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Abstract. We present a one-dimensional Monte Carlo simulation for the diffusion motion of a chain of
N beads. We found that the scaling exponent for the viscosity can be smaller or greater than 3. This
anomalous behavior cannot be attributed to the diffusivity scaling or the length fluctuations but is due
to the chain dynamics details during diffusion in which the end beads play the key role. The viscosity
exponent 3 and its expected relation with the diffusivity exponent are recovered in the asymptotic regime
(N→ ∞).

PACS. 66.10.Cb Diffusion and thermal diffusion – 83.10.Kn Reptation and tube theories

1 Introduction

Islands and clusters diffusion mechanisms can be much
more complex than those for single-atom diffusion [1]. If
only single-jump mechanisms are considered, i.e. cluster
dynamics results from the sequential motion of individual
atoms, and we restrict to one dimension, the cluster re-
duces to a chain and possible mechanisms for migration
are essentially of a single kind. A chain in one dimension
can only move by contracting and stretching in a worm-
like fashion. This mechanism, named reptation in poly-
mer physics, plays a key role in the dynamics of entangled
polymer melts, a problem of enduring interest [2].

The fundamental assumption in the dynamics of en-
tangled polymers is that neighboring chains constrain a
given chain to diffuse only along a confining tube and then
the chain executes a one-dimensional random walk [3,4].
The model, as originally introduced, predicts that diffu-
sivity scales with the molecular weight as M−α, where
α = 2 in three dimensions, and the time to escape com-
pletely from the initial tube and therefore the zero-shear-
rate viscosity scales with molecular weight as η0 ∼ Mβ ,
with β = 3. Many experiments give the mentioned scal-
ing for the diffusivity but the viscosity scales as M3.4.
There have been several explanations for these results,
most of them consisting in modifications of the reptation
theory [5]. However, the molecular-weight dependence of
the viscosity being stronger than the reptation prediction
remains controversial.
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In this paper we introduce and analyze a model that
describes a chain diffusing in one dimension. We avoid
a number of complications that can arise in a realistic
model [6,7]. We do not focus in reproducing experiments
but in presenting a very simple model with a rich behav-
ior. The found dynamics is similar to that described in
the original work of de Gennes [3]. However, our model
can exhibit a scaling exponent for the viscosity larger or
smaller than 3. Furthermore, these resulting values can-
not be explained through the diffusivity scaling and/or the
amplitude of the chain length fluctuations. Here we show
that this scaling needs to be considered as the consequence
of the chain dynamics during diffusion.

2 Repton model and viscosity

The repton model proposed by Rubinstein consists of N
random walkers (reptons) in one dimension [8]. The rep-
tons move in such a way as to not break the connectivity
of the cluster. A site in the middle of the chain cannot be
vacated and the original order of the reptons must be pre-
served. The model contains a parameter, z, that reflects
the dimension of the problem. z is the number of possi-
ble gates for an end repton to move. Then, there are z−1
possible gates to enter into an empty cell and only one
gate to move into an already occupied one. Accordingly,
the probability of a move in the middle of the chain in any
direction is 1/z and at the end of the chain the probability
of a move that lengthens the configuration is (z − 1)/z.
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The relaxation process can be studied by following the
rates at which a cluster of reptons vacates initially occu-
pied sites. Let xR(t) be the leftmost propagation of the
right end of the cluster at time t and, similarly, let xL(t)
be the rightmost propagation of the left end of the cluster.
The zero-shear-rate viscosity is calculated by integrating
the stress [9] which is proportional to the number of these
sites, i.e.

η0 =
1
〈L〉

∫ ∞

0

〈xR(t) − xL(t) + 1〉dt, (1)

where 〈L〉 is the length average and the integral is evalu-
ated only for positive values of the integrand.

