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ABSTRACT

Segmenting 2D and 3D images is a crucial and challenging problem in medical image analysis. Although several
image segmentation algorithms have been proposed for different applications, no universal method currently ex-
ists. Moreover, their use is usually limited when detection of complex and multiple adjacent objects of interest is
needed. In addition, the continually increasing volumes of medical imaging scans require more efficient segmen-
tation software design and highly usable applications. In this context, we present an extension of our previous
segmentation framework which allows the combination of existing explicit deformable models in an efficient and
transparent way, handling simultaneously different segmentation strategies and interacting with a graphic user
interface (GUI). We include the object-oriented design and the general architecture which consist of two layers:
the GUI at the top layer, and the processing core filters at the bottom layer.

We apply the framework for segmenting different real-case medical image scenarios on public available datasets
including bladder and prostate segmentation from 2D MRI, and heart segmentation in 3D CT. Our experiments
on these concrete problems show that this framework facilitates complex and multi-object segmentation goals
while providing a fast prototyping open-source segmentation tool.

Keywords: Medical Imaging Analysis , Multiple Segmentation Framework , Parallel Segmentation

1. INTRODUCTION

With increasing use of medical imaging modalities like Computed Tomography (CT) and Magnetic Resonance
imaging (MRI) for diagnosis, treatment planning and clinical studies, it has become almost compulsory using
computers to assist radiological experts in their tasks.1 Hence, computer-aided diagnosis (CAD) systems have
become one of the major research areas in medical imaging and diagnostic radiology.2

In particular, medical image segmentation is an essential part of CAD systems, which usually determines the
eventual success or failure of the subsequent steps of image analysis. Segmentation basically consist in delimiting
the structures or regions of interest (ROI), and discriminating them from the background. This process is used
to detect organs, such as brain, lungs or liver in CT or MRI scans; or for the extraction of pathological tissues,
such as a tumors or plaques.

Although there is a wide range of proposed methods to solve the problem, no universal algorithm for seg-
mentation of every medical image exists. Some methods are more general as compared to specialized algorithms,
and can be applied to a wider range of data. Nevertheless, segmenting anatomical or functional structures from
medical images in an efficient and accurate way is still an open and challenging problem .

CAD systems frequently require delimiting multiple adjacent structures, for instance, multiple organs in 3D
abdominal CT,3,4 brain tumor segmentation,5,6 pelvic organ prolapse,7 abdominal anatomy segmentation in
MRI, among others. Other challenging problems demand segmenting complex objects such as cardiac structures
in CT,8,9 colon segmentation for virtual colon unfolding in virtual colonoscopy,10 uterus delineation in dynamic
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MRI.11 Most of these systems focus on multiple objects detection or complex structures segmentation. To
the best of our knowledge, no system can mix the best segmentation techniques for each ROI or share spatial
restrictions derived from the implicated models.

In general, when a novel medical imaging segmentation problem arises, researchers adapt previous methods,
or propose new specific segmentation techniques. Therefore, a significant effort has been dedicated to the im-
provement of a wide range of segmentation algorithms. Nevertheless, little research has been undertaken for
the integration and combination of existing techniques. Within the context of concrete segmentation applica-
tions, implementations often does not extend beyond the prototype version. Moreover, because of the high
computational workload required, along with the continually increasing medical imaging scans sizes, it become
indispensable a more efficient software design and development to extend their limits.

Several general medical imaging processing software toolkits are available for researching, prototyping and
application development12 (Eg: Julius,13 Sim ITK-VTK,14 Nifty-Seg). Most of them use a pipeline architecture
(tubes and filters) where each filter implements a different stage of the process. Nevertheless, these tools are
usually closed-source (privative), too general or simply not adaptable for further improvement.

The present paper proposes an extension and detailed design of the open-source segmentation framework
named Deformable Models Array (DMA).15 This framework proposes an extensible toolkit to be adapted to
different medical segmentation tasks using a combination of explicit deformable models (DM). The different DM
can interact either in a 2D or 3D normalized space while they evolve, according to their conditions. We have
introduced an object-oriented design based on the Insight Toolkit (ITK) libraries, which allows to handle different
segmentation strategies. For instance, simple segmentation (one ROI only), multiple segmentation (several ROIs,
adjacent or isolated), and complex segmentation (one complex ROI with different image characteristics), including
a novel cooperative interaction scheme to control the models interactions. DMA can handle large amounts of
geometric and image data in both 2D and 3D scenarios using parallel architectures. Moreover, one of its main
advantages is the possibility of easily include existing DM algorithms to quickly develop and test segmentation
strategies in different medical imaging modalities.

