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Abstract We present theoretical and experimental results
regarding the instability of a thin liquid film in the form a
long filament sitted on a solid substrate. We consider this
problem in two different scenarios, namely, at submillimet-
ric and nanometric scales, and we study their free surface
instability. In the first scale, we take into account the effects
due to surface tension and gravity, while in the smaller
scale, we add intermolecular interaction and neglect gravity.
The flows are modeled within the long wave approxima-
tion, which leads to a nonlinear fourth-order differential
equation for the fluid thickness. This model equation also
includes the partial wetting condition between the liquid and
the solid. In the theoretical models, we analyze the linear
stability of the equilibrium configurations. The linear sta-
bility analyses lead to eigenvalue problems that are solved
using pseudo spectral methods in the submillimetric case,
and finite differences in the nanoscale. Whenever possible,
the theoretical results are compared with experiments per-
formed on a submillimetric scale (silicon oils on glass), as
well as on nanometric scale (nickel films melted by laser
irradiation on SiO2 substrates).
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1 Introduction

The process formation of liquid particles appears in differ-
ent contexts from macroscopic (submillimetric or micron
scale) to nanometric scales. In this paper, we shall dis-
cuss the instability processes that occur when a liquid is
deposited on a substrate with a given geometry in both
macro and microscales. Here, we focus on thin structures
with the form of a long filament.

There is presently much interest in the production of
nanoparticles, the main reason being that some important
material properties, such as magnetic moment [1], ioniza-
tion potential, surface tension [2], and melting point [3] are
drastically affected by metallic nanoparticles size in the sub-
20-nm diameter range. Some applications stand to benefit
from these size-dependent properties [4, 5]. Since the pat-
tern formed by these nanoparticles on substrates plays a
crucial role, some physical-based methods result more con-
venient than chemical ones [6]. The latter are very efficient
to form drops with a precise radius (or a specific range of
radii), but fail to produce a desired arrangement. Instead, the
physical methods are more appropriate to produce a defined
pattern.

One example of the use of nanodrops in applications
is the combination of the resonant plasmonic properties
of metallic nanoparticles within the thin-films photovoltaic
technology [7]. Plasmonic solar cells, where the silicon
wafer is coated with silver nanoparticles, are emerging
as promising candidates amongst many solar energy tech-
nologies. Another example is the controlled growth of
semiconductor nanowires (particularly Si and Ge) starting
from a substrate, by chemical vapor deposition (CVD). Its
preparation is a key factor in controlling the morphology
of the resulting growth. Parallel vertical nanowires grown
epitaxially from the substrate are of particular interest for
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manufacturable electronic, optical, and some photovoltaic
applications. Most of the emerging physical methods (devel-
oped to pattern drops on a substrate as integrated processes)
include lithographic methods. Here, we will focus instead
on the pulsed laser induced dewetting (PLiD) processes
as an alternative. In this context, thin film dewetting has
recently attracted much interest as a way to yield a spa-
tially correlated metal particle network on a surface [8, 9].
Surface waves evolving spontaneously on liquid films are
either stable, leading to a smooth film, or unstable, leading
to film fragmentation and formation of particles. While in
the nanometric scale, this process involves a complex inter-
play between the laser melting (laser absorption depth and
metal heating/melting) and the resultant liquid surface ener-
gies and viscosity, a simpler experiment can be used as a
benchmark of the theories and models: submillimetric scale
systems using silicon oils instead of melted metals. Thus,
we study here the macroscopic case of a long filament to
understand the main fluid dynamics features, in order to
shed some light on the analogous instability issues in the
nanometric scale.

2 Submillimetric Range

The aim of this section is to discuss the instability of a
thin liquid filament placed on a substrate with characteristic
transverse lengths in the range of a few millimeters down to
some micrometers (i.e., in a macroscopic scale). In this case,
both surface tension and gravitational forces must be taken
into account. First, we describe the experimental techniques
used [10], and then we carry out the theoretical treatment
of the instability. At the end of this section, we compare the
theoretical predictions with the experimental data.

2.1 Experiments with Silicon Oils

The substrate used in the experiments is a microscope slide
coated with a fluorinated solution (EGC-1700 of 3M) by dip
coating under controlled speed (≈ 5 mm/s). This coating
ensures that the substrate is partially wetted by the sili-
con oil (polydimethylsiloxane, PDMS). In order to generate
the initial condition (filament), we start with a vertical jet
of PDMS flowing down from a small nozzle at the bot-
tom of a vessel filled with the silicon oil [11] (viscosity
μ = 20 Poise, density ρ = 0.96 g/cm3, and surface tension
γ = 21 dyn/cm). The diameter, d (0.3–1 mm), of the result-
ing jet, and its cross section A, are highly reproducible and
can be regulated by varying the nozzle diameter, the height
of the oil in the vessel, and the fluid viscosity.

The filament is captured from the jet on a substrate
by performing suitable rotations of its frame before reach-
ing the final horizontal position. All these movements take

about from 1 to 2 s, i.e. a time interval which is very short
compared to the time scale of the experiment. This experi-
mental procedure yields a fluid filament of uniform width,
w, with parallel and straight contact lines, so that the initial
configuration has a constant cross-sectional area along the
filament axis [11]. The wettability of PDMS on the coated
glass is characterized by measuring the static contact angle,
θ0, of a single circular drop at rest on a horizontal substrate.
Since the drop is placed from the tip of a syringe, the drop
edge corresponds to an advancing contact lines till it reaches
the maximum radius.