Interestingly, Rubinstein found that the viscosity
scales with the cluster size with exponents greater than 3,
that should be seen as effective exponents. The exact value
depends on the parameter z; for the case z = 6, which
can be understood to correspond to a three-dimensional
cubic lattice, β takes a value of 3.36 predicting what is
observed in experiments. It has been proposed that the
basic difference between de Gennes solution of reptation
and the repton model is that in de Gennes solution fluc-
tuations are preaveraged (see, for example, Refs. [2,10]
and [11]). Indeed, de Gennes reptation is a random walk
of a fixed-length object. However, it is possible for one end
to move independently of the other and thus the length of
the chain can vary. This is the case in the repton model in
which the length of the cluster can fluctuate by stretch-
ing and contracting. It was found that fluctuations affect
the viscosity as a factor [1−k/M1/2]3 with k being a con-
stant [10]. This is not a power law with an exponent of 3.4
but it could approximate the viscosity over the range of
molecular weights used in experiments [12,13]. This expla-
nation fails for our model because we found that resulting
values for the viscosity exponent can be larger but also
smaller than 3. Also, we found that the expected relation
β = α + 2 in one dimension is not always valid.

3 The model

Let us consider a chain consisting of N particles or beads
that can hop to nearest site only if this site is empty. Hops
are accomplished by picking a particle at random and at-
tempting to move it. Particles can hop to right or left, but
no more than a site can be empty between two particles.
If allowed by these rules, the probability for a successful
hopping is the same for all the particles except for those
at the ends. A particle not being at one of the ends, a
middle particle, can be in any of the four configurations
(a), (b), (c), or (d) shown in Figure 1. If it is in config-
urations (a) or (b), it is unable to move. If the particle
is in configurations (c) or (d) it can move to the right or
the left, respectively. After being randomly selected the
probability of hopping is taken to be pc.

In Figure 1 the possible hoppings for an end parti-
cle are also shown. In configuration (e) the end particle, if
selected, can only jump to the right and the resulting con-
figuration is that of (f). This jump probability is named

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Configurations for middle ((a), (b), (c), (d)) and end
((e), (f)) particles and their possible hops.

pa. In configuration (f) the end particle can only jump
to the left and, if selected, the attempted jump succeeds
with probability pb. Hence, pa, pb, and pc are the free
parameters in our model (0 � pa, pb, pc � 1).

Thus, the computer model is based on the random walk
in a one-dimensional lattice of N particles conforming a
chain. At time t one particle of the chain is randomly se-
lected. Once selected, the probability to jump is dictated
by the rules described for middle and end particles and
the time is increased by δt = 1/N . Every time a particle
jumps, the center of mass moves 1/N of the distance l
between adjacent sites of the lattice. In the following we
use l=1. The repetition of this procedure simulates the
random motion of the chain. Although at first glance the
rules of our model look different than those of the rep-
ton model, there is a direct correspondence between both
models regarding diffusion. However, since in the repton
model particles can be at the same site, viscosity does
not present the same behavior. Operatively, the main dif-
ference between both models is the flexibility we adopted
regarding the possible different jump probabilities for par-
ticles at the end of chains.

An empty site in the chain will be named a hole. The
average number of holes in a chain can be easily calcu-
lated as follows. A hole is created or annihilated every
time an end particle jumps moving away from the chain or
towards the chain, respectively. An end particle jumping
attempt that creates a hole is successful with probability
pa(1 − Ph), where Ph is the hole probability. Similarly, an
end particle jumping attempt that annihilates a hole suc-
ceeds with probability pbPh. In equilibrium we expect the
same probability for creation and annihilation. Then, Ph

can be expressed as

Ph =
pa

pa + pb
. (2)

Note that Ph is independent of pc. The average number
of holes in a chain is Ph(N − 1) since there are (N − 1)
positions available for holes. Then the average length of
chain 〈L〉 and its fluctuation amplitude are given by

〈L〉 = N + Ph(N − 1), (3)



S.E. Guidoni et al.: Anomalous viscosity exponent in a discretized model for a chain diffusion in one dimension 293

10 -4

10 -3

10 -2

10 -1

100

100 101 102N

D

(I)

(II)

(III)

Fig. 2. Diffusion coefficient of the center of mass for chains
consisting of N beads. The parameters of the model (pa, pb,
pc) are (1, 1/5, 1/5) for case I, (5/6, 1/6, 1) for case II, and
(5/36, 1/36, 1) for case III. Straight lines correspond to the
asymptotic behavior with slope −1. For the sake of clarity,
diffusivity values for case I were multiplied by 10 and those for
case III by 0.1.

