{1}^{\prime}, u^{\prime}\right\}$, $Q \supset\left\{y_{1}, z_{1}, u\right\}, Q_{i} \supset\left\{x_{1}, y_{1}, z_{i}, z_{i+1}\right\}$ for $i=1, . ., o-1$, and $Q_{i}^{\prime \prime} \supset$ $\left\{x_{1}, y_{1}, z_{o}, t_{p}, z_{i}^{\prime}, z_{i+1}^{\prime}\right\}$ for $i=1, . ., q-1$.
In case that the connection is of Type 9 , let $Q_{o}, Q_{p}^{\prime}, Q^{i v}, Q_{i}^{\prime}, Q^{\prime \prime}, Q_{i}^{\prime \prime \prime}, Q^{\prime}$, Q_{i}, Q and $Q_{i}^{\prime \prime}$ be maximal cliques of G such that $Q_{o} \supset\left\{x_{1}, x_{2}, y_{1}, y_{2}\right.$, $\left.z_{o}, t_{p}, z_{q}^{\prime}, t_{r}^{\prime}, s_{1}\right\}, Q_{p}^{\prime} \supset\left\{x_{1}, x_{2}, y_{1}, z_{o}, z_{q}^{\prime}, t_{p}, t_{r}^{\prime}, s\right\}, Q^{i v} \supset\left\{x_{1}, y_{1}\right.$, $\left.z_{o}, t_{p}, t_{1}^{\prime}, t^{\prime}\right\}, Q_{i}^{\prime} \supset\left\{x_{1}, y_{1}, z_{o}, t_{i}, t_{i+1}\right\}$ for $i=1, . ., p-1, Q^{\prime \prime} \supset\left\{x_{1}, y_{1}\right.$, $\left.z_{o}, z_{1}^{\prime}, u^{\prime}\right\}, Q_{i}^{\prime \prime \prime} \supset\left\{x_{1}, y_{1}, z_{o}, z_{q}^{\prime}, t_{p}, t_{i}^{\prime}, t_{i+1}^{\prime}\right\}$ for $i=1, . ., r-1, Q^{\prime} \supset$ $\left\{x_{1}, y_{1}, t_{1}, t\right\}, Q_{i} \supset\left\{x_{1}, y_{1}, z_{i}, z_{i+1}\right\}$ for $i=1, ., o-1, Q \supset\left\{y_{1}, z_{1}, u\right\}$, and $Q_{i}^{\prime \prime} \supset\left\{x_{1}, y_{1}, z_{o}, t_{p}, z_{i}^{\prime}, z_{i+1}^{\prime}\right\}$ for $i=1, . ., q-1$.
In both cases, we will prove that $Q_{a}, Q^{\prime}, Q_{1}^{\prime}, . ., Q_{p-1}^{\prime}, Q^{i v}, Q_{1}^{\prime \prime \prime}, . ., Q_{r-1}^{\prime \prime \prime}$, $Q_{p}^{\prime}, Q_{o}, Q_{b}$ appear in this order in T.
We know that $\left\{x_{1}, x_{2}, y_{1}, z_{o}, t_{p}, z_{q}^{\prime}\right\} \subset Q_{o} \cap Q_{p}^{\prime}$ but $y_{2} \notin Q_{o} \cap Q_{p}^{\prime}$. As t_{i}^{\prime} is not adjacent to x_{2} for $i \neq r$, so $Q_{i}^{\prime \prime \prime} \notin T\left[Q_{o}, Q_{p}^{\prime}\right]$.
Observe that $\left\{x_{1}, y_{1}, z_{o}, z_{q}^{\prime}, t_{i}^{\prime}\right\} \subset Q_{i}^{\prime \prime \prime} \cap Q_{i+1}^{\prime \prime \prime},\left\{x_{1}, y_{1}, z_{o}, z_{q}^{\prime}, t_{p}, t_{r}^{\prime}\right\} \subset$ $Q_{r-1}^{\prime \prime \prime} \cap Q_{p}^{\prime}$ but $t_{r}^{\prime} \notin Q_{o},\left\{x_{1}, y_{1}, z_{o}, z_{q}^{\prime}, t_{p}\right\} \subset Q_{i}^{\prime \prime \prime} \cap Q_{p}^{\prime}$ but $t_{i}^{\prime} \notin Q_{p}^{\prime}$ for $i \neq r$. Then $Q_{1}^{\prime \prime \prime}, . ., Q_{r-1}^{\prime \prime \prime}, Q_{p}^{\prime}, Q_{o}$ appear in this order in T.
On the other hand, $Q^{i v} \notin T\left[Q_{1}^{\prime}, Q_{o}\right]$ since z_{q}^{\prime} is not adjacent to t^{\prime}. Vertices $x_{1}, y_{1}, z_{o}, t_{p}$ and t_{1}^{\prime} are in $Q^{i v} \cap Q_{1}^{\prime \prime \prime}, x_{1}, y_{1}, z_{o}$ and t_{p} are in $Q^{i v} \cap Q_{o}$ but $t_{1}^{\prime} \notin Q_{o}$ it is follows that $Q^{i v}, Q_{1}^{\prime \prime \prime}, . ., Q_{r-1}^{\prime \prime \prime}, Q_{p}^{\prime}, Q_{o}$ appear in this order in T.
As t_{i} is not adjacent to t_{p} for $i \neq p-1$ then $Q_{i}^{\prime} \notin T\left[Q^{i v}, Q_{o}\right]$. Observe that $\left\{x_{1}, y_{1}, z_{o}, t_{i}\right\} \subset Q_{i}^{\prime} \cap Q_{i+1}^{\prime},\left\{x_{1}, y_{1}, z_{o}\right\} \subset Q_{i}^{\prime} \cap Q_{o}$ but $t_{i} \notin Q_{o}$ for
$i \neq p$ and $\left\{x_{1}, y_{1}, z_{o}, t_{p}, t_{1}^{\prime}\right\} \subset Q_{p-1}^{\prime} \cap Q^{i v},\left\{x_{1}, y_{1}, z_{o}, t_{p}\right\} \subset Q_{p-1}^{\prime} \cap Q_{o}$ and $t_{1} \notin Q_{o}$. Thus $Q_{1}^{\prime}, . ., Q_{p-1}^{\prime} Q^{i v}, Q_{1}^{\prime \prime \prime}, . . Q_{r-1}^{\prime \prime \prime}, Q_{p}^{\prime}, Q_{o}$ appear in this order in T.
On the other hand, $Q^{\prime} \notin T\left[Q_{1}^{\prime}, Q_{o}\right]$ since z_{o} is not adjacent to t; $\left\{x_{1}, y_{1}, t_{1}\right\} \subset Q^{\prime} \cap Q_{1}^{\prime},\left\{x_{1}, y_{1}\right\} \subset Q^{\prime} \cap Q_{o}$ but $t_{1} \notin Q_{o}$, so $Q^{\prime}, Q_{1}^{\prime}, . .$, $Q_{p-1}^{\prime}, Q^{i v}, Q_{1}^{\prime \prime \prime}, . ., Q_{r-1}^{\prime \prime \prime}, Q_{p}^{\prime}, Q_{o}$ appear in this order in T. Since a is not adjacent to t_{i} for $i=1, . ., p$ and a is not adjacent to x_{2}, then $Q_{a} \notin$ $T\left[Q^{\prime}, Q_{o}\right]$. Vertex b is not adjacent to t_{i} for $i=1, \ldots, p$ and is also not adjacent to y_{1}, so $Q_{b} \notin T\left[Q^{\prime}, Q_{o}\right]$. As $x_{1}, y_{1} \in\left(Q_{a} \cap Q^{\prime}\right)-\left(Q_{o} \cap Q_{b}\right)$ and $x_{2}, y_{2} \in\left(Q_{o} \cap Q_{b}\right)-\left(Q_{a} \cap Q^{\prime}\right)$, then $Q_{a}, Q^{\prime}, Q_{1}^{\prime}, . ., Q_{p-1}^{\prime}, Q^{i v}, Q_{1}^{\prime \prime \prime}, . . Q_{r-1}^{\prime \prime \prime}$, $Q_{p}^{\prime}, Q_{o}, Q_{b}$ appear in this order in T. Since $x_{1} \in Q_{a} \cap Q_{o}$ and $x_{2} \in$ $Q^{\prime} \cap Q_{b}$ it is follows that $T\left[Q_{a}, Q_{b}\right]$ is a directed path of T.
Using the same argument of Case 2c for Type 7, we have $Q_{a}, Q^{\prime}, . ., Q_{o}$, $Q_{q}^{\prime \prime}, . ., Q_{1}^{\prime \prime}, Q^{\prime \prime}, Q_{o-1}, . ., Q$ appear in this order in T, and also $Q_{b} \notin$ $T\left[Q_{a}, Q\right]$.

We will say that there is a special connection between two non adjacent vertices a and b if
(1) there exists a connection of Type 1 between a and b; or
(2) there exist two induced paths in $G, P=a, y_{1}, . ., y_{n}, b$ and $Q=a, x_{1}, . ., x_{m}, b$, such that
(a) $P \cap Q=\{a, b\}$
(b) if $\left\{x_{i}, x_{i+1}, y_{j}, y_{j+1}\right\}$ is a clique for $i \in\{1, . ., m-1\}$ and $j \in\{1, . ., n-1\}$ then there is a connection of Type $k \in\{3,4,5,6,7,8,9\}$ between x_{i-1} and y_{j+2} for $i \neq 1, j \neq n-1$, or between a and y_{j+2} for $j \neq n-1$, or between x_{i-1} and b for $i \neq 1$, or between a and b, or between y_{j-1} and x_{i+2} for $j \neq 1, i \neq m-1$, or between a and x_{i+2} for $i \neq m-1$ or between y_{j-1} and b for $j \neq 1$.
(c) if $\left\{x_{i}, x_{i+1}, y_{j}, y_{j+1}\right\}$ is not a clique then there is a special connection of Type 2 between x_{i-1} and y_{j+2} for $i \neq 1, j \neq n-1$, or between a and y_{j+2} for $j \neq n-1$, or between x_{i-1} and b for $i \neq 1$, or between a and b, or between y_{j-1} and x_{i+2} for $j \neq 1, i \neq m-1$, or between a and x_{i+2} for $i \neq m-1$, or between y_{j-1} and b for $j \neq 1$.

4. Properties

If G is a $D V$ graph that has a strong asteroidal triple a_{1}, a_{2}, a_{3}, then $G \backslash N\left[a_{i}\right]$ is a connected graph for $i=1,2,3$. Hence for every T, a DV-model of $G, N\left[a_{i}\right]$ for $i=1,2,3$ must be a leaf of T. Let C_{i} be the closest vertex to $N\left[a_{i}\right]$ such that it has degree at least three, for $i=1,2,3$. If $\left|V\left(T\left[N\left[a_{i}\right], C_{i}\right]\right)\right|>2$, we will denote by $e_{i}=A_{i} B_{i}$, the edge in $T\left[N\left[a_{i}\right], C_{i}\right]$, with A_{i} the neighbor of $N\left[a_{i}\right]$ and $B_{i} \neq N\left[a_{i}\right]$. If there exists an edge dominated by e_{i} then we choose e_{i}^{\prime} to maximally farthest from e_{i}. We denote this edge by $e_{i}^{\prime}=A_{i}^{\prime} B_{i}^{\prime}$ with $B_{i}^{\prime} \in T\left[A_{i}^{\prime}, C_{i}\right]$.

We will say that a DV graph G is minimally non rooted on a maximal clique H if none DV-model T of G can be rooted on H but for every $x \in V(G) \backslash H, G \backslash x$ has a DV-model that can be rooted on H.

In the follows, if T has three leaves we will denote by C the vertex of degree exactly three in T.

Lemma 1. Let G be a $D V$ graph such that it has a strong asteroidal triple a_{1}, a_{2}, a_{3}, and it is minimal non rooted on $N\left[a_{3}\right]$.
(1) Let T be a $D V$-model of G.
(a) Then for all e edge in $T\left[N\left[a_{i}\right], C_{i}\right]$ for $i=1,2$, there are at least two vertices $x, y \in \operatorname{lab}(e)$ such that T_{x} and T_{y} have different end towards C_{i}.
(b) There are not twin edges in $T\left[N\left[a_{i}\right], C_{i}\right]$ for $i=1,2,3$.
(c) If $\left|V\left(T\left[N\left[a_{i}\right], C_{i}\right]\right)\right|>2$ for $i=1,2$ then there is a dominated edge by e_{i} that is not in $T\left[N\left[a_{i}\right], C_{i}\right]$.
(2) If T is a $D V$-model of G that has three leaves, then T does not have twin edges one in $T\left[N\left[a_{i}\right], C\right]$ for $i=1,2$, and the other in $T\left[N\left[a_{3}\right], C\right]$.