Once the filament is on the substrate, the main perturba-
tions are localized at its extremes, while the rest of it is in
equilibrium. Then, the extremes begin to dewet along the
filament axis, where a bulge is developed and whose size
increases as the reduction of the length of the filament goes
on. Meanwhile, the width of the neck connecting the bulge
and the filament decreases until it finally pinches off and a
drop detaches at each extreme. As the axial dewetting pro-
cess continues, successive bulges and neck pinch-offs give
place to a near equidistant linear array of drops (see Fig. 1).

In order to probe the evolution of the neck region as
well as to observe the shape of the contact line along the
whole filament, a schlieren technique is used. In addition,
this method allows us to ascertain that the initial max-
imum thickness is uniform, which ensures that there is
no externally imposed characteristic wavelength within the
experimental error. A typical pinch-off process is shown
in Fig. 2, where we can see a short region of the uniform
filament (on the left) and half of the bulge/drop (on the
right). The width of the neck decreases until it breaks up,

(a) 0 min (b) 4.87 min

(c) 8.93 min (d) 10.93 min

(e) 12.13 min (f) 15.92 min

(g) 19.33 min (h) 21.46 min

(i) 400 min

Fig. 1 Evolution of the system and formation of primary drops [10].
The black segment corresponds to 4.2 cm
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(a) t = 0 s (b) t = 8.17 s

(c) t = 9.81 s (d) t = 10.61 s

(e) t = 11.31 s (f) t = 11.78 s

(g) t = 12.28 s (h) t = 14.18 s

(i) t = 33.97 s

Fig. 2 Close up of the pinch off of a filament and generation of
secondary drops [10]. a Formation of the neck, b advanced stage of
the pinch off process, c first break up of the neck, d detachment of
the tertiary droplet on the right from the secondary one, e buildup of
the secondary drop, f detachment of the secondary drop from the left
bridge, g formation of the tertiary droplet on the left by the breakup of
the remaining bridge, h dewetting of the main strip, and i final shape
of the primary drop and further dewetting of the strip

so that the bulge evolves into a detached drop. This pro-
cess is not symmetric (it occurs first on the drop side), and
it originates secondary droplets, as well as tertiary smaller
droplets. Furthermore, we have been able to detect quater-
nary drops in several cases. This type of breakup process is
repeated until an array of quasi-equidistant primary drops is
achieved (Fig. 1). All drops reach an equilibrium state since
no detectable change in shape is observed after several days.
Note that the formation of each primary drop involves two
processes: the breakup process and the receding motion of
the bulges. The duration of the former is of the order of tens
of seconds (see Fig. 2) while that of the latter is of the order

of some minutes, depending on the width of the original
filament.

2.2 Long Wave Approximation with Slipping
and Gravity

In the study of thin film flows on solid substrates, the
evolution of the fluid thickness, h, is typically described
under the framework of the long wave approximation or
lubrication theory (see e.g. [12]). This approach allows to
reduce Navier–Stokes equations to a single nonlinear partial
differential equation for h.

We note that although lubrication theory is strictly valid
only in problems characterized by vanishing free surface
slopes, it has been used commonly in partial wetting con-
ditions, therefore in situations in which the contact angle
is not necessarily small [13–15] (see also [16–19] for fur-
ther discussion regarding involved issues). This approach
has been justified in part by some works that show that even
in the case of large contact angles, only relatively small
deviations from more complete models result. For exam-
ple, [20] compares the solutions for the cross section of
a filament flowing down a plane obtained by solving the
complete Navier-Stokes equation with the predictions of the
lubrication approximation (see their Table I). For a contact
angle of 30◦, they find that the differences between the two
approaches related with the shape of the free surface are of
the order of a few percents.

Although the accuracy of the lubrication approximation
is not so good regarding the details of the velocity field, they
find that these velocity differences cancel out when the total
flux along the filament is computed. The issue of appropri-
ateness of the use of the lubrication approximation was also
discussed earlier [21]. In that work, it was shown that there
are some differences in the free surface slope between lubri-
cation theory and Stokes formulation, but only very close to
the contact line. Another concern regarding the use of the
lubrication approximation is that one typically (as we do
here) approximates the curvature of the free surface by hxx ,
where x is an in-plane coordinate. This issue was considered
in [22], where it is shown that the use of the complete non-
linear curvature yields only a few percent difference (see,
e.g. Fig. 2b in [22]). There have been also some attempts
[23, 24] to improve the typical lubrication approximation
approach. These works show that including a correction fac-
tor to the flux term in the continuity equation extends the
limits of its validity.

Therefore, it may be appropriate to implement these
improvements when precise quantitative results are desired.
Here, where we are mainly concerned with the basic mech-
anisms involved in the dewetting and breakup processes, we
expect that the standard lubrication approach is sufficient.
The resulting equation for the fluid thickness, h, are shown
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below in (11) and (43) for the macroscopic and nanomet-
ric approaches, respectively (see, e.g., [12, 25, 26]). The van
der Waals forces are included in the formulation of a lubri-
cation model via disjoining pressure (see, e.g., Appendix A
in [27])

2.2.1 Static Solution

The governing equation for the thickness profile of the
static filament is obtained by considering the fact that veloc-
ity field vanishes everywhere. Therefore, the dimensionless
balance between the pressure and gravitational forces can
be written as,

0 = −∇p − ẑ. (1)

Here, the spatial variables (x, y, and z) are in units of the
length scale

L1 = a, (2)

where a = √
γ /(ρg) is the capillary length, with g the

gravity (e.g., we have a = 0.145 cm for PDMS). Then, the
pressure p is in units of γ /a.