The original proposal has been extended, and the framework re-designed to include new functionality such
as volume difference metrics and distributed processing in order to test several algorithms in an efficient and
transparent manner. DMA is open-source and runs on a PC computer under any common OS (eg: Microsoft
Windows, Linux or iOS). The framework offers a user-friendly environment that lets users to prepare the inputs
and to visualize the results. The initialization module provides different DM techniques to be applied for the
particular segmentation tasks and allows the creation of mesh models to facilitate the experiment set-up. Then,
the visualization module enables the interactive inspection of the resulting mesh models superimposed to the
image volume.

The rest of the paper is organized as follows: Section 2 describes the related work. Section 3 introduces the
framework design. Section 4 explains the used methods, presents the medical image datasets, and describes the
experiments. Next, Section 5 shows the application results. Finally, the paper is concluded in Section 6 with a
further discussion of the usage and performance of DMA.

2. RELATED WORK

Segmentation methods based on deformable models have come into the spotlight in the field of medical applica-
tions.16 DM are curves (in 2D) or surfaces (in 3D) defined within the image domain, which are deformed under
the influence of internal and external forces. Depending on their representation, the DM family is commonly
subdivided into two groups: explicit methods and implicit methods.16 The explicit methods were introduced
with the original snakes presented by Kass et al.17 whereas the implicit ones (level sets) were first proposed
by Malladi et al.18 Since those original proposals, several improvements and extensions have been presented
to overcome their original limitations. While level-sets are an attractive mathematical framework, the implicit
formulation are not nearly as convenient as explicit, parametric formulations for incorporating additional control
mechanisms. Figure 1 describes a DM evolution represented by a polygonal. The initial model state is depicted
in red, the middle states during the evolution are shown in green, and the final result appears as a thick yellow
line.
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Figure 1. Explicit DM evolution example. In red the initial polygonal state, in green the middle states and in thick yellow
line the final result.

Several works have been proposed to resolve particular segmentation problems and significant effort has been
dedicated to the improvement of the algorithms. Abe and Matsuzawa19 propose the use multiple active contour
models (ACM) to segment a single object. Around the object boundary, the ACMs compete with each other and
each ACM extracts a subregion of uniform image properties. The result is the union of a set of subregions. Chen
and Metaxas20 present a hybrid segmentation framework, based on deformable models, where a global energy
function is introduced to combine prior-shape, region-based and boundary techniques under a fixed schema for
3D brain image segmentation. In,21 a combined strategy for 3D volume segmentation is considered, using first
a region growing algorithm for a robust approximation of the objects of interest and then a deformable model
strategy for the final refinement of the segmented meshes.

Under the realm of level sets formulations, Shang et al.22 have developed a region competition active contour
model. The algorithm is derived by minimizing a region based probabilistic energy function and implemented
in a level set framework. The model combines edge and region features in a level set evolution equation and has
been extended to 3D to extract medical objects. Being based on a level set algorithm, the model can deal with
topological changes in a natural way. It uses the minimization of a region based probabilistic energy function.
The competing regions are only the ROI and the background, and it cannot manage multiple segmentations.
Other authors23,24 have used variations of the Chan-Vese formulation25 to segment the image in more than one
object plus the background, searching for homogeneous intensity regions. Nevertheless, this hypothesis does not
hold for some medical imaging modalities because two distinct organs can present similar intensities.

Additionally, Gao et al.26 have developed a 3D multi-object segmentation tool, which not only grants mutual
exclusion between regions but also parallel segmentation and models interaction using a principle of action and
reaction. The authors have introduced a particular novel active contour formulation for this framework which,
however, allows neither segmenting complex structures nor changing the interaction scheme.

On contrary, DMA implements complex- and multi-object segmentation as a whole, both in 2D and 3D images
considering a simple and easy formulation. As it was previously mentioned, it may advantageously employ any
existing explicit DM to tackle diverse segmentation goals.