〈
(L − 〈L〉)2〉 = (N − 1)Ph(1 − Ph) . (4)

Monte Carlo simulations verify these results.

4 Results and discussions

With the Monte Carlo simulation, the diffusivity of the
center of mass is calculated through

D =

〈
[Xm(t) − Xm(0)]2

〉
2t

, (5)

where Xm is the position of the center of mass. In Figure 2,
numerically calculated diffusion coefficients for some given
parameters are presented. We have chosen three groups of
values for the parameters (pa, pb, pc), specifically (1, 1/5,
1/5), case I; (5/6, 1/6, 1), case II; and (5/36, 1/36, 1),
case III. Note that case I corresponds to the repton model
for z = 6 but cases II and III have no correspondence in
the repton model. Parameters have been chosen to have
always the same average number of holes (Ph = 5/6) and
then the same average length and length fluctuation (see
Eqs. (3) and (4)). In the asymptotic regime D presents
always a slope 1/N . This is the expected diffusivity de-
pendence for a one-dimensional model corresponding to
the curvilinear diffusivity of a chain in three dimensions

(i.e. α=1). The exponent α for relatively small N becomes
larger (case I) or smaller (case III) than 1 because end par-
ticles present larger (case I) or smaller (case III) jumping
probabilities than middle particles, as discussed below. For
large values of N the influence of end particles vanishes
(see Tab. 1).

All the particles conforming the chain have the same
chance to be chosen to perform a hop but, in general,
they do not have the same chance to hop. On average, the
probability that, once chosen, an end particle performs a
jump to the right or to the left is

Je = (1 − Ph)pa = Phpb , (6)

while for a middle particle, once chosen, the probability
to make a jump to the right or to the left is

Jm = (1 − Ph)Phpc . (7)

Using equation (2), the ratio between expressions of
equations (6) and (7) can be written as

Je

Jm
=

pa + pb

pc
. (8)

If pa + pb = pc, the probability to jump is the same
for every particle of the chain. Under this condition, if
a jump to the right occurred, any of the particles in the
chain has the same probability of having made that jump.
As a consequence, on average, the resulting configuration
of the chain does not change and then we are dealing with
an uncorrelated diffusion. This is satisfied in case II but
not in cases I and III for which hops become correlated.
We are not dealing with a model in which the past move
is directly taken into account in the following step but dif-
fusion becomes correlated as a consequence of the estab-
lished rules through the resulting configurations. Indeed,
if the pa + pb = pc condition is satisfied, in all possible
configurations the next hop has the same probability to
be to the right or to the left. (Note that for case II α is
close to 1 for large and small values of N). Conversely,
if pa + pb �= pc, in many configurations the probability to
hop in one direction can be different than in the other one.

In Figure 3 the numerically calculated values of η0

through equation (1) are presented (see Tab. 1). The
found slopes in the double-logarithmic scale converge to
3 as N increases for the three cases studied. However,
case I presents a larger slope at low N as found in refer-
ence [6]. Values of η0 for a fourth case (IV) corresponding
to pa=1/5, pb=1 and pc=1/5 are also shown.

The diffusivity for case IV is exactly the same than
that for case I because pc is the same in both cases and
values for pa and pb have been interchanged. This can be
easily seen with the help of equations (2), (6), and (7).
The probabilities that, once chosen, an end particle and
a middle particle make a jump to the right or to the left
are papb/(pa + pb) and papbpc/(pa + pb)2, respectively.
Consequently, the jumping probability of any particle for
cases I and IV is the same and hence diffusivities have
the same value, a result which is confirmed in the sim-
ulations. Also, the amplitude of the fluctuations are the
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Table 1. Exponents α and β for different values of the free parameters pa, pb, and pc obtained using our model. β = 2 + α is
the expected relation between diffusivity and viscosity exponents. Relative errors are around 5% for α and 1% for β.