By introducing the Laplace pressure boundary condition
for small slopes, we have, p = −h′′

0 at the filament free
surface, z = h0(x) (y-direction is along the filament). Then,
integration of (1) yields

h′′
0 − h0 + p0 = 0, (3)

where the constant, p0, is the value of the fluid pressure
inside the filament. The boundary conditions for (3) are

h0 = 0, h′
0 = tan θ0, (4)

at x = s0, which is the position of the leading (front) contact
line of the static filament. Here, we choose x = 0 as the
middle point of the filament so that s0 = w/2, where w is
the filament width. The solution of (3) which satisfies (4)
can be found analytically as [28]

h0(x) = p0

[
1 − cosh x

cosh s0

]
. (5)

The pressure p0 is obtained from the condition of constant
area cross section

A =
∫ s0

−s0

h0(x)dx (6)

as

p0 = A/2

s0 − tanh s0
. (7)

In order to find s0, we employ the contact angle conditions,
(4), so that

tan θ0 = p0 tanh s0, (8)

and then corresponding value of s0 is then given by

2 tan θ0

A
= tanh s0

s0 − tanh s0
, (9)

which is solved numerically with given values of A and θ0.

2.2.2 Linear Stability Analysis (LSA)

Considering stability of the filament leads to the issue of
moving contact lines. Here, we resort to the slip model
to regularize the well-known singularity along these lines
[29]. In this context, instead of the no-slip condition of zero
velocity parallel to the substrate, i.e., vx = 0 at z = 0, we
use the Navier boundary condition

vx = �

3

∂vx

∂z
(10)

to allow the fluid to slip on the substrate, where � is the slip-
ping length in units of a. Therefore, under the usual assump-
tions of the lubrication theory, the governing equation for
the thickness h(x, y, t) obeys the following dimensionless
fourth-order nonlinear partial differential equation [30, 31]

∂h

∂t
+ ∇ ·

[
h2(h + �)∇

(
∇2h − h

)]
= 0, (11)

where time t is in units of

T1 = 3μa

γ
. (12)

In (11), the first term in the square brackets stands for
surface tension forces, while the second one represents grav-
ity force. The conditions at the boundaries of the filament
(contact lines) are now

h = 0, at x = sl(y, t) and x = sr (y, t), (13)

where sl < 0 (sr > 0) is the position of the left (right) con-
tact line of the filament. Since the initially straight contact
lines may become corrugated during the drop motion, the
slopes at the front and back boundaries are given by

∂h

∂x

∣∣∣∣
x=sl,r

[
1 +

(
∂sl,r

∂y

)2
]−1/2

= ∓ tan θ0, (14)

where we assume that the amplitude of the corrugation is
small, so that ∂h/∂y � 1. Note that by putting � = 0
and ignoring y and t dependence in (11), (13) and (14), we
recover the equations describing the static solution, h0(x).

In order to analyze the linear stability of the equilibrium
static solution, we perform a linear modal analysis of (11).
Thus, we perturb the thickness h(x, y, t) and the positions
of the contact lines with undulations of wavelength λ along
the filament as

h(x, y, t) = h0(x) + ε Φ(x) cos (ky) eωt , (15)

sl(y, t) = −s0 + ε ξl cos (ky) eωt , (16)

sr (y, t) = s0 + ε ξr cos (ky) eωt , , (17)
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where k = 2π/λ is the wavenumber. Substituting (15) into
(11), we formulate the following eigenvalue problem,

LΦ = −ω Φ. (18)

Here, L is a linear operator defined in compact form by

LΦ = H0

(
D2 − k2

) (
D2 − k2 − 1

)
Φ

+DH0

(
D2 − k2 − 1

)
DΦ, (19)

where D = d/dx and H0 = h2
0(h0 + �). This expression

can be expanded as

LΦ = c4(x)Φxxxx + c3(x)Φxxx + c2(x)Φxx + c1(x)Φx

+c0(x)Φ, (20)

where the coefficients ci(x) (i = 0, ..., 4) are given by

c4(x) = H0, c3(x) = DH0, c2(x) = −
(

1 + 2k2
)

H0,

c1(x) = −
(

1 + k2
)

DH0, c0(x) = k2
(

1 + k2
)

H0. (21)

The linearized forms of the boundary conditions (13) and
(14) yield

Φ(−s0) + ξrh
′
0(−s0) = 0, ξrh

′′
0(−s0) + Φ ′(−s0) = 0, (22)

Φ(s0) + ξlh
′
0(s0) = 0, −ξlh

′′
0(s) − Φ ′(s0) = 0. (23)

From the known values of the derivatives of h0 at the
boundaries, the unknown amplitudes, ξl,r , can be eliminated
from these conditions, which are replaced by

Φ ′(±s0) = h′′
0(±s0)

h′
0(±s0)

Φ(±s0) = κ±(s0)Φ(±s0). (24)

These boundary conditions now allow to solve the eigen-
value problem, (18), and find the eigenvalues, ω (the growth
rates of the modes k). Although the equation to be solved is
linear, it is fourth order with variable coefficients, so that its
solution can only be found by resorting to numerical tech-
niques. However, before solving this eigenvalue problem,
we first discuss the marginal stability of the problem.

The neutral solution of (18) with ω = 0 satisfies (D2 −
k2
c −1)Φ = 0 (see (19)), giving the following eigenfunction

corresponding to marginally stable state

Φ(x) = C1 cosh k̃cx + C2 sinh k̃cx, (25)

where k̃c = √
k2
c + 1. Note that, as expected, this solution

does not depend on the slip length, �, since no motion of the
contact line is required to describe the marginal stability. By
inserting this expression into the boundary conditions, (24),
we obtain a system of equations for C1 and C2. Since the
eigenfunctions are unknown up to a multiplicative constant,
we take C1 = 1 and, by eliminating C2, we have

k̃c tanh
(
k̃cs0

)
tanh (s0) = 1, (26)

which is coincident with Eq. (4.21) in [32], where a vari-
ational principle was used for its derivation. As mentioned
above, the marginal stability results are independent of the
slip length �. However, there can be influence of � on the
most unstable wavenumber, since instability requires front
motion.