3. FRAMEWORK DESIGN

The Deformable Models Array main purpose is the medical image segmentation of multiple and complex anatom-
ical structures. To obtain good quality results, the framework has to adapt to different images modalities (e.g.
MRI, CT), and dimensions: 2D and 3D. Although there is not a segmentation technique which can achieve high
quality results in any scenario, the correct selection of existing state-of-the-art techniques in each case could
solve this issue. Particularly, explicit deformable models are quite suitable techniques for parallel and interacting
segmentation due to their capability to incorporate control mechanism such as evolution restrictions, collision
detection, shape guidance, etc. These models are geometrically represented by a closed polygonal for 2D images
and by a triangular surface mesh for 3D volumes, which can be initialized with a given geometry or from the
result of a previous region growing segmentation step.21 As an example, Figure 2 presents a 3D multisegmen-
tation problem of different pelvic organs in MRI. In this case, two previous segmented organs (in yellow) were

Proc. of SPIE Vol. 10572  105721J-3

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 11/28/2017 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Process layer! I

Evolution Control

State Collition CollitionRes
Handle Detection ponse

Dicom R/W

Mesh R/W

I/O layer

considered as evolution restrictions for the evolutive meshes (in green). The initial models are depicted on the
left and the final result using DMA on the right.

Figure 2. 3D multiple segmentation problem.

3.1 General framework design

The framework design has a two-layered architecture. At the top layer we find the user interface, and at the
bottom, the processing layer (Figure 3). This scheme let us separate the presentation module from the processing
options. The full block diagrams depict the main modules, the dashed lines blocks group modules into standard
and custom filters, the arrows represent data flow between modules and the thick horizontal line separates the
two layers.

The required input data comprises: the image to be segmented, a set of initial models called evolving models
(eM ), a set of deformable model techniques (dmT ) to evolve the eM , and the parameters of each dmT . Hence,
these two items are grouped in tuples (eM , dmT ), one for each ROI. Next, DMA enables to include previous
segmentation knowledge by mean of a set of spatial restrictions known as fixed models (fM ). Finally, a few
framework parameters, to be described later, must be set to run the segmentation.

Consequently, a convenient GUI was designed using the Qt libraries27 to facilitate the DMA experiment
set-up, enabling to load and save the complete project state, visualize the scene, etc. We are now working in a
new User Interface based on WEB Technology, in order to improve the data delivery and presentation.

Figure 3. DMA two-layers framework architecture. Top layer: GUI implemented with Qt. Bottom layer: the processing
core filters grouped in Standard and Custom ITK Filters.
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Beneath this top level layer, there are two main groups embedded in the ITK libraries. The the most
important one implements the segmentation process ruled by the evolution control (EvCtrl) module, followed
by the collision detector (ColD), safe state (SS ) and collision resolution (ColR) modules, which are also later
described. The remaining standard functionality group consists of image and mesh reading and writing filters,
which are standard ITK filters.

3.2 Modules

The processing layer software was designed based on the information hiding technique. Each module has its
specific functionality, hiding the actual implemented technique while improving the adaptability and maintenance
of the software. For instance, the only requirement to replace any module is to keep its abstract interface. Figure
4 shows an UML class diagram which presents the modules main interface methods, and covers most of the
associations, dependencies and relationships of the modules which comprise this layer. Following in this section,
we describe the role, interface, interaction, dependencies and challenges of each of the processing modules,
resembling a module guide.

Figure 4. (UML) DMA processing layer class relationship scheme, including the modules most important interface methods.

3.2.1 Evolution Control module

The EvCtrl module is the main coordinator of the segmentation process. Its function is to synchronize all the
dmT , and to control their interaction. The interface provides methods to set its inputs: the eM+fM models, the
dmT with their parameters, the input image, and also the DM maximum number of iterations (Max It), and the
synchronization distance parameter(N ), used for the ColD and ColR modules. As each eM needs one instance
of an SS object, as well as one dmT object, it keeps a list of SS objects, and another list with dmT objects.

On the one hand, the SS keeps a history of previous states of the particular eM to be able to restore their
state to the last collision-safe state or checkpoint whenever is required by the EvCtrl module. On the other hand,
the dmT guide the eM evolution across the iterations. Next, the ColD module tracks the eM evolutions and
interactions, looking for collisions between or inside each eM . The ColR module is able to resolve the collisions,
and is implemented as a Visitor design pattern because it visits the dmT objects modifying the eM evolution
when a collision is detected.The advance method, iterates through all techniques.

The evolution control main module first calls the ColD to check for initial collisions and the SS module to
save the first safe states. Then, the evolution loop starts: the dmT make N iterations, consequently the ColD
checks for collisions, and if any occurs, the EvCtrl ask the different dmT to solve the collision problems by calling
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the ColR object. The SS module saves a list of eM states. The method restoreState() is invoked when a
rollBack is required.