Proof. (1) (a) Suppose by contradicting that every vertex x in $\operatorname{lab}(e)$ has the same end to C_{i}. Let $e=A B \in T\left[N\left[a_{i}\right], C_{i}\right]$ for $i=1,2$ with $B \in$ $T\left[A, C_{i}\right]$ and $T^{\prime}=T-E\left(T\left[N\left[a_{i}\right], B\right]\right)$. All vertices of $\operatorname{lab}(e)$ are twins in $G_{T^{\prime}}$. Let $T^{\prime \prime}$ be a DV-model of $G_{T^{\prime}}$. Since a_{1}, a_{2}, a_{3} is a strong asteroidal triple $N\left[a_{3}\right]$ and $N\left[a_{j}\right]$ for $j \neq i, 3$ are leaves of $T^{\prime \prime}$, and by minimality we have $T^{\prime \prime}$ can be rooted on $N\left[a_{3}\right]$. For $x \in \operatorname{lab}(e)$, $T_{x}^{\prime \prime}=T^{\prime \prime}[Z, W]$ and $W \in T^{\prime \prime}\left[Z, N\left[a_{3}\right]\right]$. Let $\bar{T}=T^{\prime \prime}+Z A+T\left[A, N\left[a_{i}\right]\right]$. It is easy to check that \bar{T} is a $D V$-model of G that can be rooted on $N\left[a_{3}\right]$, a contradiction.
(b) Suppose by contradicting that there are two twin edges in $T\left[N\left[a_{i}\right], C_{i}\right]$ for $i \in\{1,2,3\}$. Let $e=A B$ and $e^{\prime}=A^{\prime} B^{\prime}$ be twin edges with $A, B, A^{\prime}, B^{\prime}$ appearing in this order in $T\left[N\left[a_{i}\right], C_{i}\right]$, and $T^{\prime}=T-$ $E\left(T\left[A, B^{\prime}\right]\right)+A B^{\prime}$. By minimality, there is $T^{\prime \prime}$ a DV-model of $G_{T^{\prime}}$ that can be rooted on $N\left[a_{3}\right]$. Let $\widetilde{e}=\widetilde{A} \widetilde{B^{\prime}}$ be an equivalent edge of $A B^{\prime}$ in $T^{\prime \prime}$. Thus, it is possible to build a DV-model of G from $T^{\prime \prime}$ by adding $T\left(A, B^{\prime}\right)$ as follows: $T^{\prime \prime}-\widetilde{A} \widetilde{B^{\prime}}+\widetilde{A} T\left(A^{\prime}, B\right) \widetilde{B^{\prime}}$. Clearly, this $D V$-model can be rooted on $N\left[a_{3}\right]$, a contradiction.
(c) Suppose by contradiction that e_{i} can not dominate an edge outside of $T\left[N\left[a_{i}\right], C_{i}\right]$; i.e $e_{i}^{\prime} \in T\left[N\left[a_{i}\right], C_{i}\right]$. Let $T^{\prime}=T-T\left[N\left[a_{i}\right], A_{i}^{\prime}\right)$. By the choice of e_{i}^{\prime}, it is clear that A_{i}^{\prime} is always a leaf in every DV-model of $G_{T^{\prime}}$. By minimality, there is $T^{\prime \prime}$ a $D V$-model of $G_{T^{\prime}}$ that can be rooted on $N\left[a_{3}\right]$. It is easy to see that $T^{\prime \prime}+T\left[A_{i}^{\prime}, N\left[a_{i}\right]\right]$ is a $D V$-model of G that can be rooted on $N\left[a_{3}\right]$, a contradiction.
(2) Suppose by contradiction that e and e^{\prime} are twin edges, one in $T\left[N\left[a_{i}\right], C\right]$ and the other in $T\left[C, N\left[a_{3}\right]\right]$ for $i=1,2$. Let $e=A B \in T\left[N\left[a_{i}\right], C\right]$ and $e^{\prime}=A^{\prime} B^{\prime} \in T\left[C, N\left[a_{3}\right]\right]$ with $B \in T[A, C]$ and $B^{\prime} \in T\left[C, A^{\prime}\right]$. Let $T^{\prime}=T-\left\{e, e^{\prime}\right\}+A B^{\prime}+B A^{\prime}$. It is a $D V$-model of G. Since T can not be rooted on $N\left[a_{3}\right]$ so there is a vertex crossing by C in $T\left[N\left[a_{1}\right], N\left[a_{2}\right]\right.$, and then $B \neq C$. As there is a vertex crossing by C in $T\left[N\left[a_{i}\right], N\left[a_{3}\right]\right]$ then there is no vertex crossing by C in $T\left[N\left[a_{j}\right], C\right]$ for $j \neq i, 3$ because G is a $D V$ graph. Hence T^{\prime} can be rooted on $N\left[a_{3}\right]$, a contradiction.

Theorem 2. Let G be a $D V$ graph such that it has a strong asteroidal triple a_{1}, a_{2}, a_{3}, and it is minimal non rooted on $N\left[a_{3}\right]$. If T is a $D V$-model of G that has three leaves, two twin edges one in $T\left[N\left[a_{1}\right], C\right]$ and the other in $T\left[N\left[a_{2}\right], C\right]$, then there is a special connection of Type 1 or Type 2 between a_{1} and a_{2}.

Proof. Since T has twin edges it follows that $\left|V\left(T\left[N\left[a_{i}\right], C\right]\right)\right| \geq 3$ for some $i \in$ $\{1,2\}$. If there exists a vertex $x \in N\left[a_{1}\right] \cap N\left[a_{2}\right]$ then there is a special connection of Type 1 between a_{1} and a_{2}.

Suppose that there is not a vertex in this condition. By Lemma 1a, and by the position of twin edges in T it follows that $N\left[a_{1}\right] A_{1}$ can not be a dominated edge of e_{2} if it exists, and $N\left[a_{2}\right] A_{2}$ can not be a dominated edge of e_{1} if it exists.

Let $e \in T\left[N\left[a_{1}\right], C\right]$ and $e^{\prime} \in T\left[C, N\left[a_{2}\right]\right]$ be twin edges such that its distance is maximum in T. As $N\left[a_{i}\right] A_{i}$ is not dominated by e_{j} with $\{i, j\}=\{1,2\}$, and by the choice of e_{i}^{\prime}, it is clear that $e_{1}^{\prime} \in T\left[e^{\prime}, A_{2}\right]$ and $e_{2}^{\prime} \in T\left[e, A_{1}\right]$. But by the election of e and e^{\prime} to maximum distance in T, e_{1}^{\prime} must be e^{\prime} and e_{2}^{\prime} must be e. Then $\operatorname{lab}(e)=\operatorname{lab}\left(e^{\prime}\right) \subset A_{1} \cap A_{2}$.

On the other hand, by Lemma 1a there are two vertices $x, y \in l a b(e)$ such that $T_{x}=T[I x, D x], T_{y}=T[I y, D y], I x \neq I y, D x \neq D y$ with $D x=N\left[a_{2}\right]$ and $I y=N\left[a_{1}\right]$. By the before exposed, $x \notin N\left[a_{1}\right]$ and $y \notin N\left[a_{2}\right]$. Also by Lemma 1a, there are vertices $y_{1} \in \operatorname{lab}\left(N\left[a_{1}\right] A_{1}\right)$ and $x_{1} \in \operatorname{lab}\left(N\left[a_{2}\right] A_{2}\right)$ such that $D y_{1} \neq D y=A_{2}$ and $I x_{1} \neq I x=A_{1}$. Clearly, $x_{1} \notin N\left[a_{1}\right]$ and $y_{1} \notin N\left[a_{2}\right]$. Observe that $y_{1} \notin \operatorname{lab}\left(e_{2}^{\prime}\right)$ and $x_{1} \notin \operatorname{lab}\left(e_{1}^{\prime}\right)$. Hence, there is a special connection of Type 2 between a_{1} and a_{2}. More clearly, $P=a_{1}, y, x_{1}, a_{2}$ and $Q=a_{1}, y_{1}, x, a_{2}$ are paths in G, and $\left\{x, y, y_{1}\right\},\left\{y, x, x_{1}\right\}$ are cliques of G.

Corollary 1. Let G be a $D V$ graph such that it has a strong asteroidal triple a_{1}, a_{2}, a_{3}, and it is minimal non rooted on $N\left[a_{3}\right]$. If there exists T a $D V$-model of G with three leaves such that e_{i}^{\prime} is in $T\left[N\left[a_{j}\right], C\right]\{i, j\}=\{1,2\}$ then there is a special connection of Type 1 or Type 2 between a_{1} and a_{2}.

Proof. If $e_{1}^{\prime}=N\left[a_{2}\right] A_{2}$ or $e_{2}^{\prime}=N\left[a_{1}\right] A_{1}$, by Lemma 1a there is $x \in N\left[a_{1}\right] \cap N\left[a_{2}\right]$. Hence, there is a special connection of Type 1 between a_{1} and a_{2}. Otherwise, as $e_{1}^{\prime} \in T\left[A_{2}, C\right]$ and $e_{2}^{\prime} \in T\left[A_{1}, C\right]$ then $\operatorname{lab}\left(e_{1}^{\prime}\right)=\operatorname{lab}\left(e_{2}^{\prime}\right)$. So by Theorem 2 , there is a special connection of Type 1 or Type 2 between a_{1} and a_{2}.

Claim 1. Let G be a $D V$ graph such that it has a strong asteroidal triple a_{1}, a_{2}, a_{3}, and none $D V$-model of G can be rooted on $N\left[a_{3}\right]$. If there exists T a $D V$-model of G with three leaves, and $e=A B \in T\left[N\left[a_{3}\right], C\right]$ is dominated by $e^{\prime} \in T\left(N\left[a_{1}\right], C\right]$ with $B \in T[C, A]$ then none edge of $T\left(e^{\prime}, C\right]$ can have in its label vertices with the same end towards $N\left[a_{1}\right]$.

By way of contradiction, suppose that there is $e^{\prime \prime} \in T\left(e^{\prime}, C\right]$ such that all vertices in $\operatorname{lab}\left(e^{\prime \prime}\right)$ have the same end towards $N\left[a_{1}\right]$. Let A_{1} be the end of these vertices. Let $e^{\prime \prime}=A^{\prime \prime} B^{\prime \prime}$ with $B^{\prime \prime} \in T\left[A^{\prime \prime}, C\right]$. As $\operatorname{lab}(e) \subset \operatorname{lab}\left(e^{\prime}\right)$ and $e^{\prime \prime} \in T\left(e^{\prime}, C\right]$ then $\operatorname{lab}(e) \subset \operatorname{lab}\left(e^{\prime \prime}\right) \subset A_{1}$. Also, the vertices in $\operatorname{lab}\left(e^{\prime \prime}\right)$ have A_{1} as a leaf. Let $T^{\prime}=T-\left\{e^{\prime \prime}, e\right\}+B^{\prime \prime} A_{1}+A A^{\prime \prime}$. It is clear that T^{\prime} is a DV-model of G. Observe that there is no vertex crossing by A_{1} in $T^{\prime}\left[N\left[a_{1}\right], C\right]$ because of A_{1} is a leaf of each vertex in lab($\left.e^{\prime \prime}\right)$. Also, there is no vertex crossing by C in $T^{\prime}\left[N\left[a_{2}\right], B\right]$ since there is no vertex crossing by C in $T\left[N\left[a_{2}\right], N\left[a_{3}\right]\right]$. Clearly, T^{\prime} is a DV-model of G that can be rooted on $N\left[a_{3}\right]$, a contradiction. This proves claim (1).

Claim 2. Let G be a $D V$ graph such that it has a strong asteroidal triple a_{1}, a_{2}, a_{3}, and none $D V$-model of G can be rooted on $N\left[a_{3}\right]$. Let T be a $D V$-model of G with three leaves, $X, Y \in V(T)$ be such that one and only one of them is in $T\left[N\left[a_{i}\right], C\right]$ for $i=1,2$ and the other is in $T\left[N\left[a_{3}\right], C\right]$. If $e=A B$ be an edge in $T[X, C]$ with
$B \in T[A, C]$, which is dominated by $D \in T[Y, C]$, then $\forall e^{\prime} \in T\left[C, D^{\prime}\right]$ lab $\left(e^{\prime}\right) \nsubseteq B$ whenever $D D^{\prime} \in E(T[Y, C])$.
By way of contradiction, suppose that there is $e^{\prime} \in T\left[C, D^{\prime}\right]$ such that $l a b\left(e^{\prime}\right) \subset B$. Let $e^{\prime}=A^{\prime \prime} B^{\prime \prime}$ be such that $B^{\prime \prime} \in T\left[C, A^{\prime \prime}\right]$. Clearly $T^{\prime}=T-\left\{e, e^{\prime}\right\}+A^{\prime \prime} B+A B^{\prime \prime}$ is a model of G.