The linear eigenvalue problem posed by the differential
operator in (19) combined with the boundary condition (24)
can be solved numerically for a given value of k. This is
done by discretizing the differential equation, (20), using
a Chebyshev pseudo-spectral approximation of the deriva-
tives, subject to the boundary condition specified by (24).
This method is easier to implement and more accurate in
imposing the boundary conditions at the contact lines com-
pared to usual finite differences. Moreover, the number of
nodes required with the pseudo-spectral method to obtain
converged solutions is much smaller than with a difference
scheme, leading to a significant reduction in the computing
time (from hours to seconds).

Thus, under the pseudo-spectral method, we write the
solution of (20) as

Φ(x) =
N∑

i=1

βiφi−1(x), (27)

where φi(x) is an orthogonal base, and βi are unknown
spectral coefficients. By using the Gauss-Lobatto grid [33]

xi = s cos

(
πi

N − 1

)
, i = 1, 2, ..., (N − 2), (28)

we generate a matrix of dimension N − 2 and require that
the residual of the differential equation vanishes at the inter-
polation points on the interior of the interval (−s0, s0).
We allocate the remaining two rows of the N dimensional
matrix to impose the boundary conditions.

In order to satisfy these conditions, we perform a basis
recombination of Chebyshev functions, Ti(x/s0). That is,
we choose a simple linear combination of the original basis
functions so that the new functions individually satisfy the
boundary conditions. Thus, we use the base φi(x) defined
by

φi(x) = Ti(x/s0) + aiTi+1(x/s0) + biTi+2(x/s0), (29)

where Ti(x/s0) = cos(i arccos x/s0). By inserting φi(x)

into (24), we obtain two linear equations for the unknowns
ai and bi[
(i + 1)2 + κ̃−]

ai −
[
(i + 2)2 + κ̃−]

bi = κ̃− + i2

[
(i + 1)2 − κ̃+]

ai +
[
(i + 2)2 − κ̃+]

bi = κ̃+ − i2

which are easily solved in terms of i, and κ̃± = κ±s. Then,
we pose the eigenvalue problem

Ui,jβi = −ωVi,jβi, i, j = 1, 2, ..., (N − 2) (30)
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0 0.1 0.2 0.3 0.4 0.5
k

-0.001

-0.0005

0

0.0005

ω

N=20
N=40
N=80
N=120

ω1

ω2

Fig. 3 Maximum eigenvalues obtained with Chebyshev pseudo spec-
tral method versus wavenumber, k, with increasing number of spectral
terms, showing convergence of the results. Here, we use A = 1,
θ0 = 30◦, and � = 10−3

where

Ui,j = c̃4(xi)φ
′′′′
j−1(xi) + c̃3(xi)φ

′′′
j−1(xi) + c̃2(xi)φ

′′
j−1(xi)

+c̃1(xi)φ
′
j−1(xi) + c̃0(xi)φj−1(xi), (31)

Vi,j = φj−1(xi), (32)

and c̃i = si
0ci . For a given k, we find the largest eigen-

value, ω1, with its corresponding eigenvector, β1
i , which

yields the eigenfunction Φ1(x), as given by (27) for βi =
β1

i . We find that a single eigenfunction correspond to each
eigenvalue.

Figure 3 shows convergence of the results as N increases.
Note that convergence is faster in the unstable branch, ω1,
compared to the stable one, ω2. This is convenient since
we are mainly interested in the growth rate of unstable
modes. It should also be mentioned that the earlier work
[31] focuses exclusively on this range, and the calculation
of the growth rates is performed by means of an itera-
tive method, in contrast to solving the complete eigenvalue
problem as done here. We have verified that the present
technique accurately reproduces the results reported in [31].
Additional calculations show that numerical convergence
requires larger values of N for smaller �. For example, for
� = 10−5, a convergence similar to that of Fig. 3 is achieved
for N = 640.

We proceed by analyzing the dispersion curves. Figure 4
shows the two largest eigenvalues, ω1(k) and ω2(k), as well
as the corresponding eigenfunctions for a selected value of
k. Since these functions are defined up to a constant factor,
we normalize them by their maximum value in the inter-
val [−1, 1] and choose the sign so that Φ(s0) > 0. With
this convention, Φ1(x) and Φ2(x) correspond to symmetric
(varicose) and antisymmetric (zig–zag) modes, respectively.
These properties do not change along the corresponding

0 0.1 0.2 0.3 0.4 0.5 0.6k
-0.0010

-0.0005

0.0000

0.0005

ω ω1
ω2

-1 -0.5 0 0.5 1
x / s

0

-1

0

1

Φ(x)
Φ

1
(x)

Φ
2
(x)

(a)

(b)

k=0.3

Fig. 4 a Dispersion curves and b eigenfunctions at k = 0.3 for the
horizontal plane. The parameters are as in Fig. 3

branch. Note also that |Φ(x)| always reaches maximum
value at the domain boundaries.

2.3 Comparison with Experiments: Silicon Oils

Figure 5 shows the final drop pattern after complete breakup
of a filament with cross section Ã = 0.032a2 on a horizontal
plane (see also [34]). Additional experiments with different
A’s were carried out, and the averaged distance between the
drops was extracted.