The SS module uses the saved states to restore the models to a safe configuration previous to a mesh
overlapping. During evolution, whenever it is necessary, the EvCtrl can rollback the eM to any of the saved states,
apply a collision solution to the problematic nodes, and re-evolve the eM towards the current synchronization
point. Finally, the new checkpoint is saved in the SS module. The loop continues until all dmT have finished
their evolution. Below, the method evolve() represents the EvCtrl main loop calling all the presented modules.

1 c lass EvolutionControl:evolve ()

2 /∗ No c o l l i s i o n s a t t he b e g inn ing ∗/
3 i f (ColD ->findCollisions ())
4 abort("Collisions before start.");

5 /∗ Save f i r s t s a f e s t a t e in the SS ∗/
6 SS ->SaveStates ();

7 while ( !allModelsFinished )

8 {

9 /∗ Evo lve the models ∗/
10 this ->advance(step);
11 /∗ Check C o l l i s i o n s ∗/
12 collisions=ColD ->findCollisions ();

13 /∗ Manage C o l l i s i o n s ∗/
14 while(collisions)
15 {

16 SS ->restoreStates ();

17 ColR ->SolveCollisions ();

18 this ->advanceNIterations(step);
19 collisions=ColD ->findCollisions ()

20 }

21 /∗ Save Checkpoint ∗/
22 SS->SaveStates ()

23 /∗ Contro l t h e s t op c r i t e r i o n ∗/
24 i f (CheckFinishedModels ())

25 break;
26 } /∗ End wh i l e ∗/

As it was empirically tested, the initial meshes, associated with the eM+fM models, are far from each other.
As a result, long evolution steps can be used during the first iterations. But, once collisions are detected, a small
evolution step is recommended.

The evolution algorithm may be extended to handle different situations, using either of two strategies: fixed-
step evolution or sub-step advance and restore. In the first one, the algorithm has a constant step. In the second
one, the step is adaptative. Consequently, the AdvanceNIterations method may also need to be changed.

3.2.2 Collision Detection

This module implements a collision detector algorithm. This algorithm concerns with the detection of intersecting
geometrical elements from different models or elements of the same model (self-collisions). It is worth noting that
if a collision is not solved, the segmented models would be invalid, with meshes struggling or overlapping. Hence,
the collision detector should efficiently search for potential elements in conflict and, if a collision is detected, a
resolution strategy should be applied. Elements collision checking is performed several times almost in every
iteration, adding a high computational cost to the process. This behavior could be implemented both in 2D and
3D, according to the problem dimension.

The collision detection algorithm is computationally expensive, particularly in 3D. In real time solutions,
grids or kd-trees are good approaches to find elements in the space. Some works have already dealt with mesh-
to-mesh collisions in medical simulations in an efficient way.28 They basically use classifications schemes to do
real time collision detection. Generally, if the collision detection is computed in each iteration, the detection
time is higher than the dmT evolution time.
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The framework can accept several strategies, of both classification and detection. In this work, we have
implemented for 2D a grid classifier and a segment detector and for 3D, also a grid classifier and a triangle
overlapping detector, which check in parallel for superposed triangles in each cell.

3.2.3 Collision Resolution scheme

The collision resolution module implements a resolution strategy, in collaboration with the dmT involved, to
avoid the detected intersections. This class is used as a Visitor pattern. Every dmT must invoke its ColR when
a collision is detected by calling the interface method: SolveCollision(DMTech*,Param). The collision details
are provided as parameters to the ColR to solve it.

A simple but effective method to solve collisions is to “freeze” the colliding elements. These elements are
marked and they are no longer updated in the next evolution steps. Another option, instead of freezing elements,
is to use a proportional repulsive force, opposite to the movement of each colliding element.29 Even though it is
a more general approach, it is unstable, and in the studied cases leads to a similar result as the freezing strategy
but at a higher cost.

A particular problem arises when the eM meshes have different elements size. In this case, bigger geometrical
elements should be divided and new nodes generated in valid positions. In the same way, and depending on
the application, narrow elements could also be merged to reflect a continuous surface. This approach is called
“remeshing”. As our implementation is limited to fixed mesh structures, we omit the remeshing step, but it will
be considered for future implementations.

3.2.4 DM Technique

The final module is the actual DM technique. Every concrete DM algorithm must inherit and implement the
interface methods of the DM Technique class to work in the framework. The interface mandatory methods are
Evolve(n), required to evolve each model eM for n iterations and must support a collision visitor to deal with
the intersections. In this way, it is possible to easily wrap the existing explicit dmT to use them in the framework.