Suppose that X is in $T\left[N\left[a_{1}\right], C\right]$. Observe that $e^{\prime} \in T\left[C, D^{\prime}\right]$, and $A^{\prime \prime}$ may be D^{\prime}. Since e is dominated by D then $\operatorname{lab}(e) \subset B^{\prime \prime}$. Thus T^{\prime} is a $D V$-model of G. Clearly, T^{\prime} does not have a vertex crossing by C in $T^{\prime}\left[N\left[a_{1}\right], N\left[a_{2}\right]\right]$ since there is no vertex crossing by C in $T\left[N\left[a_{3}\right], N\left[a_{2}\right]\right]$. Hence, T^{\prime} can be rooted on $N\left[a_{3}\right]$, a contradiction.

The proof is the same if Y is in $T\left[N\left[a_{1}\right], C\right]$. This proves claim (2).

Election 1 of vertices in label of edges:

Let T be a $D V$-model of G and A, B be vertices that appear in this order in T. Let $e(1)$ be the edge in $T[A, B]$ incidents to A.

- Take a vertex $w_{1} \in \operatorname{lab}(e(1))$ such that $T_{w_{1}}$ is the shortest towards B. Let $T_{w_{1}}=T\left[I w_{1}, D w_{1}\right]$ with $A \in T\left[I w_{1}, D w_{1}\right]$. If $B \notin T\left[A, D w_{1}\right]$ then we repeat the following process, $i>0$:
- Let $e(i+1)$ be the edge in $T\left[D w_{i}, B\right]$ incidents to $D w_{i}$ and $w_{i+1} \in l a b(e(i+$ 1)) such that $T_{w_{i+1}}$ is the shortest towards B, if $w_{i+1} \in I w_{i}$ (for $i=1$, take A instead of $\left.I w_{i}\right)$ then $w_{i}=w_{i+1}$, we continue until cover all $T[A, B]$.
Observe that $T_{w_{i}} \nsubseteq T_{w_{i+1}}$.
The preceding election of vertices, is a technical tool in order to define special connection of Type $4,5, .$. , or 9 .

5. Proof of the main Theorem

Finally, in this section we give the result that is the goal of this article, a characterization of rooted directed path graphs whose rooted models can not be rooted on a bold maximal clique.

Theorem 3. Let G be a $D V$ graph such that it has a strong asteroidal triple a_{1}, a_{2}, a_{3} and leafage three. There is a special connection between a_{1} and a_{2} if and only if none $D V$-model of G can be rooted on $N\left[a_{3}\right]$.

Proof. \Rightarrow By Theorem 1.
\Leftarrow Suppose that G is the smallest graphs such that none DV-model of G can be rooted on $N\left[a_{3}\right]$. Since $l(G)=3$ and $G \backslash N\left[a_{i}\right]$ is a connected graph for $i=1,2,3$ then $N\left[a_{i}\right]$ is a leaf in every model of G. Let T be a DV-model of G that reaches the leafage, and C be the vertex of degree three in T. Since T can not be rooted on $N\left[a_{3}\right]$ then there is a vertex crossing by C in $T\left[N\left[a_{1}\right], N\left[a_{2}\right]\right]$. By Lemma 1b, we can assume that there are not two edges with the same label in $T\left[N\left[a_{i}\right], C\right]$ for all $i \in\{1,2,3\}$. Clearly if $T\left[N\left[a_{i}\right], C\right]$ has exactly two vertices for $i=1,2$ then there exists a vertex $x \in N\left[a_{1}\right] \cap N\left[a_{2}\right]$, so there is a special connection of Type 1 between a_{1} and a_{2}.

Now, we can assume that $T\left[N\left[a_{i}\right], C\right]$, for some $i \in\{1,2\}$, has at least three vertices.

Suppose that $T\left[N\left[a_{1}\right], C\right]$ has at least three vertices. Thus there exists $e_{1} \in$ $T\left[N\left[a_{1}\right], C\right]$, and by Lemma 1 c there exists $e_{1}^{\prime} \notin T\left[N\left[a_{1}\right], C\right]$. If e_{1}^{\prime} is in $T\left[N\left[a_{2}\right], C\right]$ then by Corollary 1 there is a special connection of Type 1 or 2 between a_{1} and a_{2}.

Suppose that it is in $T\left[N\left[a_{3}\right], C\right]$. As T is a $D V$-model of G, and there is a vertex crossing by C in $T\left[N\left[a_{1}\right], N\left[a_{2}\right]\right]$ if $C N\left[a_{2}\right] \notin E(T)$ then $e_{2}^{\prime}=N\left[a_{1}\right] A_{1}$. Therefore, by Corollary 1 , there is a special connection of Type 1 or Type 2 between a_{1} and a_{2}.

Consider $C N\left[a_{2}\right] \in E(T)$.
By Lemma 1a, $\left|\operatorname{lab}\left(N\left[a_{1}\right] A_{1}\right)\right|$ and $\left|l a b\left(N\left[a_{2}\right] C\right)\right|$ is greater than one. Let $x_{1}, y_{1} \in$ $\operatorname{lab}\left(N\left[a_{1}\right] A_{1}\right)$ and $x_{2}, y_{2} \in \operatorname{lab}\left(N\left[a_{2}\right] C\right)$ be such that $\left|\left\{Q \in C(G) \mid x_{i} \in Q\right\}\right|>\mid\{Q \in$ $\left.C(G) \mid y_{i} \in Q\right\}\left|>1,\left|\left\{Q \in C(G) \mid x_{i} \in Q\right\}\right|\right.$ is maximum, and $|\left\{Q \in C(G) \mid y_{i} \in Q\right\} \mid$ is minimum for $i=1,2$. Observe that if $x_{1} \in N\left[a_{2}\right]$ or $x_{2} \in N\left[a_{1}\right]$ then there is a special connection of Type 1 between a_{1} and a_{2}.

In the follows, we suppose that $x_{1} \notin N\left[a_{2}\right]$ and $x_{2} \notin N\left[a_{1}\right]$. Let X_{i} be the leaf of $T_{x_{i}}$ and Y_{i} be the leaf of $T_{y_{i}}$ different from $N\left[a_{i}\right]$ for $i=1,2$ respectively. Observe that $X_{2}, Y_{2} \in T\left[N\left[a_{1}\right], N\left[a_{2}\right]\right]$ but X_{1}, Y_{1} may be in $T\left[C, N\left[a_{3}\right]\right]$.

First of all, we know that $\operatorname{lab}\left(e_{1}^{\prime}\right) \subset A_{1}$. As $\operatorname{lab}\left(e_{1}^{\prime}\right) \nsubseteq N\left[a_{1}\right]$, since $G \backslash N\left[a_{1}\right]$ is a connected graph, there is a vertex $v \in \operatorname{lab}\left(e_{1}^{\prime}\right) \cap A_{1}-N\left[a_{1}\right]$.

In the follows, we will analyze several cases taking into account if $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ is or not a clique of G. We will study two situations depending on if there is or not an edge $e \in T\left[N\left[a_{1}\right], X_{2}\right]$ such that $\operatorname{lab}(e) \subset C$.

Case 0: $T_{x_{1}} \cap T_{x_{2}} \neq \emptyset$ but $T_{y_{2}} \cap T_{x_{1}}=\emptyset$ and $T_{y_{1}} \cap T_{x_{2}}=\emptyset$. Clearly $x_{1} \notin C$. Let $P=a_{1}, y_{1}, v, y_{2}, a_{2}$ and $Q=a_{1}, x_{1}, x_{2}, a_{2}$ be paths in G. Then there is a special connection between a_{1} and a_{2}. More clearly, $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{y_{1}, v, x_{1}\right\},\left\{v, x_{1}, x_{2}\right\}$, $\left\{v, x_{2}, y_{2}\right\}$ and $\left\{x_{2}, y_{2}, a_{2}\right\}$ are cliques of G.

Observe that there is a special connection: of Type 2 between a_{1}, y_{2}, and between y_{1}, a_{2}; see Figure 7 .

Figure 7. Case 0: Type 2 between a_{1}, y_{2} and y_{1}, a_{2}.

- There is not an edge $e \in T\left[N\left[a_{1}\right], X_{2}\right]$ such that $\operatorname{lab}(e) \subseteq C$.

Case 1: $T_{x_{1}} \cap T_{x_{2}}=\emptyset$. By the choice of x_{1}, each vertex in lab $\left(e_{1}^{\prime}\right)$ must have A_{1} as a leaf. Clearly, there is a path $P=a_{1}, y_{1}, v, y_{2}, a_{2}$ in G between a_{1} and a_{2}. We will need other path Q in G between a_{1} and a_{2}. Observe that: a) by the election of x_{1}, for all $\bar{e} \in T\left[X_{1}, X_{2}\right] \operatorname{lab}(\bar{e}) \cap N\left[a_{1}\right]=\emptyset$; b) by Claim 1, as $e_{1}^{\prime} \in T\left[C, N\left[a_{3}\right]\right]$ is a dominated edge by $e_{1} \in T\left(N\left[a_{1}\right], C\right]$, $\forall \bar{e} \in T\left[X_{1}, X_{2}\right]$, the vertices in its label can not have the same end to $N\left[a_{1}\right]$. Since $v \in l a b(\bar{e})$, and its end is A_{1} it follows that there is $w \in \operatorname{lab}(\bar{e})-A_{1}$.

Figure 8. Case 1.1: Type 2 between $a_{1}, w_{2} ; w_{n-1}, a_{2}$ and Type 1 between w_{i}, w_{i+2}.

As was mentioned above, we need to search other path and Claim 1 will provide the vertices of this. We choose vertices through Election 1, we take $A=X_{1}, B=X_{2}$ and $w_{i} \notin A_{1}$ for $i=1, . ., n$. Clearly, $Q=a_{1}, x_{1}, w_{1}, . ., w_{n}$, x_{2}, a_{2} is a path in G different from P between a_{1} and a_{2}. Observe that w_{n} may be in C. In this last case, as $\operatorname{lab}(e) \nsubseteq C$ for all $e \in T\left[C_{a_{1}}, X_{2}\right]$ it follows that there exists a vertex $w^{\prime} \in \operatorname{lab}(e(n))-C$ that has A_{1} as one of its leaves. Recall that w_{n} was chosen in the label of $e(n)$.

Next, we will study if there is or not a clique in G of size four with two vertices of P and two vertices of Q.

Case 1.1: There is not a clique in G of size four with two vertices of P and two vertices of Q. Then y_{1} and w_{1} are not adjacent vertices; also y_{2} and w_{n} are not adjacent vertices. Therefore, there is a special connection between a_{1} and a_{2}. More clearly, $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{y_{1}, v, x_{1}\right\},\left\{x_{1}, v, w_{1}\right\}$, $\left\{w_{i}, v, w_{i+1}\right\}_{i=1, . ., n-1},\left\{w_{n}, v, x_{2}\right\},\left\{v, x_{2}, y_{2}\right\}$ and $\left\{x_{2}, y_{2}, a_{2}\right\}$ are cliques of G.

Observe that there is a special connection: of Type 2 between a_{1}, w_{2} and w_{n-1}, a_{2}; and of Type 1 between w_{i}, w_{i+2} with $i \in\{1, . ., n-2\}$; see Figure 8.

Case 1.2: There is only one clique in G of size four with two vertices of P and two vertices of Q. First, suppose that $\left\{x_{1}, y_{1}, w_{1}, v\right\}$ is the clique. Since there is one and only one clique of size four, y_{2} and w_{n} are not adjacent vertices. On the other hand, y_{1} and w_{1} are adjacent vertices and $w_{1} \notin A_{1}$ then A_{1} must be separated by a vertex s_{1} in direction to $N\left[a_{1}\right]$. By the choice of $y_{1}, s_{1} \notin N\left[a_{1}\right]$ so it is a simplicial vertex of G. Let s_{2} be a separator vertex of X_{1} to C such that $\left|\left\{Q \in C(G) \mid s_{2} \in Q\right\}\right|$ is minimum. By the election of w_{1}, it is clear that $s_{2} \notin D w_{1}$ then it is not adjacent vertex to w_{2}. Therefore there is a special connection between a_{1} and a_{2}. More clearly, $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{w_{i}, v, w_{i+1}\right\}_{i=1, . ., n-1},\left\{w_{n}, v, x_{2}\right\},\left\{v, x_{2}, y_{2}\right\}$ and $\left\{x_{2}, y_{2}, a_{2}\right\}$ are cliques of G, and $\left\{x_{1}, y_{1}, w_{1}, v, s_{1}, s_{2}\right\}$ induces an antenna.

Observe that there is a special connection: of Type 3 between a_{1} and w_{2}; of Type 1 between w_{i}, w_{i+2} with $i \in\{1, . ., n-2\}$, and of Type 2 between w_{n-1}, a_{2}; see Figure 9.