Figure 6 summarizes the results for this average distance,
shown as solid circles. These results can be now com-
pared with the theoretical prediction from the linear stability
analysis, λm, shown by the solid curve. Note the good agree-
ment between the experimental data the theoretical curve for
small areas (A < 0.1, in units of a2).

The dispersion of the experimental data can be under-
stood by recalling finite filament lengths effects. In fact, the
wavelength of the mode of maximum growth rate, λm, may
not fit an integer number of times in the length, L, of the fil-
ament. Thus, the system tends to select the closest possible
spacing between drops that fits in the filament length and
yields an integer number of identical drops, nd . By taking
this into account, we define a range of expected drops spac-
ing that can have a positive or negative difference of at least

Fig. 5 Final drop configuration for a PDMS filament with cross
section Ã = 0.0007 cm2 = 0.032a2 on a horizontal substrate, where
θ0 = 17◦ ± 1◦
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0 0.05 0.1 0.15 0.2
A 

0

5

10

λ
m

Fig. 6 Average spacing between drops (symbols) as a function of
the cross section of the filament, A. The curve corresponds to λm as
predicted by the LSA using � = 10−3. The step-like dashed lines
illustrates the finite-size effects, as discussed in the text

one drop with respect to L/λm. This leads to the following
upper and lower bounds

(λ+, λ−) =
⎧⎨
⎩

(
L
n0

, L
n0+2

)
if nd − n0 > 0.5(

L
n0−1 , L

n0+1

)
ifnd − n0 < 0.5,

(33)

where n0 is the integer part of L/λm. The piecewise stair-
case function plotted in Fig. 6 shows that most of the
experimental data fall within the band of expected values of
the spacing. Note that for large areas, the number of drops
strongly decreases, and thus the band (λ+−λ−) increases in
size, justifying finding larger dispersion in the experiments.

2.4 Energy Modeling

In this section, we aim to predict the number, size, and distri-
bution of the primary drops in terms of the energy variation
between initial and final stages. To do so, we consider the
total energy (in units of γ ) as

E = S − Sw cos θ0 + Eg, (34)

where S is the free surface area, Sw is the wetted area (pro-
jection of S on the substrate), and Eg is the gravitational
energy. We apply this definition to both the initial filament
and the resulting final drops.

Since we measure both the diameter, d, of the original jet
and the length of the filament on the substrate, L, the initial
energy of the system is given by the filament energy, Ef ,
defined by means of (34). Note that both the jet and captured
filament have the same cross section, A = πd2/4. Thus, for
given A and θ0, (5)–(9) allow us to calculate s0, and terms
for the energy filament, Ef , are

Sf = L

∫ s0

0

√
1 +

(
∂h0

∂x

)2

dx, Sw,f = 2s0L,

Eg,f = L

∫ s0

0
h0(x)2 dx. (35)

Regarding the final shape of the drops, we simplify our
approach by considering that all of them adopt the spherical
cap shape. Moreover, since the drops are of nearly equal
size, we consider that the final system is formed by n equal
drops of volume Vd with radius rd and contact angle θ0.
Then, for given A and θ0, the drop volume is given by,

Vd = 1

6
πr3

d (2 + cos θ0)
tan θ0/2

cos2 θ0/2
, (36)

while the energy terms that compose the drop energy, Ed ,
are

Sd = πr2
d

cos2 θ0/2
, Sd,w = πr2

d ,

Eg,d = 1

12
πr4

d

(
1

cos4 θ0/2
− 1

)
. (37)

Since the final stage satisfies nEd ≤ Ef , and mass
conservation requires, n = LA/Vd , we have

Ed

Vd

≤ ef

A
, (38)

where ef = Ef /L is the energy per unit length of the initial
filament. The marginal criterion (equality in this expres-
sion) would lead to a prediction of the maximum number of
drops, n0. In principle, the system could evolve to a certain
n (< n0), as small as 1 or 2, if the viscous dissipation is
large enough. Thus, the energy balance between the initial
and final states should include the viscous dissipation in the
form,

Ef = ef L = n(Ed + Eμ), (39)

where Eμ is the energy dissipated to form each primary
drop. We observe in the experiments that the only detectable
flow is localized in the neighborhood of the tips of the fila-
ment. As a consequence, we assume that Eμ is mainly due
to the motion of the head of the tip (at the initial condition
and also after each breakup), and that its main contribution
comes from friction against the substrate. Then, we propose

Eμ = βπr2
d , (40)

where β is a constant to be determined. Thus, the amount
of energy dissipated to form a drop is proportional to the
area of its footprint. This parameter β is assumed to be inde-
pendent of the fluid volume in the filament, AL, but might
depend on the wettability of the substrate represented by θ0.
Note that this model implies that every drop is generated
from equivalent portions of the filament of equal length, λe.
This means that the frictional force is basically the same
for every drop and that there is a geometrical similarity
between drops of different sizes (for different n’s) which are
produced by different straight portions of the filament. Con-
sequently, it is irrelevant to use λe or rd as scales to quantify
the amount of viscous dissipation. Note also that β involves
the energy dissipation all over the flow evolution, and then
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it includes the time scale of the problem, closely related to
the value of viscosity μ.

In summary, we expect β to depend on both θ0 and μ, but
be independent of A. Thus, the resulting energy balance can
be written as

Ed + Eμ

Vd

= ef

A
. (41)

Note that, for given θ0 and β, the left and right hand sides
of this equation are functions of rd and A, respectively. This
allows us to calculate the corresponding distance between
drops as

λe = L

n
= Vd(rd)

A
, (42)

since rd is obtained from (41) for given A.
In Fig. 7, we compare our experimental values for the

distance between drops with the predictions of (42) as a
function of the cross-sectional area, A, for different values
of β. Clearly, the marginal criterium, which corresponds
to β = 0, does not appropriately describe the experimen-
tal data. Instead, some amount of viscous dissipation is
required, as shown by the curves with β > 0. We note in
passing that by using elliptic instead of circular drops, we
obtain the same result. Furthermore, the final state for larger
A’s, consisting of two or three drops, is reached only after
a few days. These very long times are needed to move the
fluid a distance of the order of L, which implies a very
strong dissipation.