To use a new dmT in DMA it is first necessary to incorporate a new class in the framework. Second, to update
the DM list in the GUI doing the new object instantiation , when selected, and passing the object pointer to
the EvCtrl dmT list. Finally, compile the code with the modifications.In future implementations, this could be
supported in real time using Dynamic Libraries bindings.

The seudo-code below 3.2.4 presents the core of the Evolve method for a generic 2D Snake technique imple-
mentation. The specific model evolution takes place inside the Advance() method, calling StopCriterion() in
each iteration to check if the model evolution has finished.

1 template < c lass Image , c lass Mesh >

2 Snake2D <Image , Mesh >:: Evolve(unsigned N)

3 {

4 /∗ I n i t i a l i z a t i o n ∗/
5 i f (! Initialized)
6 Initialize ();

7 it = 0; /∗ Checkpoint i t e r a t i o n s ∗/
8 while ( (it < N) /∗ Checkpoint (N i t e r a t i o n s ) ∗/
9 && !hasFinished /∗ Stop c r i t e r i o n ∗/

10 && (totIts < maxIt)) /∗ Max i t e r a t i o n s ∗/
11 {

12 /∗ Evo lve the p o i n t s ∗/
13 AdvancePoints ();

14 /∗ Check i f i t has f i n i s h e d ∗/
15 hasFinished = StopCriterion ();

16 /∗ Checkpoint i t e r a t i o n s ∗/
17 it++;

18 /∗ Accumulated i t e r a t i o n s ∗/
19 totIts ++;
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20 } /∗ End wh i l e ∗/
21 ...

22 } /∗ End Evo lve ∗/

Following, two explicit DM techniques formulations are described, which will be used in the examples and
that are implemented in the advancePoints method of each sub-class.

T-Snakes First presented in,30 are discrete approximations to a conventional parametric snakes model while
retaining many of its properties. The deformation of the snake model is governed by discrete Lagrangian equations
of motion and each element x(t) evolves according to the following motion equation:

x(t+ 1) = x(t)−∆t (aα(t) + bβ(t)− pρ(t)− qf(t)) (1)

where α, β are the internal forces (tension and flexion), f , ρ are the external forces (balloon and image gradient
forces) and a, b, p and q are the force weighting parameters. The T-Snakes formulation modifies the original
external force adding an adaptive inflation force ρ(t) term that depends on the image intensity features.

GVF-Snakes Gradient vector flow (GVF) snakes introduce a new external force for active contour models.
The difference between traditional snakes and GVF-Snakes is that the latter converge to boundary concavities
and they do not need to be initialized close to the boundary.31

To improve the original snake formulation, the authors introduced a non-irrotational external force field
v(x, y) = [u(x, y), v(x, y)] known as gradient vector flow field. The field is calculated as a diffusion of the
gradient vectors of a gray-level or binary edge map:

GV F =

∫∫
µ(u2

x + u2
y + v2x + v2y) + |∇f |2|v −∇f |2dxdy (2)

where µ is an input parameter.

3.3 Segmentation quality evaluation module

One important step in the whole segmentation process is to compare the obtained results respect to manual
segmentations provided by experts, which can be considered as ground truth. Therefore, after applying a
particular method, we can estimate the segmentation quality using different indicators or measures. These
indicators are considered in the framework as another module, that could be invoked during the segmentation or
at the end. The idea is to have a ”comparison indicator” between a resulting contour (in 2D) or mesh (in 3D) or
even an image respect to a reference one. To model this behavior, we define a Comparison interface. The main
method compare() receives two objects (a mesh or image) and return a doubled value. This value indicates 0
when they are completely different and 1 when the objects are geometrically equal. Below, we present three
different techniques to compute this metric.

3.3.1 Dice Similarity Coefficient

The first indicator is the Dice Similarity Coefficient (D)32,33 which in this case measures the spatial overlap
accuracy between the ground truth and the DMA result. D basically compares the region similarity or intersection
as follows:

D(A,B) =
2× |A ∩B|
|A|+ |B|

(3)

where A is associated with the ground truth and and B represents the segmented regions. D lies between 0 and
1. The greatest the intersection between the masks, the closest to 1 is D.
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3.3.2 Hausdorff Distance

The undirected partial Hausdorff Distance (H) indicates the degree of mismatch between two sets by measuring
the farthest distance between two points of each sets.

The undirected partial Hausdorff Distance is defined as follows:

H(A,B) = max(h(A,B), h(B,A)), (4)

where A and B are regions (sets of points) and

h(A,B) = max
a∈A

min
b∈B
‖a− b‖.