Case 1.3: There is one only one clique in G of size four with two vertices of P and two vertices of Q. Now, suppose that $\left\{x_{2}, y_{2}, w_{n}, v\right\}$ is the clique.

Figure 9. Case 1.2: Type 3 between a_{1}, w_{2}; Type 1 between w_{i}, w_{i+2}; Type 2 between w_{n-1}, a_{2}

As there is only one clique of size four, y_{1} and w_{1} are not adjacent vertices. We will analyze two situations depending on whether w_{n} is or not in C.
(1) $w_{n} \notin C$. Let s_{3} be separator vertex of C to $N\left[a_{3}\right]$. Clearly s_{3} is not adjacent to w_{n}. Let s_{4} be a separator vertex of X_{2} to $N\left[a_{1}\right]$ such that $\left|\left\{Q \in C(G) \mid s_{4} \in Q\right\}\right|$ is minimum. By the election of w_{n}, s_{4} is not adjacent vertex to w_{n-1}. Then there is a special connection between a_{1} and a_{2}. More clearly, $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{y_{1}, v, x_{1}\right\}\left\{w_{i}, v, w_{i+1}\right\}_{i=1, . ., n-1}$ and $\left\{x_{2}, y_{2}, a_{2}\right\}$ are cliques of G, and $\left\{x_{2}, y_{2}, w_{n}, v, s_{3}, s_{4}\right\}$ induces an antenna.
Observe that there is a special connection: of Type 2 between a_{1}, w_{2}; of Type 1 between w_{i}, w_{i+2} with $i \in\{1, . ., n-2\}$, and Type 3 between w_{n-1}, a_{2}; see Figure 10.

Figure 10. Case 1.3.1: Type 2 between a_{1}, w_{2}; Type 1 between w_{i}, w_{i+2}; Type 3 between w_{n-1}, a_{2}
(2) $w_{n} \in C$. Hence there is a vertex in $\operatorname{lab}(e(n))-C$ that has A_{1} as one of its leaves. Let w^{\prime} be the vertex such that $\left|\left\{Q \in C(G) \mid w^{\prime} \in Q\right\}\right|$ is maximum. Let W^{\prime} be the other leaf of w^{\prime}. If $w^{\prime} \in X_{2}$ then we take $P=a_{1}, y_{1}, w^{\prime}, x_{2}, a_{2}$ and $Q=a_{1}, x_{1}, w_{1}, .$. , w_{n}, y_{2}, a_{2} paths in G.

In case that $y_{2} \notin W^{\prime}$ then there is a special connection: of Type 2 between a_{1}, w_{2}; of Type 1 between w_{i}, w_{i+2} with $i \in\{1, . ., n-2\}$, and of Type 2 between w_{n-1}, a_{2}; see Figure 11 .

Figure 11. Case 1.3.2: Type 2 between a_{1}, w_{2} and w_{n-1}, a_{2}; Type 1 between w_{i}, w_{i+2}

In case that $y_{2} \in W^{\prime}$, by the same argument used in 1 taken w_{n}, w^{\prime} instead of w_{n}, v, there is a special connection of Type 3 between w_{n-1}, a_{2}; see Figure 12.

Figure 12. Case 1.3.2: Type 2 between a_{1}, w_{2}; Type 1 between w_{i}, w_{i+2} and Type 3 between w_{n-1}, a_{2}

Now, suppose that $w^{\prime} \notin X_{2}$. Then we choose vertices in label of edges of $T\left[W^{\prime}, X_{2}\right]$ that are not in C through Election 1 with $A=W^{\prime}$ and $B=X_{2}$. Let t_{i} be these vertices for $i=1, . ., m$ such that t_{1} is the first vertex chosen. Observe that by the choice of $w^{\prime}, t_{1} \notin A_{1}$ and by the election of $w_{n}, t_{1} \notin l a b(e(n))$ then t_{1} is not adjacent to w_{n-1}. Let $P=a_{1}, y_{1}, w^{\prime}, t_{1}, . ., t_{m}, x_{2}, a_{2}$ and $Q=a_{1}, x_{1}, w_{1}, . ., w_{n}, y_{2}, a_{2}$ be paths in G. Note that $\left\{w_{n}, t_{m}, y_{2}, x_{2}\right\}$ and $\left\{y_{1}, x_{1}, w^{\prime}, w_{1}\right\}$ may be cliques. Clearly, $\left\{y_{1}, x_{1}, w^{\prime}, w_{1}\right\}$ is not a clique because of $\left\{y_{1}, x_{1}, v, w_{1}\right\}$ is not a clique. In case that $\left\{w_{n}, t_{m}, x_{2}, y_{2}\right\}$ is not a clique then there is a special connection between a_{1} and a_{2}. More clearly $\left\{a_{1}, y_{1}, x_{1}\right\}$, $\left\{w^{\prime}, x_{1}, w_{1}\right\},\left\{w^{\prime}, w_{i}, w_{i+1}\right\}_{i=1,,, n-1},\left\{w^{\prime}, t_{1}, w_{n}\right\},\left\{t_{i}, t_{i+1}, w_{n}\right\}_{i=1,,, m}$, $\left\{t_{m}, x_{2}, w_{n}\right\},\left\{x_{2}, w_{n}, y_{2}\right\},\left\{x_{2}, y_{2}, a_{2}\right\}$ are cliques of G.

Observe that there is a special connection of Type 2 between a_{1}, w_{2}; of Type 1 between w^{\prime}, t_{2}; between t_{i}, t_{i+2} with $i \in\{1, . ., m-2\}$, and of Type 2 between t_{m-1}, a_{2}; see Figure 13 .

Figure 13. Case 1.3.2: Type 2 between a_{1}, w_{2} and t_{m-1}, a_{2}; Type 1 between w^{\prime}, t_{2} and t_{i}, t_{i+2}

In case that $\left\{w_{n}, t_{m}, y_{2}, x_{2}\right\}$ is a clique, let s_{3} be separator vertex of C to $N\left[a_{3}\right]$. Clearly, s_{3} is not adjacent to t_{m} since $t_{m} \notin C$. Let s_{4} be a separator vertex of X_{2} to $N\left[a_{1}\right]$ such that $\left|\left\{Q \in C(G) \mid s_{4} \in Q\right\}\right|$ is minimum. By the election of t_{m}, s_{4} is not adjacent vertex to t_{m-1}. Hence, there is a special connection between a_{1} and a_{2}. More clearly, $\left\{a_{1}, y_{1}, x_{1}\right\},\left\{w^{\prime}, x_{1}, w_{1}\right\},\left\{w^{\prime}, w_{i}, w_{i+1}\right\}_{i=1,,, n-1},\left\{w^{\prime}, t_{1}, w_{n}\right\},\left\{t_{i}, t_{i+1}\right.$, $\left.w_{n}\right\}_{i=1, . ., m},\left\{x_{2}, y_{2}, a_{2}\right\}$ are cliques of G, and $\left\{t_{m}, x_{2}, y_{2}, w_{n}, s_{3}, s_{4}\right\}$ induces an antenna.
Observe that there is a special connection of Type 3 between t_{m-1} and a_{2}; see Figure 14 .

Figure 14. Case 1.3.2: Type 2 between a_{1}, w_{2}; Type 1 between w^{\prime}, t_{2} and t_{i}, t_{i+2}; Type 3 between t_{m-1}, a_{2}

Case 1.4: There are two cliques in G of size four with two vertices of P and two vertices of Q, and they are $\left\{x_{1}, y_{1}, w_{1}, v\right\}$ and $\left\{x_{2}, y_{2}, w_{n}, v\right\}$. In this situation, we obtain a combination of the previous cases.

Case 2: $T_{x_{1}} \cap T_{x_{2}} \cap T_{y_{1}} \neq \emptyset$ but $T_{y_{2}} \cap T_{x_{1}}=\emptyset$, or $T_{x_{1}} \cap T_{x_{2}} \cap T_{y_{2}} \neq \emptyset$ but $T_{y_{1}} \cap T_{x_{2}}=\emptyset$. In both situations is clear that there are two paths $P=a_{1}, y_{1}, v, y_{2}, a_{2}$ and $Q=a_{1}, x_{1}, x_{2}, a_{2}$ in G between a_{1} and a_{2}. Next, we will study if there is or not a clique in G of size four with two vertices of P and two vertices of Q.

Case 2.1: $T_{x_{1}} \cap T_{x_{2}} \cap T_{y_{1}} \neq \emptyset$ but $T_{y_{2}} \cap T_{x_{1}}=\emptyset$. Clearly $\left\{x_{1}, y_{1}, v, x_{2}\right\}$ is a clique of G. By the election of x_{1}, every vertex of $\operatorname{lab}\left(e_{1}^{\prime}\right)$ has A_{1} as a leaf. It is necessary to study two situations depending on $T_{x_{2}}$ and T_{v} have or not the same end to $N\left[a_{1}\right]$. More clearly, if A_{1} is or not a leaf of both of them.

First, we suppose that $T_{x_{2}}$ and T_{v} have the same leaf in direction to $N\left[a_{1}\right]$, i.e both of them have A_{1} as a leaf. By Claim 1, for each $\bar{e} \in T\left[X_{1}, Y_{2}\right]$ the vertices in its label can not the same end to $N\left[a_{1}\right]$. As T_{v} and $T_{x_{2}}$ have the same leaf A_{1} to $N\left[a_{1}\right]$ then we choose vertices $w_{i} \in \operatorname{lab}(\bar{e})-A_{1}$ through Election 1 with $i=1, . ., n$. Let $P^{\prime}=a_{1}, y_{1}, x_{2}, a_{2}$ and $Q^{\prime}=$ $a_{1}, x_{1}, w_{1}, . ., w_{n}, y_{2}, a_{2}$ be paths in G between a_{1} and a_{2}. Observe that $\left\{x_{1}, x_{2}, y_{1}, w_{1}\right\}$ may be a clique. In case that $w_{1} \notin Y_{1}$ then there is not a clique of size four with two vertices of each path. Hence, there is a special connection between a_{1}, a_{2}. More clearly, $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{1}, x_{2}, y_{1}\right\}$, $\left\{x_{1}, x_{2}, w_{1}\right\},\left\{w_{i}, w_{i+1}, x_{2}\right\}_{i=1, . ., n-1},\left\{w_{n}, x_{2}, y_{2}\right\}$ and $\left\{x_{2}, y_{2}, a_{2}\right\}$ are cliques of G.

Note that there is a special connection: of Type 2 between a_{1}, w_{2}; of Type 1 between w_{i}, w_{i+2} with $i \in\{1, . ., n-2\}$, and between w_{n}, a_{2}, see Figure 15.

Figure 15. Case 2.1: Type 2 between a_{1}, w_{2}; Type 1 between w_{i}, w_{i+2} and w_{n}, a_{2}

In case that $w_{1} \in Y_{1}$, as $w_{1} \notin A_{1}$ then $Y_{1} \neq A_{1}$. Let s_{1} be a separator vertex of $X_{2}=A_{1}$ to $N\left[a_{1}\right]$ such that $\left|\left\{Q \in C(G) \mid s_{1} \in Q\right\}\right|$ is minimum. By the choice of y_{1}, s_{1} is a simplicial vertex of G. As $w_{1} \in Y_{1}$ then $X_{1} \neq D w_{1}$. Let s_{2} be a separator vertex of X_{1} to C_{2} such that $\mid\{Q \in$ $\left.C(G) \mid s_{2} \in Q\right\} \mid$ is minimum. By the election of w_{1}, s_{2} is not adjacent to w_{2}. Hence there is a special connection between a_{1} and a_{2}. More clearly, $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{w_{i}, w_{i+1}, x_{2}\right\}_{i=1, \ldots, n},\left\{w_{n}, x_{2}, y_{2}\right\}$ and $\left\{x_{2}, y_{2}, a_{2}\right\}$ are cliques of G, and $\left\{x_{1}, y_{1}, w_{1}, x_{2}, s_{1}, s_{2}\right\}$ induces an antenna.

Note that there is a special connection: of Type 3 between a_{1}, w_{2}; of Type 1 between w_{i}, w_{i+2} with $i \in\{1, . ., n-2\}$, and between w_{n}, a_{2}; see Figure 16.