Our experimental results show that the pearling process
on partial wetting substrates includes several interesting
problems such as the mechanism of the contact line pinch
off. The energy model gives a simple but good enough
description of the global evolution of the system to the final
state. Here, we are considering a final static state as well
as the total viscous dissipation. Thus, our approach dif-
fers from previous infinite filament linear analysis [35–37]

0 0.05 0.1 0.15 0.2
A

0

5

10

λ
e

β=0.020
β=0.015
β=0

Fig. 7 Comparison of average spacing between drops between exper-
iments (symbols) and energy model (curves) as a function of the cross
section of the filament, A. The curves correspond to λe for different
values of the dissipation coefficient β (see (42))

which are restricted to marginal stability criteria. Note that
these are sufficient but not necessary conditions and are
independent of viscous dissipation. In our simple model, all
the energy lost by viscous effects is embedded in the param-
eter β. Additional experiments with ν = 100 St show that
n is independent of viscosity although the time required to
reach the final state increases. This suggests that the final
pattern is not affected merely by the viscous dissipation rate
but by the total dissipated energy. Another possible source
of the discrepancy between previous studies on infinite fil-
aments and experimental results lies in the finite nature of
the filament which plays an important role in the evolution
of the system. Further research is needed to elucidate these
issues.

3 Nanometric Range

Now, we focus the analysis of the filament instability in
the nanometric range. The experiments described here were
performed by the group of Dr. Philip Rack at Center for
Nanophase Materials Sciences (Oak Ridge National Lab-
oratory, USA) [38]. In our modeling, we show here that
intermolecular forces (of the van der Waals type) have to be
included in the formulation and that gravity effects can be
safely neglected. Interestingly, the addition of these forces
entails the existence of an ultra thin film outside the filament
footprint, whose thickness actually depends on the aver-
age thickness of the filament itself. At the same time, the
inclusion of both attractive and repulsive parts in the inter-
molecular forces term allows to represent the main partial
wetting properties of the fluid.

3.1 Experiments with Liquid Metals

The initial configuration is that of flat filament on a SiO2
substrate. Its definition and deposition were accomplished
using electron beam lithography, DC magnetron sputter-
ing, and a solvent facilitated lift-off process, the details
of which are provided elsewhere [38]. The total surface
array occupied by the filaments on the substrate surface was
≈ 105 μm2.

These initially flat filaments (with rectangular cross
section) are then irradiated at normal incidence. Since the
KrF (248 nm) pulsed laser beam covered a surface area of
≈ 107 μm2, the relatively larger size of the incident laser
pulse ensured that each strip was irradiated with uni-
form laser fluence. The nanoparticles were performed using
(5–10) sequential laser pulses each with a fluence of
180 mJ/cm2. The laser pulse width (≈ 18 ns) was signifi-
cantly less than the time between pulses (100 ms). This led
to non interacting laser pulses, that is, the sample transiently
melted, resolidified, and returned to room temperature prior
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to the next laser pulse. Moreover, the massive rate of heat-
ing and cooling (≈ 108 K/s) makes transient phenomena,
such as solid-state mass transport and oxidation, negligible.
As a result, the total liquid lifetime accumulated using mul-
tiple laser pulses leads to the same morphological result as
one laser pulse yielding the equivalent liquid lifetime.

3.2 Long Wave Approximation with Disjoining Pressure

In order to describe the dynamics of the liquid filament in
the nanometric range, we also use the long wave approxima-
tion like in the submillimetric range. We consider now the
addition of the long range of intermolecular forces, which
are now relevant not only at the contact line region but also
on the fluid bulk. The slip model could also be retained
here, but for now, we do not include it in this analysis for
simplicity. Instead, this model was strictly necessary in the
submillimetric case to overcome the contact line singularity.

Thus, the dimensional equation that governs the fluid
thickness h(x, y, t) is [39]

3μ
∂h

∂t
+γ∇·

(
h3∇∇2h

)
+∇·

[
h3∇�

]
−ρg∇·

(
h3∇h

)
= 0.

(43)

Here, the first term stands for viscous force, while the other
three terms account for the driving forces, namely, surface
tension, intermolecular (van der Waals), and gravitational,
respectively. The intermolecular force is described by means
of the disjoining pressure, �, which depends on the fluid
thickness as,

�(h) = κf (h) = κ

[(
h∗
h

)n

−
(

h∗
h

)m]
, (44)

where κ is a characteristic pressure, h∗ is an equilibrium
thickness, and the exponents satisfy, n > m > 1 (note that
f (h) is a dimensionless function). The first term in (44)
represents the liquid–solid repulsion, while the second term
is the attractive part. The balance of both terms leads to a
stable film of thickness h = h∗, which is related to the pre-
cursor film thickness formed ahead of the contact region
(see Appendixes A and B in [27]). Within this model, the
pressure κ can be written as

κ = 6πA
h3∗

, (45)

where A is the Hamaker constant, which characterizes the
intermolecular interaction between the free surface and the
substrate surface [27, 40].