We use the Euclidian distance in millimeters (mm) using the pixel resolution taken from the DICOM information.
For this case, the mesh should be converted to a 3D grid and then compute the measure.

3.3.3 Mesh Similarity Coefficient

To compare 3D surfaces, we could use the volumetric differences to evaluate two triangular meshes models
according to the following volumetric coefficient metric, as presented in:34

M(A,B) = 1− (fn + fp) (5)

fn =
VA/B

VA
⋃
VB

and fp =
VB/A

VA
⋃
VB

(6)

where fn is the false-negative rate, fp is the false-positive rate, VA is the volume of the reference model A and
VA/B is the volume difference between A and B. In a similar way, VB is the volume of the DMA resulting model
B and VB/A is the volume difference between B and A. Similar to D, M lies between 0 and 1 where 0 means
no similarity and 1 a total similarity. As was discussed in this work, the method could run even in parallel
architectures but only works with 3D meshes.

3.4 Implementation issues

The Deformable Models Array framework has two major implementation issues. The first one is the dimension-
ality problem, to allow working with either 2D and 3D images and the corresponding eM geometrical represen-
tations. Most of the framework modules must deal with generic Image and Mesh types, which is not that simple
to be solved. The second issue is the time and space complexity when working with 3D scenarios.

3.4.1 Dimensionality

Although 2D models are not large, 3D meshes could have up to 50.000 points, for a typical medical image,
rapidly increasing the memory demand. The SS class must keep track of previous states of each mesh including
particular checkpoints associated to safe-states where the mesh is free of intra- or inter- models collisions. As
the meshes topology does not change in our model, it is just necessary to save the points coordinates and not
the cells (segments or triangles). Anyhow, this procedure is time consuming when the mesh is considerably large.

The collision detector module is called, when necessary, by the EvCtrl. On the initial setup process, the
EvCtrl must set the specific ElementDetector, depending on the dimension and mesh morphology, as well as
the eM and fM models. For instance, a segment intersection routine is suitable for 2D and a spatial triangle
intersection routine for 3D meshes. An efficient collision detection algorithm is mandatory for the volumetric
meshes, otherwise it would be extremely time-consuming. Therefore, we model a general Classifier to encapsulate
the spatial clustering methods. In 3D, we implemented a regular 3D grid, as shown in Figure 5. Each bin or cell
of this grid has a set of the geometric elements that intersects it. Collisions are checked inside each bin, reducing
overall computing time from Θ(N2) to

∑S
i=1(n2i ), where N is the total number of triangles, ni is the number of

triangles in the bin i, S is the total number of bins from the grid, and generally n << N . Figure 4 shows part
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Figure 5. Rectum classified by a 3D Grid to detect self-collisions.

of the module interface where the gathered list of collisions is accessible by calling the findIntersections()

method.

All the above described modules must work in 2D as well as in 3D. The ITK libraries architecture design,
built in C++ using templates, naturally allows to deal with dimension switch. Only the Detectors and the DM-
Technique modules are dimensionally dependent, requiring concrete implementations. For the rest, is completely
transparent.

3.4.2 Memory usage

Although in a 2D scenario the RAM memory in not a determining resource, a proper and efficient use of it
must be considered in 3D scenarios. Not only a high resolution DICOM image can take up a lot of space (e.g.:
40 · 106 voxels) but also the mesh models all together can have a quarter of million points and an eight million of
geometric elements (triangles). For this reason, it is prohibitive to make copies of these structures. The image
is globally shared by all the DMA modules, whereas each mesh is communal to the proper dmT and the ColD
object. The specialized filters load the image and meshes, and hereafter, the memory pointers are passed to the
necessary modules to share these memory spaces, resulting in an efficient usage of the memory space that allows
to work with more complex and larger segmentation tasks.

3.5 Software and hardware requirements

Finally, it is important to remark that Deformable Models Array runs under any computer having
CMake, QT v5.0, ITK v4.11 and VTK v5.6 libraries (or newer) installed. The minimum suggested RAM
memory is 4Gb, although it actually depends on the specific segmentation scenario. Volumetric scenarios would
demand more computational power and memory, while 2D scenarios are less demanding. The application, with
GUI and processing modules, could also be deployed both locally or distributed as a client-server. The source
code could be downloaded at https://github.com/guidomaiola/dma-tool.