Figure 16. Case 2.1: Type 3 between a_{1}, w_{2}; Type 1 between w_{i}, w_{i+2} and w_{n}, a_{2}

Finally, we can assume that $T_{x_{2}}$ and T_{v} do not have the same leaf in direction to $N\left[a_{1}\right]$. By the election of x_{1}, it is clear that $v \notin N\left[a_{1}\right]$. As $x_{2} \notin N\left[a_{1}\right]$ and $X_{2} \neq A_{1}$ then $x_{2} \notin A_{1}$. Observe that $Y_{1} \neq A_{1}$ since $T_{x_{1}} \cap$ $T_{x_{2}} \cap T_{y_{1}} \neq \emptyset$. Let s_{1} and s_{2} be vertices such that s_{1} is a separator vertex of A_{1} to $N\left[a_{1}\right], s_{2}$ is a separator vertex of X_{1} to C and $\left|\left\{Q \in C(G) \mid s_{2} \in Q\right\}\right|$ is minimum. By the choice of $y_{1}, s_{1} \notin N\left[a_{1}\right]$ so it is a simplicial vertex of G. If s_{2} is adjacent to y_{2}, let $P^{\prime}=a_{1}, y_{1}, x_{2}, a_{2}$ and $Q^{\prime}=a_{1}, x_{1}, s_{2}, y_{2}, a_{2}$ be paths in G between a_{1} and a_{2}. Clearly, there is not a clique of size four with two vertices of each path. Then there is a special connection between a_{1} and a_{2}. More clearly, $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{1}, x_{2}, s_{2}\right\},\left\{x_{1}, x_{2}, y_{1}\right\},\left\{s_{2}, x_{2}, y_{2}\right\}$ and $\left\{x_{2}, y_{2}, a_{2}\right\}$ are cliques of G.

Note that there is a special connection: of Type 2 between a_{1}, y_{2}, and of Type 1 between s_{2}, a_{2}; see Figure 17 .

Figure 17. Case 2.1: Type 3 between a_{1}, y_{2}; Type 1 between v, a_{2}
If s_{2} is not adjacent to y_{2}, let $P=a_{1}, y_{1}, v, y_{2}, a_{2}$ and $Q=a_{1}, x_{1}, x_{2}, a_{2}$ be paths in G between a_{1} and a_{2}. Clearly there is a special connection between a_{1} and a_{2}. More clearly, $\left\{y_{1}, x_{1}, v, x_{2}, s_{1}, s_{2}\right\}$ induces an antenna and $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{v, x_{2}, y_{2}\right\},\left\{x_{2}, y_{2}, a_{2}\right\}$ are cliques of G.

Note that there is a special connection: of Type 3 between a_{1}, y_{2}, and of Type 1 between v, a_{2}; see Figure 18.

Case 2.2: $T_{x_{1}} \cap T_{x_{2}} \cap T_{y_{2}} \neq \emptyset$ but $T_{y_{1}} \cap T_{x_{2}}=\emptyset$. Clearly, there are two paths in G between a_{1} and $a_{2} ; P=a_{1}, x_{1}, x_{2}, a_{2}$ and $Q=a_{1}, y_{1}, v, y_{2}, a_{2}$.

Figure 18. Case 2.1: Type 2 between a_{1}, y_{2}; Type 1 between s_{2}, a_{2}

On the other hand, $\left\{x_{1}, x_{2}, y_{2}, v\right\}$ is a clique of G. We will analyze if x_{1} is or not in C.

First, $x_{1} \notin C$. Clearly $Y_{2} \neq C$. By the election of x_{1}, every vertex in $\operatorname{lab}\left(e_{1}^{\prime}\right)$ has A_{1} as a leaf. Let s_{2} be a separator vertex of X_{2} to $N\left[a_{1}\right]$ such that $\left|\left\{Q \in C(G) \mid s_{2} \in Q\right\}\right|$ is minimum.

If $s_{2} \in Y_{1}$ then we can change the paths in order to Type 2 appears. Let $P^{\prime}=a_{1}, y_{1}, s_{2}, x_{2}, a_{2}$ and $Q^{\prime}=a_{1}, x_{1}, y_{2}, a_{2}$ be paths in G. More clearly, $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{s_{2}, x_{1}, y_{1}\right\},\left\{s_{2}, x_{1}, x_{2}\right\},\left\{x_{1}, x_{2}, y_{2}\right\}$ and $\left\{x_{2}, y_{2}, a_{2}\right\}$ are cliques of G.

Note that there is a special connection of Type 1 between a_{1}, s_{2}; and of Type 2 between y_{1}, a_{2}; see Figure 19.

Figure 19. Case 2.2: Type 1 between a_{1}, s_{2}; Type 2 between y_{1}, a_{2}

If $s_{2} \notin Y_{1}$, let s_{1} be a separator vertex of C to $N\left[a_{3}\right]$, then there is a special connection between a_{1}, a_{2}. More clearly, $\left\{y_{2}, x_{2}, v, x_{1}, s_{1}, s_{2}\right\}$ induces an antenna and $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{v, x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}, a_{2}\right\}$ are cliques of G.

Observe that there is a special connection: of Type 1 between a_{1}, v, and of Type 3 between y_{1}, a_{2}; see Figure 20 .

Finally, $x_{1} \in C$. We know that $\forall e \in T\left[Y_{1}, X_{2}\right], \operatorname{lab}(e) \nsubseteq C$. We choose $w_{i} \in \operatorname{lab}(e)-C$ through Election 1 with $A=Y_{1}$ and $B=X_{2}$. Let $P^{\prime}=$ $a_{1}, x_{1}, y_{2}, a_{2}$ and $Q^{\prime}=y_{1}, w_{1}, . ., w_{n}, x_{2}, a_{2}$ be paths in G between a_{1} and a_{2}.

Figure 20. Case 2.2: Type 1 between a_{1}, v; Type 3 between y_{1}, a_{2}

If w_{n} is not adjacent to y_{2} then there is a special connection between a_{1} and a_{2}. More clearly, $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{1}, y_{1}, w_{1}\right\},\left\{w_{i}, w_{i+1}, x_{1}\right\}_{i=1, \ldots, n-1}$, $\left\{w_{n}, x_{1}, x_{2}\right\},\left\{x_{1}, x_{2}, y_{2}\right\}$ and $\left\{x_{2}, y_{2}, a_{2}\right\}$ are cliques of G.

Observe that there is a special connection: of Type 1 between a_{1}, w_{1}; between w_{i}, w_{i+2} with $i \in\{1, . ., n-2\}$, and of Type 2 between w_{n-1}, a_{2}; see Figure 21.

Figure 21. Case 2.2: Type 1 between a_{1}, w_{1}; between w_{i}, w_{i+2};
Type 2 between w_{n-1}, a_{2}
If w_{n} is adjacent to y_{2} then $Y_{2} \neq C$ by the election of $w_{n} \notin C$. Clearly, there is a clique of size four with two of each path, it is $\left\{x_{1}, x_{2}, y_{2}, w_{n}\right\}$. Let s_{1} and s_{2} be vertices such that s_{1} is a separator of C to $N\left[a_{3}\right], s_{2}$ is a separator of X_{2} to $N\left[a_{1}\right]$ and $\left|\left\{Q \in C(G) \mid s_{i} \in Q\right\}\right|$ is minimum for $i=1,2$. By the election of w_{i}, s_{2} is not adjacent to w_{n-1}. Hence there is a special connection between a_{1} and a_{2}. More clearly, $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{1}, y_{1}, w_{1}\right\}$, $\left\{w_{i}, w_{i+1}, x_{1}\right\}_{i=1, . ., n-1},\left\{x_{2}, y_{2}, a_{2}\right\}$ are cliques of G, and $\left\{w_{n}, x_{1}, x_{2}, y_{2}, s_{1}\right.$, $\left.s_{2}\right\}$ induces an antenna.

Observe that there is a special connection: of Type 1 between a_{1}, w_{1}; between w_{i}, w_{i+2} with $i \in\{1, . ., n-2\}$, and of Type 3 between w_{n-1}, a_{2}; see Figure 22.

Case 3: $T_{x_{1}} \cap T_{x_{2}} \cap T_{y_{1}} \cap T_{y_{2}} \neq \emptyset$. Clearly, there are two paths in G between a_{1} and a_{2}. Let $P=a_{1}, y_{1}, y_{2}, a_{2}$ and $Q=a_{1}, x_{1}, x_{2}, a_{2}$ be these paths. Also $\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}$ is a clique of G which has two vertices of P and

Figure 22. Case 2.2: Type 1 between a_{1}, w_{1} and w_{i}, w_{i+2}; Type 3 between w_{n-1}, a_{2}
two vertices of Q. We will study two situations depending on x_{1} is or not in C.

First, $x_{1} \notin C$. Since $X_{2} \neq N\left[a_{1}\right]$ then $Y_{1} \neq A_{1}$. Let s_{1} be a separator vertex of X_{2} to $N\left[a_{1}\right], s_{2}$ be a separator vertex of X_{1} to $N\left[a_{2}\right]$ such that $\left|\left\{Q \in C(G) \mid s_{i} \in Q\right\}\right|$ is minimum for $i=1,2$. By the election of y_{i} for $i=1,2, s_{2} \notin N\left[a_{2}\right]$ and $s_{1} \notin N\left[a_{1}\right]$. Hence there is a special connection of Type 3 between a_{1} and a_{2}; see Figure 23 .

Figure 23. Case 3: Type 3 between a_{1}, a_{2}
We now suppose that $x_{1} \in C$. Since there is not an edge whose label is contained in C, then $y_{1} \notin C$. Hence $Y_{2} \neq C$. Observe that $X_{2} \neq Y_{1}$ but Y_{1} may be Y_{2}. Let s_{2} be a separator vertex of X_{2} to $N\left[a_{1}\right], s_{1}$ be a separator vertex of C to $N\left[a_{2}\right]$ such that $\left|\left\{Q \in C(G) \mid s_{i} \in Q\right\}\right|$ is minimum for $i=1,2$. By the before exposed, $s_{2} \notin N\left[a_{1}\right]$ and $s_{1} \notin N\left[a_{2}\right]$. Hence there is a special connection of Type 3 between a_{1} and a_{2}; see Figure 24.

In both cases, $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{a_{2}, x_{2}, y_{2}\right\}$ are cliques of G, and $\left\{s_{1}, s_{2}, x_{1}, x_{2}\right.$, $\left.y_{1}, y_{2}\right\}$ induces an antenna.

- There is an edge $e \in T\left[N\left[a_{1}\right], X_{2}\right]$ such that $\operatorname{lab}(e) \subseteq C$.

Case 1: $T_{x_{1}} \cap T_{x_{2}}=\emptyset$. By the election of x_{1}, each vertex in $\operatorname{lab}\left(e_{1}^{\prime}\right)$ must have A_{1} as a leaf. Clearly, there is a path $P=a_{1}, y_{1}, v, y_{2}, a_{2}$ in G between a_{1} and a_{2}. We will need other path Q in G between a_{1} and a_{2}. Observe

Figure 24. Case 3: Type 3 between a_{1}, a_{2}
that: a) by the election of x_{1}, for all $\bar{e} \in T\left[X_{1}, X_{2}\right], \operatorname{lab}(\bar{e}) \cap N\left[a_{1}\right]=\emptyset ;$ b) by Claim 1 as $e_{1}^{\prime} \in T\left[C, N\left[a_{3}\right]\right]$ is a dominated edge by $e_{1} \in T\left(N\left[a_{1}\right], C\right]$, $\forall \bar{e} \in T\left[X_{1}, X_{2}\right]$, the vertices in its label can not have the same ends to $N\left[a_{1}\right]$. Hence as $v \in \operatorname{lab}(\bar{e})$ for all $\bar{e} \in T\left[X_{1}, X_{2}\right]$, there is $w \in \operatorname{lab}(\bar{e})-A_{1}$. As was mentioned above, we need to search vertices for other path. We choose vertices through Election 1 taken $A=X_{1}, B=X_{2}$ and $w_{i} \notin A_{1}$ for $i=1, . ., n$. Clearly, $Q=a_{1}, x_{1}, w_{1}, . ., w_{n}, x_{2}, a_{2}$ is a path in G different from P between a_{1} and a_{2}. As there is an edge in $T\left[X_{1}, X_{2}\right]$ whose label is contained in C then w_{n} is in C. Clearly $\left\{x_{2}, y_{2}, w_{n}, v\right\}$ is a clique of G, and $\left\{x_{1}, y_{1}, v, w_{1}\right\}$ may be a clique. Let $W^{\prime} D w_{n} \in E(T)$ be such that $D w_{n} \in$ $T\left[C, W^{\prime}\right]$. Let u be a separator vertex of W^{\prime} to $N\left[a_{3}\right]$, i.e $u \in W^{\prime}-D w_{n}$. Let $e(n)=X Y$ be the edge which was chosen w_{n} with $Y \in T[X, C]$. Observe that Y may be X_{2}. On the other hand, $e(n)$ is dominated by $D w_{n}$ because of the choice of w_{n}, which is the shortest vertex to C, and $\operatorname{lab}(e(n)) \subset C$. We will analyze if there is or not another edge $\widetilde{e} \in T\left[Y, X_{2}\right]$ such that $l a b(\widetilde{e}) \subset C$.
\square Suppose that other edge does not exist. By Claim 2, as $e(n)$ is an edge dominated by $D w_{n} \in T\left[C, N\left[a_{3}\right]\right]$ then for every edge in $T\left[W^{\prime}, C\right]$ its label is not contained in Y. Hence we choose vertices in label of edges $\bar{e} \in T\left[W^{\prime}, C\right]$ that are not in Y, through Election 1 taken $A=W^{\prime}$ and $B=C$. Let $z_{i} \notin Y$ be such that $T_{z_{i}}=T\left[I z_{i}, D z_{i}\right]$ with $I z_{i} \in T\left(Y, D z_{i}\right]$ for $i=1, . ., o$, and z_{o} is the last vertex chosen. By the choice of $z_{i} \notin Y$ for $i=1, . ., o$, it follows that $e_{1}^{\prime} \notin T\left[W^{\prime}, C\right]$.