By defining the dimensionless variables h̃ = h/h∗, x̃ =
x/L2, ỹ = y/L2, t̃ = t/T2, with

T2 = 3μh3∗
L4

2

, L2 =
√

γ h∗
κ

, (46)

(43) becomes

∂h

∂t
+∇ ·

(
h3∇∇2h

)
+∇ ·

[
h3f ′∇h

]
−B∇ ·

(
h3∇h

)
= 0,

(47)

where f ′ = df/dh and we have omitted the ‘hat’ symbol
for simplicity. Here, B = (L2/a)2 is the Bond number. In
terms of the atomic distance D = √

A/γ , we have

L2 = √
6π

h2∗
D , B = 6π

h4∗
a2D2

. (48)

Typically, h∗ � D and D � a, so that B � 1, and grav-
ity effects are neglected in nanometric experiments. Then,
we will take B = 0 in what follows.

3.2.1 Static State (Base) Solution

We first concentrate on the y-independent solution, h(x, t),
so that (47) reduces to

∂h

∂t
+ ∂

∂x

[
h3

(
∂3h

∂x3
+ f ′ ∂h

∂x

)]
= 0. (49)

We consider now ∂h/∂t = 0 and look for the static solution
h = h0(x). After integrating twice the resulting equation,
and using the symmetry boundary conditions h′′′

0 = h′
0 =

0 at x = 0, where the primes stand for x-derivatives, we
obtain (see, e.g., [27]):

h′′
0 + f (h0) + p = 0, (50)

where the constant p > 0 is the equilibrium pressure [41,
42] within the fluid. Note that the scale pressure is given by
κ . An analysis of the solutions of (50) shows that there is a
range of pressures [27, 41, 43]

pmin < p < pmax = n − m

n
(

n
m

)m/(n−m)
(51)

for which there exist bounded solutions in which h0,min <

h0 < h0,max . The value of pmin is related to a drop flattened
by gravity, and it is given by:

pmin = ρga

κ
= 6π

h∗
a

(
h∗
D

)3

. (52)

Here, we take pmin = 0, since we neglect gravity effects
(h∗ � a) and h∗ is of the order of D. On the other hand,
both h0,min � 1 and h0,max depend on the value of pressure,
p. The latter also determines the cross section area of the
drop, defined as

A = 2
∫ ∞

0

(
h0(x) − h0,min

)
dx, (53)
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Fig. 8 Static drop parameters as
a function of pressure for
(n, m) = (3, 2). a Minimum
thickness (precursor film), b
maximum thickness (drop
height), d drop area, d slope at
the inflection point 0 0.2 0.4 0.6 0.8 11
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where [27, 41] h0,min ≈ h∗ +ph∗/(n−m). Figure 8 shows
the dependence of these variables on p for (n, m) = (3, 2).
Note that the precursor film thickness is bounded as [44]

1 ≤ h0,min ≤ n

m
, (54)

while the maximum drop height satisfies

h0,max ≥ n

2(n − m)
, (55)

and increases monotonously as p decreases. Similarly, the
area A also increases in a similar fashion. Another parame-
ter of interest is the slope at the inflection point, h′

0,i , since
this is usually defined as the contact angle. It is given by:

tan θi = h∗
xc

∣∣h′
0,i

∣∣ , (56)

Note that the actual contact angle, θ0, depends on the micro-
scopic parameters, h∗ and A, as well as the surface tension,
γ . The value of θi can be compared with the usual macro-
scopic contact angle, θ0, which is estimated assuming a very
large ratio h0,max/h0,min, i.e., for a drop much thicker than
the precursor film (of negligible thickness). This angle θ0 is
related with κ by [45]

κ = γ (1 − cos θ0)

Mh∗
, (57)

where M = (n − m)/[(n − 1)(m − 1)]. Substituting into
(56), we have

tan θi = ∣∣h′
0,i

∣∣
√

2

M
sin

θ0

2
. (58)

For (n, m) = (3, 2), we have
∣∣∣h′

0,i

∣∣∣ → 1 for p → 0

(A → ∞), so that we find θi → θ0 in the limit of small con-
tact angles. Otherwise, (58) shows the general relationship
between both angles.

Figure 9 shows the thickness, slope, and curvature pro-
files for p/pmax = 0.05. Note that the slope increases
almost linearly up to the inflection point, and then abruptly
decreases to zero to meet the precursor film. Also, the neg-
ative and uniform curvature in most of the drop volume
becomes positive and very large beyond the inflection point
and finally goes to zero at the contact region.

3.2.2 Linear Stability Analysis (LSA)

In order to perform the linear stability analysis of the trans-
verse thickness profile, h0(x), with respect to longitudinal
perturbations (y-direction), we write:

h(x, y, t) = h0(x) + εχ(x) exp(ωt + iky) (59)

where ε is small number, χ(x) is the amplitude of the per-
turbation, k = 2π/λ is the wave number, and λ is the
wavelength.

Fig. 9 Profiles of a thickness, b
slope, and c curvature of a
filament cross section for
p/pmax = 0.05, in which
h0,min = 1.00758,
h0,max = 66.49 and
A = 11876.9
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Fig. 10 Dispersion relations, ω versus k, for two values of the fluid
pressure, p/pmax : 0.1 and 0.05. These cases correspond to the filament
cross sections, A = 2899.3 and A = 11876.8, respectively

By replacing (59) into (49), we obtain to O(ε) the
eigenvalue problem:

Lχ = −ωχ

where L is the linear operator defined by:

Lχ = c4(x)χxxxx+c3(x)χxxx+c2(x)χxx+c1(x)χx+c0(x)χ,

(60)

where the coefficients ci(x) (i = 0, ..., 4) are defined by:

c4(x) = h3
0,

c3(x) = 3h2
0h

′
0,

c2(x) = −
(

1 + 2k2 − f ′) h3
0,

c1(x) = −h2
0

[
3(1 + k2 − f ′) − 2h0f

′′]h′
0

c0(x) = c0,2h
2
0 + c0,3h

3
0 + c0,4h

4
0 (61)

and c0,j (j = 2, 3, 4) are given by:

c0,2(x) = 3h′2
0 f ′′,

c0,3(x) = k2
(

1 + k2 − f ′) − f ′′ (p + f ) + h′2
0 f ′′′

c0,4(x) = f ′′ (62)

Figure 10 shows the resulting dispersion relation curves.
We see that the maximum growth rate, ωm, as well as its cor-
responding wavenumber, km, diminishes as p is decreased
(i.e., as A is increased).