4. EMPIRICAL ASSESSMENT

In this Section, we aim to show the efficacy and adaptability of the software design. We implemented the three
quantitative metrics to assess the segmentation results (Dice, HDistance and MeshDif). Then, we describe two
real-case segmentation tasks in different dimensions, image modalities, and DM techniques, which covers most
of the DMA functionality. The first example is the bladder and prostate segmentation in 2D transversal MRIs,
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and the other is the heart segmentation in 3D CTs using previous knowledge as constraints. Both experiments
include a comparison between the stand alone techniques and the DMA results. The experiments were ran in
an Intel(R) Core (TM) i5-3570 CPU @ 3.40GHz with 16Gb RAM and Linux kernel version: 3.11.0-23-generic.

4.1 Bladder and prostate in 2D-MRI

In the first experiment, we present the segmentation of two adjacent pelvic organs (bladder and prostate) from
the MICCAI 2012 prostate segmentation challenge∗ dataset of transversal T2-weighted MR. The datasets were
acquired under different clinical settings. They are multicenter and multivendor, and have different acquisition
protocols (e.g., differences in slice thickness, with/ without endorectal coil). Reference segmentations of the
prostate are available for the dataset and the bladder was manually segmented by an expert for the experiment
purpose. We selected a single transversal slice from each of the 10 considered patients where these pelvic organs
were adjacent to each other. We use between one and three eM for the bladder as well as for the prostate
according to the images inhomogeneities and organs complex shapes. For the dmT , we use GVF-Snakes for the
bladder and T-Snakes for the prostate.

Figure 6. Bladder and prostate segmentation in transversal MRI. eM (circles), B: bladder, P: prostate and R: Rectum.

An initialization example is shown in Figure 6. The prostate delimitation is particularly difficult because of
its intensity inhomogeneities. The final result is represented by the union of the eM final states.

4.2 Heart segmentation in CT

In this experiment, we used a public dataset†. The 3D-IRCADb-02 database is composed of two anonymized
thoraco-abdominal enhanced 3D CT-scans. The first acquisition was made during the arterial phase in inhaled
position.

The dataset provides the ground truth segmentation of the principal organs as DICOM images, and as tri-
angular surface meshes as well. We segmented the heart using the ground truth meshes of the surrounding
organs (lungs, stomach, liver and vena cava) as constraints or fM s. Figure 7 shows the initialization using the
visualization module of the GUI belonging to the VTK libraries. We present three different runs. In the first
one, we set the parameter configuration leading to a model expansion without using any image information (we
nullified the gradient external force). The second uses all the standard forces but not the context information.
Finally, the third run uses all of the available information.

∗http://promise12.grand-challenge.org/
†http://www.ircad.fr/softwares/
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P13 P15 P18 P19 P21 P23 P27 P28 P30 P35 avg

Top 5

(Litjens
2014)

D 0,893 0,958 0,963 0,935 0,949 0,919 0,956 0,954 0,920 0,939 0,939
Bladder

DMA 3-f 8,360 3,720 3,000 4,280 3,720 3,720 1,950 3,120 4,300 4,220 4,039

Multiple D 0,883 0,912 0,956 0,850 0,827 0,827 0,891 0,921 0,907 0,886 0,886 0,890
Prostate

3-f 3,790 2,480 4,590 3,520 3,970 3,970 4,570 3,170 9,120 3,140 4,232 5,300

D 0,805 0,963 0,884 0,939 0,949 0,949 0,965 0,952 0,921 0,934 0,926
Single Bladder

31- 3,760 2,480 12,720 3,610 2,770 2,770 1,950 3,920 5,240 4,220 4,344
no-

D
collision Prostate

0,881 0,823 0,954 0,839 0,757 0,757 0,823 0,925 0,902 0,877 0,854 0,890

15,200 5,330 4,570 5,300 7,490 7,490 8,670 3,150 9,120 3,780 7,010 5,300

Figure 7. Experiment initialization on CT: in green the initial eM of the heart, in gray all the fM s.

5. RESULTS

5.1 Bladder and prostate in 2D-MRI

We considered ten images corresponding to different patients. This multi-object segmentation experiment exploits
most of the capabilities of the framework. Firstly, we segmented the bladder and the prostate simultaneously.
Both organs were considered as a complex structures employing two or three eM using their own sets of param-
eters to overwhelm the image heterogeneities and complex shapes. We used N = 25 with a fixed step checking
strategy for all the runs. Figure 8 presents the experiment qualitative results: on the left, the DMA results and
on the right, the stand alone technique results. The spheric model initializations are depicted in yellow, the
segments that did not collide in green, and the collided elements in red. On the one hand, the bladder external
contours are mostly green, except for interaction with the prostate. On the other hand, when two or more eM
represent the structure of interest, their internal borders are completely red (e.g.: bladder P13a, P15a and P18a).
In general, most of the results between DMA and the stand alone techniques are quite similar. Yet, intensity
heterogeneities made P18 bladder particularly difficult to segment with one technique (18b Fig. 8). A similar
situation occurs with the P21 prostate segmentation. The complete evolution lasts just a few seconds in each case.