Now, we will analyze two situations depending on the position of $I z_{o}$ in $T(Y, C]$:

First, we consider $I z_{o} \in T\left(X_{2}, C\right]$. Let t be a separator vertex of X_{2} to $N\left[a_{1}\right]$ such that $|\{Q \in C(G) \mid t \in Q\}|$ is minimum. Observe that $t \notin X$. Also t is not adjacent to y_{2} or z_{o}. Then, there is a special connection between a_{1} and a_{2}. More clearly, in case that $\left\{x_{1}, y_{1}, v, w_{1}\right\}$ is not a clique it follows that $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{1}, v, y_{1}\right\},\left\{x_{1}, v, w_{1}\right\},\left\{w_{i}, v, w_{i+1}\right\}_{i=1, . ., n-1},\left\{x_{2}, y_{2}, a_{2}\right\}$, $\left\{v, w_{n}, x_{2}, y_{2}, z_{o}\right\},\left\{z_{i}, z_{i+1}, v, w_{n}\right\}_{i=1 ., o-1},\left\{u, v, z_{1}\right\}$ and $\left\{v, w_{n}, x_{2}, t\right\}$ are cliques of G.

Observe that there is a special connection: of Type 2 between a_{1}, w_{2}; of Type 1 between w_{i}, w_{i+2} with $i \in\{1, . ., n-2\}$; and of Type 4 between w_{n-1} and a_{2}; see Figure 25.

In case that $\left\{x_{1}, y_{1}, v, w_{1}\right\}$ is a clique of G, by the same argument used in Case 1.2, there are two vertices s_{1}, s_{2} in G such that $\left\{x_{1}, y_{1}, v, w_{1}, s_{1}, s_{2}\right\}$ induces an antenna.

Figure 25. Case 1: Type 2 between a_{1}, w_{2}; Type 1 between w_{i}, w_{i+2}; Type 4 between w_{n-1} and a_{2}

Finally, we consider $I z_{o} \in T\left(Y, X_{2}\right]$. Let $e(o)=A_{o} B_{o}$ be the edge which z_{o} was chosen, with $B_{o} \in T\left[C, A_{o}\right]$. Let Z^{\prime} be the vertex of T such that $I z_{o} Z^{\prime} \in E(T)$ and $I z_{o} \in T\left[Z^{\prime}, X_{2}\right]$. Observe that $Z^{\prime} \neq X$ since $I z_{o} \neq Y$. Also, by the election of $z_{o}, e(o)$ is a dominated edge by $I_{z_{o}}$ then by Claim 2 for every e^{\prime} edge in $T\left[Z^{\prime}, X_{2}\right]$ its label is not contained in B_{o}. Hence we choose vertices through Election 1 in label of edges of $T\left[Z^{\prime}, X_{2}\right]$ such that they are not in B_{o}. Let $t_{i} \notin B_{o}$ be the vertices chosen with $i \in\{1, . ., p\}$, and t_{p} be the last vertex chosen. It is clear that t_{p} may be in C. But there is not an edge different from $e(n)$ such that it is contained in C then $t_{p} \notin C$. Clearly, t_{p} may be adjacent or not to y_{2}.
$\diamond t_{p}$ is adjacent to y_{2}. As $t_{p} \notin C$ there is a separator vertex of C to $N\left[a_{3}\right]$. Let s_{1} be the separator of C to $N\left[a_{3}\right]$ minimizing $\left|\left\{Q \in C(G) \mid s_{1} \in Q\right\}\right|$. As z_{o} was chosen instead of s_{1} then z_{o-1} is not adjacent to s_{1}. Let s be a separator of X_{2} to $N\left[a_{1}\right]$ such that $|\{Q \in C(G) \mid s \in Q\}|$ is minimum. By the election of t_{p}, it is clear that s is not adjacent to t_{p-1}. Let t be a separator of $I t_{1}$ to $N\left[a_{1}\right]$ such that $|\{Q \in C(G) \mid t \in Q\}|$ is minimum. Observe that $t \notin X$. There is a special connection between a_{1} and a_{2}. More clearly, in case that $\left\{x_{1}, y_{1}, w_{1}, v\right\}$ is not a clique then $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{1}, v, y_{1}\right\},\left\{x_{1}, v, w_{1}\right\},\left\{w_{i}, v, w_{i+1}\right\}_{i=1, . ., n-1},\left\{z_{i}, z_{i+1}\right.$, $\left.v, w_{n}\right\}_{i=1,,, o-1},\left\{x_{2}, y_{2}, a_{2}\right\},\left\{u, v, z_{1}\right\},\left\{v, w_{n}, z_{o}, x_{2}, t_{p}, s\right\},\left\{t_{p}, x_{2}, y_{2}, z_{o}, w_{n}\right.$, $v\},\left\{t, w_{n}, v, t_{1}\right\},\left\{t_{i}, t_{i+1}, v, w_{n}, z_{o}\right\}_{i=1, . ., p-1}$ and $\left\{v, w_{n}, x_{2}, y_{2}, z_{o}, s_{1}\right\}$ are cliques of G.

Observe that there is a special connection: of Type 2 between a_{1}, w_{2}; of Type 1 between w_{i}, w_{i+2} with $i \in\{1, . ., n-2\}$; and of Type 5 between w_{n-1} and a_{2}; see Figure 26.

In case that $\left\{x_{1}, y_{1}, v, w_{1}\right\}$ is a clique of G, by the before exposed, there are two vertices s_{1}^{\prime}, s_{2} in G such that $\left\{x_{1}, y_{1}, v, w_{1}, s_{1}^{\prime}, s_{2}\right\}$ induces an antenna.

Figure 26. Case 1: Type 2 between a_{1}, w_{2}; Type 1 between w_{i}, w_{i+2}; of Type 5 between w_{n-1}, a_{2}
$\diamond t_{p}$ is not adjacent to y_{2}. As before, considering only the separator of $I t_{1}$ to $N\left[a_{1}\right]$. Then there is a special connection between a_{1} and a_{2}. More clearly, in case that $\left\{x_{1}, y_{1}, w_{1}, v\right\}$ is not a clique then $\left\{a_{1}, x_{1}, y_{1}\right\}$, $\left\{x_{1}, v, y_{1}\right\},\left\{x_{1}, v, w_{1}\right\},\left\{w_{i}, v, w_{i+1}\right\}_{i=1, . ., n},\left\{z_{i}, z_{i+1}, v, w_{n}\right\}_{i=1, ., o-1},\left\{x_{2}, y_{2}\right.$, $\left.a_{2}\right\},\left\{u, v, z_{1}\right\},\left\{t, v, w_{n}, t_{1}\right\},\left\{t_{i}, t_{i+1}, v, w_{n}, z_{o}\right\}_{i=1, ., p-1},\left\{t_{p}, x_{2}, v, w_{n}, z_{o}\right\}$ and $\left\{v, w_{n}, x_{2}, y_{2}, z_{o}\right\}$ are cliques of G.

Observe that there is a special connection: of Type 2 between a_{1}, w_{2}; of Type 1 between w_{i}, w_{i+2} with $i \in\{1, . ., n-2\}$; and of Type 6 between w_{n-1} and a_{2}; see Figure 27.

In case that $\left\{x_{1}, y_{1}, v, w_{1}\right\}$ is a clique of G, by the before exposed, there are two vertices s_{1}, s_{2} in G such that $\left\{x_{1}, y_{1}, v, w_{1}, s_{1}, s_{2}\right\}$ induces an antenna.

Figure 27. Case 1: Type 2 between a_{1}, w_{2}; Type 1 between w_{i}, w_{i+2}; Type 6 between w_{n-1}, a_{2}
\square Suppose that there is an edge in $T\left[B, X_{2}\right]$ which is contained in C. Let \widetilde{e} be the nearest C. Observe that $l a b(e(n)) \subset \operatorname{lab}(\widetilde{e})$, but by our assumption $\operatorname{lab}(\widetilde{e}) \nsubseteq \operatorname{lab}(e(n))$, let $m \in \operatorname{lab}(\widetilde{e})-\operatorname{lab}(e(n))$ such that T_{m} is the shortest to $N\left[a_{3}\right]$ with $D m$ its leaf in $T\left[C, N\left[a_{3}\right]\right]$. Clearly, $m \neq w_{n}, v$. Observe that for all edge $\widetilde{\widetilde{e}}$ in $T\left(\widetilde{e}, X_{2}\right], \operatorname{lab}(\widetilde{\widetilde{e}}) \nsubseteq C$. Therefore there are vertices in the label of edges of $T\left(\widetilde{e}, X_{2}\right]$ that are not in C.

In case that $D m \in T\left[D w_{n}, N\left[a_{3}\right]\right], \widetilde{e}$ is dominated by $D w_{n}$ then by Claim 2 there are vertices in the label of edges of $T\left[W^{\prime}, C\right]$ that are not in \widetilde{B} with $\widetilde{e}=\widetilde{A} \widetilde{B}$ and $\widetilde{B} \in T[\widetilde{A}, C]$. Let z_{i} be these vertices for $i=1, . ., o$
chosen through Election 1. Therefore $I_{z_{o}} \notin \widetilde{B}$. Also, by the election of \tilde{e}, the vertices t_{i} chosen as before are not in C, in particular the vertex $t_{p} \notin C$. Hence we get situations described previously, i.e Type 4 or Type 5 or Type 6. More clearly, in case that $\left\{x_{1}, y_{1}, w_{1}, v\right\}$ is not a clique then if $I z_{o} \in T\left(X_{2}, C\right],\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{1}, v, y_{1}\right\},\left\{x_{1}, v, w_{1}\right\},\left\{w_{i}, v, w_{i+1}\right\}_{i=1, . ., n-1}$, $\left\{x_{2}, y_{2}, a_{2}\right\},\left\{v, w_{n}, x_{2}, y_{2}, z_{o}\right\},\left\{z_{i}, z_{i+1}, v, w_{n}\right\}{ }_{i=1 . ., o-1},\left\{u, v, z_{1}\right\}$, and $\left\{v, w_{n}, x_{2}, t\right\}$ are cliques of G. If $I z_{o} \in T\left(\widetilde{B}, X_{2}\right]$ then in case that t_{p} is adjacent to $y_{2},\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{1}, v, y_{1}\right\},\left\{x_{1}, v, w_{1}\right\},\left\{x_{2}, y_{2}, a_{2}\right\},\left\{w_{i}, v\right.$, $\left.w_{i+1}\right\}_{i=1, . ., n-1},\left\{z_{i}, z_{i+1}, v, w_{n}\right\}_{i=1, ., o-1},\left\{u, v, z_{1}\right\},\left\{v, w_{n}, z_{o}, x_{2}, t_{p}, s\right\},\left\{t_{p}\right.$, $\left.x_{2}, y_{2}, z_{o}, w_{n}, v\right\},\left\{t, w_{n}, v, t_{1}\right\},\left\{t_{i}, t_{i+1}, v, w_{n}, z_{o}\right\}_{i=1, \ldots, p-1}$ and $\left\{v, w_{n}, x_{2}\right.$, $\left.y_{2}, z_{o}, s_{1}\right\}$ are cliques of G. In case that t_{p} is not adjacent to y_{2} then $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{1}, v, y_{1}\right\},\left\{x_{1}, v, w_{1}\right\},\left\{x_{2}, y_{2}, a_{2}\right\},\left\{w_{i}, v, w_{i+1}\right\}_{i=1, \ldots, n},\left\{z_{i}, z_{i+1}\right.$, $\left.v, w_{n}\right\}_{i=1, ., o-1},\left\{u, v, z_{1}\right\},\left\{t, v, w_{n}, t_{1}\right\},\left\{t_{i}, t_{i+1}, v, w_{n}, z_{o}\right\}_{i=1, \ldots, p-1},\left\{t_{p}, x_{2}\right.$, $\left.v, w_{n}, z_{o}\right\}$ and $\left\{v, w_{n}, x_{2}, y_{2}, z_{o}\right\}$ are cliques of G. In case that $\left\{x_{1}, y_{1}, v\right.$, $\left.w_{1}\right\}$ is a clique of G, by the before exposed, there are two vertices s_{1}^{\prime}, s_{2} in G such that $\left\{x_{1}, y_{1}, v, w_{1}, s_{1}^{\prime}, s_{2}\right\}$ induces an antenna.