3.3 Comparison with Experiments: Melted Metals

The objective of this methodology is to organize an array of
nanoparticles originating from the dewetting of a liquid fila-
ment. This, however, requires the creation of the semicylin-
drical filament which is difficult by standard nanolithogra-
phy. Instead, a very thin flat filament (with rectangular cross
section) is deposited and designed to retract upon melting

into the desired nanoscale filament geometry. Nanolithogra-
phy along with physical vapor deposition is used to define
metallic (nickel, Ni) thin film filaments with straight edges
and length, L. The cross-sectional area of the thin film fila-
ment is rectangular with thickness, H , and width, w. When
melted, it contracts into a truncated liquid filament of radius,
R, according to the following area balance

A = Hw = R2
(

θ0 − sin 2θ0

2

)
(63)

where θ0 is the equilibrium contact angle between the liquid
Ni filament and silicon substrate. Thus, the filament mor-
phology results from the conversion of the thin film filament
into a liquid by nanosecond pulsed laser induced dewetting
(PLiD).

The straight edged filaments of width, w, shown in
Fig. 11a, were designed to self-assemble as a filament (with
cross section defined by an arc of a circle) by a dewetting
process. Figure 11a shows the liquid filament with a radius
R = D/2 = 165 ± 9 nm which results following five KrF
laser pulses with wavelength 248 nm and energy density
420 mJ/cm2 (liquid lifetime: 5 × 14.9 ns = 74 ns). An
ultra thin reaction layer forms simultaneously during retrac-
tion, which is presumably a very thin silicide (Ni?x Siy).
This layer conveniently imprints the original footprint of the
filament. Then, the out-of-plane capillary forces drive the
indicated (yellow arrows) edge and vertex retraction [46,
47].

The brief liquid lifetime per pulse (which can typi-
cally go from 7.5 to 14.9 ns) produced during PLiD is of

(a)

(b)

Fig. 11 a Top: Scanning electron microscopy (SEM) image of a Ni
thin film filament following electron beam lithography and metalliza-
tion. The image was acquired normal to the Si substrate surface, and
the filament dimensions are h0 = 23±1.2 nm, w = 2.05 μm±18 nm,
and L = 50μm. Bottom: Flat filaments rapidly transform, by fluid
retraction (dewetting), into a rounded filament upon pulsed laser melt-
ing. b Time evolution of the filament. The scale bars have deliberately
been set to equal the fastest growing mode as predicted by LSA. The
nanoparticle pitch closely reflects this value
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Fig. 12 Dispersion relations, ω(λ), obtained from LSA for h0 =
23 nm (black solid lines) for a w = 1.4 μm and b w = 2.0 μm. The
corresponding experimental histograms (at right axes in (a) and (b))

show the number of droplets separated by distances grouped in bins of
200 nm. These histograms are compared with the shapes (red dashed
lines) of the dispersion relations shown by the black solid lines

the same order of magnitude as both the fluid dewetting
[46, 48] and the instability time scales [32, 49–51], which
govern the filament self-assembly process and nanoparti-
cle breakup, respectively. This convergence of time scales,
coupled with the rapid heating and cooling rates, made it
possible to capture and visualize the temporal dynamics of
the morphology evolution by repetitively pulsing and elec-
tron imaging. The filament breakup occurs at the troughs of
a varicose instability, as shown in Fig. 11b.

As a result, we obtain the final nanoparticle spacing in
the form of histograms as shown in Fig. 12. They count the
number of droplets separated by distances grouped in bins
of size 200 nm. Interestingly, these distributions mirror quite
well the corresponding dispersion curves (ω versus λ) as
given by the LSA. This comparison reveals a strong corre-
lation between the LSA predicted perturbation growth rates
and the final nanoparticle spacing (pitch). In other words,
the wavelengths with greater growth rates correspond to the
more frequent particle spacings found in the experiments.
Unfortunately, the growth rates themselves cannot be com-
pared since the drops are formed in just a few laser pulses.
However, the comparison reveals that the LSA developed
here predicts a value of λm, the wavelength with maximum
growth rate, in good agreement with the most likely distance
between drops in the experiment. This is an encouraging
result for a continuum theory applied to nanoscales.

4 Summary and Conclusions

We have reported here experiments as well as their cor-
responding linear stability analyses of a single film con-
figuration, namely a liquid filament on a solid substrate
under partial wetting conditions. This has been done in two

completely different scales, almost six order of magnitude
apart: millimetric and nanometric ones. In spite of this large
difference, the comparisons between the experimental data
and the hydrodynamical modeling of the problem are highly
satisfactory in both scales. This suggests that the conser-
vation laws of the continuum approach are strong enough
to allow for a an accurate description of the physical prob-
lem provided reasonable assumptions are made on the main
driving forces in the problem.
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10. A.G. González, J. Diez, R. Gratton, J. Gomba, Rupture of a fluid
strip under partial wetting conditions. Europhys. Lett. 77, 44001
(2007)
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