4 � N � 20 20 � N � 100

Case pa pb pc Ph α β 2+α α β 2+α

I 1 1/5 1/5 5/6 1.22 3.46 3.22 1.05 3.16 3.05
II 5/6 1/6 1 5/6 1.01 3.07 3.01 0.98 3.09 2.98
III 5/36 1/36 1 5/6 0.50 2.51 2.50 0.77 2.87 2.77
IV 1/5 1 1/5 1/6 1.22 3.05 3.22 1.05 3.05 3.05
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Fig. 3. The viscosity as a function of the number of beads N
for the three cases of Figure 2 and that for case IV for which the
parameters of the model (pa, pb, pc) are (0.2, 1, 0.2). For the
sake of clarity, viscosity values for case I and IV were multiplied
by 100 and those for case II by 10. The straight lines have the
slopes of the cases I and III for 20 � N � 100 and were drawn
as a guide to the eye.

same than in case I (see Eq. 4) but the number of holes is
now very different (see Eq. 2). Interestingly, chains with
the same diffusivity and fluctuations amplitude present
different viscosities. Furthermore, β can be larger (case
I) or smaller (case IV) than expected from the diffusiv-
ity exponent. Indeed, the diffusivity exponent is 1.22 for
4 � N � 20 and viscosity exponents are 3.46 and 3.05
for cases I and IV, respectively. These results show that β
also depends on Ph.

The viscosity in our model for case I reproduces the
values obtained through the repton model if we subtract
(N−1) from the length in our chains [6] (exponent α is not
affected by this chain contraction). Note that with similar
rules different results are obtained indicating that the ex-
act value of η0 depends on the details of the model. Since
diffusivity is related to the long-term evolution of the cen-
ter of mass of the chain, it is insensitive to the change
of some parameters. On the other hand, since the viscos-

ity is related to the transient process by which the chain
abandons its original position, it should not surprise us to
find that the viscosity is very sensitive to the details of the
model as well as the definition adopted to determine it.

A simplified model of reptation in which internal beads
instantaneously attain the equilibrium distribution has
been proposed and analyzed by Leegwater [14]. This is
equivalent to our model for the limit case in which pc �
pa, pb. In Leegwater’s model only the two end particles are
relevant for diffusion and then the curvilinear diffusion co-
efficient Dc becomes independent of the chain length. As-
suming a Gaussian random walk configuration of a chain,
the three-dimensional coefficient is D3D ≈ Dc/N ≈ 1/N ,
result which is approximately found in the simulations.

The results found by Leegwater can be derived and
expressed in terms of the parameters of our model. With
equations (2) and (6), the probability that, once chosen,
an end particle performs a jump can be written as

Je =
papb

pa + pb
. (9)

Since internal beads instantaneously reach the equilib-
rium distribution, every time an end particle jumps the
center of mass of the chain moves 1/2 of the distance l
between adjacent sites of the lattice. Considering l=1, the
diffusivity of the center of mass is

D =
papb

2(pa + pb)
, (10)

which is independent of the chain length.

5 Conclusions

We have presented a computer model that simulates the
diffusion of a chain of particles in one dimension. The
introduced model presents chain length dependencies for
the viscosity exponent that can be larger or smaller than
3. This nonuniversal behavior appears in the range of N
that corresponds to the molecular weights tested in ex-
periments. The physical origin of the scaling discrepancy
between α and β was shown not to be due to the ampli-
tude of the chain length fluctuations but a consequence
of the chain dynamics details in diffusing. The resulting
behavior points to the relevance of the chain movements
due to the dynamics of end beads and its relation with
the dynamics of internal beads. We also found that, even-
tually in all the studied cases, universality is recovered for
large enough values of N and β converges to the expected
value of 3.
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