In case that $D m \in T\left[C, D w_{n}\right), e(n)$ is dominated by $D w_{n}$ then by Claim 2 there are vertices chosen through Election 1 that are not in Y. As before, let z_{i} be these vertices for $i=1, ., o$. If $z_{o} \notin \widetilde{B}$ then we get situations described previously. If $z_{o} \in \widetilde{B}$, as $D m$ dominates \widetilde{e}, none edge of $T\left[M^{\prime}, C\right]\left(D m M^{\prime} \in E(T)\right.$ with $\left.M^{\prime} \in T\left[M, D w_{n}\right]\right)$ is dominated by \widetilde{B}, then $e(o) \notin T\left[C, M^{\prime}\right]$. It is clear that $I z_{o} \notin T\left[X_{2}, C\right]$. Also $t_{p}=m$. In this case $t_{p} \in C$. By Claim 2 as \widetilde{e} is a dominated edge by $D t_{p}=D m$, in the label of edges of $T\left[C, M^{\prime}\right]$ there are vertices that are not in \widetilde{B}. Let z_{i}^{\prime} be vertices chosen in the label of edges in $T\left[C, M^{\prime}\right]$ that are not in \widetilde{B} through Election 1 taken $A=M^{\prime}, B=C$ for $i=1, . ., q$, and with z_{q}^{\prime} the last vertex chosen. Let u^{\prime} be adjacent to z_{1}^{\prime} but not adjacent to z_{2}^{\prime}. If $z_{q}^{\prime} \in T\left(X_{2}, C\right]$ then let s be a separator of X_{2} to $N\left[a_{1}\right]$ such that $|\{Q \in C(G) \mid s \in Q\}|$ is minimum. We obtain a special connection between a_{1} and a_{2}. More clearly, in case that $\left\{x_{1}, y_{1}, v, w_{1}\right\}$ is not a clique then $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{1}, v, y_{1}\right\},\left\{x_{1}, v, w_{1}\right\},\left\{w_{i}, v, w_{i+1}\right\}_{i=1, . ., n-1}$, $\left\{x_{2}, y_{2}, a_{2}\right\},\left\{z_{i}, z_{i+1}, v, w_{n}\right\}_{i=1 . ., o-1},\left\{u, v, z_{1}\right\},\left\{t_{i}, t_{i+1}, v, w_{n}, z_{o}\right\}_{i=1, . ., p-1}$, $\left\{t, v, w_{n}, t_{1}\right\},\left\{u^{\prime}, z_{1}^{\prime}, z_{o}, w_{n}, v\right\},\left\{s, t_{p}, w_{n}, v, z_{o}, x_{2}\right\},\left\{z_{q}^{\prime}, x_{2}, y_{2}, v, w_{n}, t_{p}, z_{o}\right\}$ and $\left\{z_{i}^{\prime}, z_{i+1}^{\prime}, v, w_{n}, t_{p}, z_{o}\right\}_{i=1, ., q-1}$ are cliques of G.

Observe that there is a special connection: of Type 2 between a_{1}, w_{2}; of Type 1 between w_{i}, w_{i+2} with $i \in\{1, . ., n-2\}$; and of Type 7 between w_{n-1} and a_{2}; see Figure 28.

In case that $\left\{x_{1}, y_{1}, v, w_{1}\right\}$ is a clique of G, by the before exposed, there are two vertices s_{1}^{\prime}, s_{2} in G such that $\left\{x_{1}, y_{1}, v, w_{1}, s_{1}^{\prime}, s_{2}\right\}$ induces an antenna.

If $z_{q}^{\prime} \in T\left(\widetilde{B}, X_{2}\right.$], as the edge $e(q)$ where z_{q}^{\prime} was chosen is dominated by $I z_{q}^{\prime}$, it follows by Claim 2 that there are vertices t_{i}^{\prime} that are not in B_{q}, with $e(q)=A_{q} B_{q}$ and $B_{q} \in T\left[C, A_{q}\right]$, for $i=1, . ., r$. Also by the election of \widetilde{e}, they are not in C. Let t_{r}^{\prime} be the last vertex chosen. Observe that t_{r}^{\prime} may be adjacent to y_{2}.

If t_{r}^{\prime} is not adjacent to y_{2} then there is a special connection between a_{1} and a_{2}. More clearly, in case that $\left\{x_{1}, y_{1}, w_{1}, v\right\}$ is not a clique then $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{1}, v, y_{1}\right\},\left\{x_{1}, v, w_{1}\right\},\left\{w_{i}, v, w_{i+1}\right\}_{i=1, . ., n-1},\left\{x_{2}, y_{2}, a_{2}\right\},\left\{z_{i}\right.$,

Figure 28. Case 1: Type 2 between a_{1}, w_{2}; Type 1 between w_{i}, w_{i+2}; Type 7 between w_{n-1}, a_{2}
$\left.z_{i+1}, v, w_{n}\right\}_{i=1 ., o-1},\left\{u, v, z_{1}\right\},\left\{t_{i}, t_{i+1}, v, w_{n}, z_{o}\right\}_{i=1, ., p-1},\left\{t, v, w_{n}, t_{1}\right\}$, $\left\{t^{\prime}, t_{1}^{\prime}, t_{p}, v, w_{n}, z_{o}\right\},\left\{t_{i}^{\prime}, t_{i+1}^{\prime}, z_{o}, z_{q}^{\prime}, t_{p}, v, w_{n}\right\}_{i=1, \ldots, r-1},\left\{t_{r}^{\prime}, t_{p}, v, w_{n}, z_{o}, z_{q}^{\prime}\right.$, $\left.x_{2}\right\},\left\{t_{p}, v, w_{n}, z_{o}, z_{q}^{\prime}, x_{2}, y_{2}\right\},\left\{t_{p}, v, w_{n}, z_{o}, z_{i}^{\prime}, z_{i+1}^{\prime}\right\}_{i=1, \ldots, q-1}$ and $\left\{u^{\prime}, z_{1}^{\prime}\right.$, $\left.z_{o}, w_{n}, v\right\}$ are cliques of G.

Observe that there is a special connection: of Type 2 between a_{1}, w_{2}; of Type 1 between w_{i}, w_{i+2} with $i \in\{1, . ., n-2\}$; and of Type 8 between w_{n-1} and a_{2}; see Figure 29.

In case that $\left\{x_{1}, y_{1}, v, w_{1}\right\}$ is a clique of G, by the before exposed, there are two vertices s_{1}, s_{2} in G such that $\left\{x_{1}, y_{1}, v, w_{1}, s_{1}, s_{2}\right\}$ induces an antenna.

Figure 29. Case 1: Type 2 between a_{1}, w_{2}; Type 1 between w_{i}, w_{i+2}; Type 8 between w_{n-1}, a_{2}

If t_{r}^{\prime} is adjacent to y_{2}, let s be a separator of X_{2} to $N\left[a_{1}\right]$ such that $|\{Q \in C(G) \mid s \in Q\}|$ is minimum. By the election of t_{r}^{\prime}, it is clear that s is not adjacent to t_{r-1}^{\prime}, recall $t_{r}^{\prime} \notin C$. Then, let s_{1} be a separator vertex of C to $N\left[a_{3}\right]$ such that $\left|\left\{Q \in C(G) \mid s_{1} \in Q\right\}\right|$ is minimum. Observe that $s_{1} \neq z_{q}^{\prime}$ since $z_{q}^{\prime} \in T\left(\widetilde{B}, X_{2}\right]$. Hence there is a special connection between a_{1} and a_{2}. More clearly, in case that $\left\{x_{1}, y_{1}, w_{1}, v\right\}$ is not a clique then $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{1}, v, y_{1}\right\},\left\{x_{1}, v, w_{1}\right\},\left\{w_{i}, v, w_{i+1}\right\}_{i=1, . ., n-1},\left\{x_{2}, y_{2}, a_{2}\right\}$, $\left\{z_{i}, z_{i+1}, v, w_{n}\right\}_{i=1 .,, o-1},\left\{u, v, z_{1}\right\},\left\{t_{i}, t_{i+1}, v, w_{n}, z_{o}\right\}_{i=1, . ., p-1},\left\{t, v, w_{n}\right.$, $\left.t_{1}\right\},\left\{t^{\prime}, t_{1}^{\prime}, t_{p}, v, w_{n}, z_{o}\right\},\left\{t_{i}^{\prime}, t_{i+1}^{\prime}, z_{o}, z_{q}^{\prime}, t_{p}, v, w_{n}\right\}_{i=1, . ., r-1},\left\{t_{r}^{\prime}, t_{p}, v, w_{n}, z_{o}\right.$,
$\left.z_{q}^{\prime}, x_{2}, y_{2}, s_{1}\right\},\left\{t_{p}, v, w_{n}, z_{o}, z_{i}^{\prime}, z_{i+1}^{\prime}\right\}_{i=1, \ldots, q-1},\left\{t_{p}, v, w_{n}, z_{o}, z_{1}^{\prime}, u^{\prime}\right\}$ and $\left\{s, t_{r}^{\prime}, z_{q}^{\prime}, t_{p}, z_{o}, v, w_{n}, x_{2}\right\}$ are cliques of G.

Observe that there is a special connection: of Type 2 between a_{1}, w_{2}; of Type 1 between w_{i}, w_{i+2} with $i \in\{1, . ., n-2\}$; and of Type 9 between w_{n-1} and a_{2}; see Figure 30.

In case that $\left\{x_{1}, y_{1}, v, w_{1}\right\}$ is a clique of G, by the before exposed, there are two vertices s_{1}^{\prime}, s_{2} in G such that $\left\{x_{1}, y_{1}, v, w_{1}, s_{1}^{\prime}, s_{2}\right\}$ induces an antenna.

Figure 30. Case 1: Type 2 between a_{1}, w_{2}; Type 1 between w_{i}, w_{i+2}; Type 9 between w_{n-1}, a_{2}

Case 2: $T_{x_{1}} \cap T_{x_{2}} \cap T_{y_{1}} \neq \emptyset$ but $T_{y_{2}} \cap T_{x_{1}}=\emptyset$, or $T_{x_{1}} \cap T_{x_{2}} \cap T_{y_{2}} \neq \emptyset$ but $T_{y_{1}} \cap T_{x_{2}}=\emptyset$. By our assumption, there is an edge in $T\left[N\left[a_{1}\right], X_{2}\right]$ whose label is contained in C. Hence $T_{x_{1}} \cap T_{x_{2}} \cap T_{y_{1}}=\emptyset$.

Clearly, there are two paths in G between a_{1} and $a_{2} ; P=a_{1}, x_{1}, x_{2}, a_{2}$ and $Q=a_{1}, y_{1}, v, y_{2}, a_{2}$. On the other hand, $\left\{x_{1}, x_{2}, y_{2}, v\right\}$ is a clique of G. In this situations, x_{1} may be in $\operatorname{lab}\left(e_{1}^{\prime}\right)$. We know that there is an edge in $T\left[Y_{1}, X_{2}\right]$ whose label is contained in C. Let $\widetilde{e}=\widetilde{A} \widetilde{B}$ be the nearest C with $\widetilde{B} \in T[\widetilde{A}, C]$, and $m \in \operatorname{lab}(\widetilde{e})$ such that T_{m} is the shortest to $N\left[a_{3}\right]$ and $D m$ its leaf in $T\left[C, N\left[a_{3}\right]\right]$. Observe that m is not v. Moreover $D m \neq B_{1}^{\prime}$ otherwise $T^{\prime}=T-\left\{e_{1}^{\prime}, \widetilde{e}\right\}+\widetilde{A} B_{1}^{\prime}+A_{1}^{\prime} \widetilde{B}$ is a DV-model that can be rooted on $N\left[a_{3}\right]$, a contradiction.

On the other hand, we choose w_{i} in label of edges in $T\left[Y_{1}, X_{2}\right]$ with the Election 1 taken $A=Y_{1}$ and $B=X_{2}$. Let w_{n} be the last vertex chosen, and $D w_{n}$ be the leaf of w_{n} to $N\left[a_{3}\right]$. Observe that w_{n} may be x_{1} or m.