Table 1. Multiple organ segmentation, quantitative comparison using D and H (mm) against GT. The DMA results in
the upper part, the stand alone dmT at the bottom.

Table 1 shows the Dice Metric and Hausdorff Distance of the segmentation results against the GT. The DMA
achieved excellent results in this segmentation task: DBl = 0.938, HBl = 4.47mm for the bladder and DPr =
0.897, HPr = 4.95mm for the prostate while the standalone techniques gathered DBl = 0.923, HBl = 5.16mm
for the bladder and DPr = 0.872, HPr = 7.39mm for the prostate. We compared and shown in Table 1 the
results of the Prostate segmentation against the best results presented in35 and they were almost equally.
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Figure 8. Bladder and prostate results for several patients: using the DMA framework (left) and using the standalone
techniques (right). The model initializations are shown in yellow, the non-collided segments in green and the collided
ones in red.

Information M fP fN
Context 0.765 0.202 0.053
Image 0.845 0.096 0.059
Both 0.892 0.068 0.040

Table 2. Quantitative comparison of the different information usage during segmentation.

5.2 Heart segmentation in CT

In this experiment, we did three different runs to assess the importance of the information sources. For each run
we used a sub-step checking strategy with N = 50. In the first run we appreciate the importance of the context
information. Just using the context information, we can achieve an acceptable segmentation: M = 0.765 (Table
2, first row). As the eM does not use image information, the DMA should over segment the heart since the eM
only stops when it collides with a fM . This phenomenon is remarked in the fp column of the Context experiment
in Table 2. The fp, which represents the over-segmentation phenomenon, comprehends the overall greatest error.
In the second run, we performed a standard segmentation. Despite having a better overall segmentation metric:
M = 0.845 and half of the fp volume compared to the first run, the eM intersects boundary organs, especially
the liver and the lungs. The final experiment used all of the available information. In this case, the eM molded
to the surrounding organs, and obtained the best result, M = 0.892, with the lowest fp and fn volumes.

Each mesh has about 50 thousand triangles. The complete evolution lasts about one minute each. Using the
sub-step strategy, time is about three times lower respect to the constant step strategy.

6. DISCUSSION AND CONCLUDING REMARKS

In this paper, we have described the extended version of Deformable Models Array, an object-oriented segmenta-
tion framework dedicated to complex and multiple structures segmentation using existing or new DM techniques
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specially useful in the medical analysis area. A novel cooperative interaction scheme has been included, which
was benefited by the context spatial information, generally improving the individual segmentation techniques in
adjacent structure segmentation scenarios.

The DMA layered software design enabled to satisfy all its requirements. On the one hand, at the top layer,
the specific GUI provides a user-friendly environment for easy segmentation prototyping. On the other hand,
the bottom processing layer, based on the information hiding technique and design patterns, deals with the
high computational workload, and the dimensionality problem, providing a simple way to wrap existing DM
techniques and use them in the framework. The usage of open-source libraries makes it possible to install DMA
on any personal computer.

In the current DMA version, employing an existing dmT requires an implementation in C++, as a new class
inherited from the DM-technique abstract class. This could be improved using a component-oriented method to
combine different programming languages including Matlab or Python which are worldwide used to implement
these kind of techniques.

The presented results demonstrate the performance of the framework applied to two real-case segmentation
tasks. In the MRI bladder and prostate experiment, DMA not only achieved better segmentation results than
the standalone technique but also did it in a parallel way. The contextual information along with the different
DM techniques and parameter settings across the models, enhanced the results in the most problematic cases
including intensity variations and blurred borders. The CT heart volumetric experiment showed in detail the
benefits of using previous knowledge as spatial restrictions to increase the overall segmentation quality.

Summarizing, DMA is capable of: firstly, using any dmT as a standalone technique; secondly, doing multiple-
segmentations by using two or more models evolved by the same dmT with different parameters or by employing
the most suitable technique for each ROI; thirdly, performing complex-segmentations with the same variations of
the multiple-segmentation; and finally, combining standalone, multiple and complex segmentation, all together,
in a parallel way. On top of that, it is possible to work in both 2D and 3D scenarios, leading to an incredibly
powerful and versatile segmentation framework.
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