If $m=x_{1}$, let $X_{1}^{\prime} X_{1}$ be the edge of T with $X_{1}^{\prime} \in T\left[X_{1}, N\left[a_{3}\right]\right]$. As X_{1} dominates \widetilde{e} it follows by Claim 2 that for all edge $\bar{e} \in T\left[C, X_{1}^{\prime}\right] \operatorname{lab}(\bar{e}) \nsubseteq \widetilde{B}$. Then we choose vertices in the label of edges in $T\left[C, X^{\prime}\right]$ through Election 1 with $A=X_{1}^{\prime}$ and $B=C$ such that are not in \widetilde{B}. Let z_{i} be these vertices chosen for $i=1, . ., o$, and z_{o} be the lasted vertex chosen. As in the Case 1 , we will analyze if $I z_{o}$ is or not in $T\left(\widetilde{B}, X_{2}\right]$, and we obtain special connection of Type 4,5 or 6 , taken x_{1} instead of w_{i} in Case 1. More clearly, $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{1}, v, y_{1}\right\},\left\{x_{2}, y_{2}, a_{2}\right\},\left\{v, x_{1}, x_{2}, y_{2}, z_{o}\right\}$, $\left\{z_{i}, z_{i+1}, v, x_{1}\right\}_{i=1 ., o-1},\left\{u, v, z_{1}\right\}$ and $\left\{v, x_{1}, x_{2}, t\right\}$ are cliques of G; so there is a special connection of Type 4 between y_{1}, a_{2}, and of Type 1 between a_{1}, v; see Figure 31. Or $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{1}, v, y_{1}\right\},\left\{x_{2}, y_{2}, a_{2}\right\}$,

Figure 31. Case 2: Type 4 between y_{1}, a_{2} and Type 1 between a_{1}, v
$\left\{z_{i}, z_{i+1}, v, x_{1}\right\}_{i=1, ., o-1},\left\{u, v, z_{1}\right\},\left\{v, x_{1}, z_{o}, x_{2}, t_{p}, s\right\},\left\{t_{p}, x_{2}, y_{2}, z_{o}, x_{1}, v\right\}$, $\left\{t, x_{1}, v, t_{1}\right\},\left\{t_{i}, t_{i+1}, v, x_{1}, z_{o}\right\}_{i=1, \ldots, p-1}$ and $\left\{v, x_{1}, x_{2}, y_{2}, z_{o}, s_{1}\right\}$ are cliques of G; so there is a special connection of Type 5 between y_{1}, a_{2} and of Type 1 between a_{1}, v. Or $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{1}, v, y_{1}\right\},\left\{x_{2}, y_{2}, a_{2}\right\},\left\{z_{i}, z_{i+1}\right.$, $\left.v, x_{1}\right\}_{i=1, ., o-1},\left\{u, v, z_{1}\right\},\left\{t, v, x_{1}, t_{1}\right\},\left\{t_{i}, t_{i+1}, v, x_{1}, z_{o}\right\}_{i=1, \ldots, p-1},\left\{t_{p}, x_{2}\right.$, $\left.v, x_{1}, z_{o}\right\}$ and $\left\{v, x_{1}, x_{2}, y_{2}, z_{o}\right\}$ are cliques of G; so there is a special connection of Type 6 between y_{1}, a_{2}, and of Type 1 between a_{1}, v; see Figure 32.

Figure 32. Case 2: Type 5 between y_{1}, a_{2} and Type 1 between a_{1}, v or Type 6 between y_{1}, a_{2} and Type 1 between a_{1}, v

If $m=w_{n}$, let $P^{\prime}=a_{1}, y_{1}, w_{1}, . ., w_{n}, x_{2}, a_{2}$ and $Q^{\prime}=a_{1}, x_{1}, y_{2}, a_{2}$ be paths in G between a_{1} and a_{2}. Hence there is a special connection of Type 4 or Type 5 or Type 6 between w_{n-1} and a_{2}. More clearly, $\left\{a_{1}, x_{1}\right.$, $\left.y_{1}\right\},\left\{w_{1}, x_{1}, y_{1}\right\},\left\{w_{i}, w_{i+1}, x_{1}\right\}_{i=1, . ., n-1},\left\{x_{2}, y_{2}, a_{2},\right\},\left\{t, x_{2}, w_{n}, x_{1}\right\},\left\{z_{o}\right.$, $\left.x_{1}, w_{n}, x_{2}, y_{2}\right\},\left\{z_{i}, z_{i+1}, w_{n}, x_{1}\right\}_{i=1, . ., o-1}$ and $\left\{z_{1}, x_{1}, u\right\}$ are cliques of G. Or $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{w_{1}, x_{1}, y_{1}\right\},\left\{w_{i}, w_{i+1}, x_{1}\right\}_{i=1, . ., n-1},\left\{x_{2}, y_{2}, a_{2},\right\},\left\{t_{p}, y_{2}\right.$, $\left.x_{2}, z_{o}, w_{n}, x_{1}\right\},\left\{x_{2}, t_{p}, z_{o}, s, w_{n}, x_{1}\right\},\left\{z_{o}, t_{i}, t_{i+1}, x_{1}, w_{n}\right\}_{i=1, . ., p-1},\left\{t, w_{n}, x_{1}\right.$, $\left.t_{1}\right\},\left\{z_{o}, x_{1}, w_{n}, x_{2}, y_{2}\right\},\left\{z_{i}, z_{i+1}, w_{n}, x_{1}\right\}_{i=1, . ., o-1}$ and $\left\{z_{1}, x_{1}, u\right\}$ are cliques of G. Or $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{w_{1}, x_{1}, y_{1}\right\},\left\{w_{i}, w_{i+1}, x_{1}\right\}_{i=1, . . n-1},\left\{x_{2}, y_{2}, a_{2},\right\}$, $\left\{y_{2}, x_{2}, z_{o}, w_{n}, x_{1}\right\},\left\{x_{2}, t_{p}, z_{o}, w_{n}, x_{1}\right\},\left\{z_{o}, t_{i}, t_{i+1}, x_{1}, w_{n}\right\}_{i=1, . ., p-1},\left\{t, w_{n}\right.$, $\left.x_{1}, t_{1}\right\},\left\{z_{i}, z_{i+1}, w_{n}, x_{1}\right\}_{i=1, . ., o-1}$ and $\left\{z_{1}, x_{1}, u\right\}$ are cliques of G; see Figure 33.

If $m \neq x_{1}, w_{n}$, let $P^{\prime}=a_{1}, y_{1}, w_{1}, . ., w_{n}, x_{2}, a_{2}$ and $Q^{\prime}=a_{1}, x_{1}, y_{2}, a_{2}$ be paths in G between a_{1} and a_{2}. Hence there is a special connection of Type 4 or Type 5 or Type 6 or Type 7 or Type 8 or Type 9 between w_{n-1} and a_{2} considering the analysis of Case 1 when there are another edge contained in C.

Figure 33. Case 2: Type 4 or Type 5 or Type 6 between w_{n-1}, a_{2} and Type 1 between a_{1}, w_{1}

Case 3: $T_{x_{1}} \cap T_{x_{2}} \cap T_{y_{1}} \cap T_{y_{2}} \neq \emptyset$. Clearly, there are two paths in G between a_{1} and a_{2}. Let $P=a_{1}, y_{1}, y_{2}, a_{2}$ and $Q=a_{1}, x_{1}, x_{2}, a_{2}$ be paths in G. Also $\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}$ is a clique of G. By the existence of an edge $e \in T\left[N\left[a_{1}\right], X_{2}\right]$ such that $\operatorname{lab}(e) \subset C$, we have $x_{1} \in C$ and $y_{1} \in C$. Observe that $N\left[a_{1}\right] A_{1}$ has label contained in C, and may have other edge. On the other hand, x_{1} and y_{1} can not be both vertices of $\operatorname{lab}\left(e_{1}^{\prime}\right)$ otherwise $T^{\prime}=$ $T-\left\{N\left[a_{1}\right] A_{1}, e_{1}^{\prime}\right\}+N\left[a_{1}\right] B_{1}^{\prime}+A_{1}^{\prime} A_{1}$ is a DV-model of G rooted on $N\left[a_{3}\right]$, a contradiction. Hence $y_{1} \notin \operatorname{lab}\left(e_{1}^{\prime}\right)$, moreover $y_{1} \notin B_{1}^{\prime}$. Let $Y_{1}^{\prime} Y_{1} \in E(T)$ be such that $Y_{1}^{\prime} \in T\left[Y_{1}, N\left[a_{3}\right]\right]$, and let $\widetilde{e}=\widetilde{A} \widetilde{B}$ be the closest edge to C dominated by Y_{1}. Clearly $\operatorname{lab}(\widetilde{e}) \subset C$. By Claim 2 , for all $e^{\prime} \in T\left[C, Y_{1}^{\prime}\right]$, we have $\operatorname{lab}\left(e^{\prime}\right) \nsubseteq \widetilde{B}$. By the before exposed, there are vertices $z_{i} \in \operatorname{lab}\left(e^{\prime}\right)-\widetilde{B}$ which were chosen through Election 1, and if z_{o} is the last vertex chosen then analyzing where is $I z_{o}$, we obtain the situations describe in Case 1, i.e there is a special connection of Type 4 or Type 5 or Type 6 taken $w_{n}=y_{1}$ and $v=x_{1}$. More clearly, $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}, a_{2},\right\},\left\{t, x_{2}, y_{1}, x_{1}\right\}$, $\left\{z_{o}, x_{1}, y_{1}, x_{2}, y_{2}\right\},\left\{z_{i}, z_{i+1}, y_{1}, x_{1}\right\}_{i=1, . ., o-1}$ and $\left\{z_{1}, x_{1}, u\right\}$ are cliques of G. Or $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}, a_{2},\right\},\left\{t_{p}, y_{2}, x_{2}, z_{o}, y_{1}, x_{1}\right\},\left\{x_{2}, t_{p}, z_{o}, s, y_{1}, x_{1}\right\}$, $\left\{z_{o}, t_{i}, t_{i+1}, x_{1}, y_{1}\right\}_{i=1, \ldots, p-1},\left\{t, y_{1}, x_{1}, t_{1}\right\},\left\{z_{o}, x_{1}, y_{1}, x_{2}, y_{2}\right\},\left\{z_{i}, z_{i+1}, y_{1}\right.$, $\left.x_{1}\right\}_{i=1, . ., o-1}$ and $\left\{z_{1}, x_{1}, u\right\}$ are cliques of G. Or $\left\{a_{1}, x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}, a_{2},\right\}$, $\left\{y_{2}, x_{2}, z_{o}, y_{1}, x_{1}\right\},\left\{x_{2}, t_{p}, z_{o}, y_{1}, x_{1}\right\},\left\{z_{o}, t_{i}, t_{i+1}, x_{1}, y_{1}\right\}_{i=1, \ldots, p-1},\left\{t, y_{1}, x_{1}\right.$, $\left.t_{1}\right\},\left\{z_{i}, z_{i+1}, y_{1}, x_{1}\right\}_{i=1, . ., o-1}$ and $\left\{z_{1}, x_{1}, u\right\}$ are cliques of G; see Figure 34.

The following Corollary allows us to construct different forbidden induced subgraphs for rooted directed path graphs to those described in [1].

Corollary 2. Let G be a $D V$ graph with an asteroidal quadruple $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. If a_{1}, a_{2} and a_{3}, a_{4} are linked by a special connection then G is not an RDV graph.

Proof. Let $Q_{a_{i}}$ be a clique that contains a_{i} for $i=1,2,3,4$ and T be a DV-model of G. As $a_{1}, a_{2}, a_{3}, a_{4}$ is an asteroidal quadruple then $T\left[Q_{a_{1}}, Q_{a_{2}}, Q_{a_{3}}, Q_{a_{4}}\right]$ has four leaves. By Theorem $1, T\left(a_{1}, a_{2}\right)$ and $T\left(a_{3}, a_{4}\right)$ are directed path then T can not be rooted. Therefore G is not an RDV graph.

Figure 34. Case 3: Type 4 or Type 5 or Type 6 between a_{1}, a_{2}

References

[1] K. Cameron, C. T. Hoáng, B. Lévêque, Asteroids in rooted and directed path graphs, Electronic Notes in Discrete Mathematics 32 67-74 (2009).
[2] K. Cameron, C. T. Hoáng, B. Lévêque, Characterizing directed path graphs by forbidden asteroids, Journal of Graph Theory 68 103-112 (2011).
[3] S. Chaplick, M. Gutierrez, B. Lévêque, S. B. Tondato, From path graphs to directed path graphs, WG'10, Lecture Notes in Computer Science 6410 256-265 (2010).
[4] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combin. Theory B 16 47-56 (1974).
[5] C.G. Lekkerkerker, J. Ch. Boland, Representation of finite graph by a set of intervals on the real line, Fundamenta Mathematicae Li 45-64 (1962).
[6] B. Lévêque, F. Maffray, M. Preissmann, Characterizing path graphs by forbidden induced subgraphs, Journal of Graph Theory 62 369-384 (2009).
[7] C. Monma, V. Wei, Intersection graphs of paths in a tree, J. Combin. Theory B 41 141-181 (1986).
[8] B.S. Panda, The forbidden subgraph characterization of directed vertex graphs, Discrete Mathematics 196 239-256 (1999).

1. Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 2. Conicet

E-mail address: marisa@mate.unlp.edu.ar, tondato@mate.unlp.edu.ar

