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The diffusion and reaction problem in catalytic pellets of any shape subject to diffusive transport limitations
is undertaken in this contribution. Effective reaction rates in three-dimensional (3D) catalysts can be evaluated
through a series solution written in terms of powers of (1/Φ) when strong diffusion limitations are present.
In a recent paper, Keegan et al. [Chem. Eng. J.2005, 110, 41] have clearly demonstrated for smooth catalysts
that the second-order term [in (1/Φ)2] depends essentially on the shape of the pellet. In this context, the
purpose of this paper is to develop expressions of the second-order term for two-dimensional (2D) or 3D
catalytic bodies showing edges. While the first-order term allows definition of the propersizeof a catalyst,
the second-order term provides a characterization for theshapeof the catalyst. The possibility of using this
characterization of catalyst shape in a geometrical one-dimensional (1D) model to approximate the behavior
of given 2D or 3D pellets is analyzed. Also, the direct use of the two-term truncated series for complementing
the numerical evaluation of the conservation equation is described.

1. Introduction

Diffusive transport in most kinds of commercial catalytic
pellets proceeds along more than one spatial coordinate. The
general case will be a three-dimensional (3D) problem, while
two-dimensional (2D) problems will be frequent [The term “3D”
means that no suitable coordinate system can be chosen to
reduce the number of coordinate directions taken by the flux
of reactants from 3. 1D or 2D applies when either 1 or 2 suitable
coordinate directions can be found (e.g., axisymmetric problems
will be 2D and problems on a sphere will be 1D).], mainly due
to axisymmetry, and will also apply for monolith reactors with
a catalytic coating on noncircular channels.2

As discussed in recent contributions,1,3,4 in practical applica-
tions it will be convenient to avoid 2D or 3D computations by
employing some kind of approximation to the actual problem.
This is feasible largely because it is a well-known fact that if
different catalytic bodies are compared in terms of the charac-
teristic length,l ) Vp/Sp, the effect of shape is tempered. Table
1 shows deviations between the effectiveness factors in a one-
dimensional (1D) slab (the simplest 1D geometry) and in a finite
circular cylinder (a 2D problem) compared at the samel for
different kinetics (a precise definition ofr(Y) is given in the
next section).

If the actual problem is that of the cylinder, Table 1 shows
that the correct order of magnitude is provided by the slab, but
it is evident that the deviations warrant the search for a better
approximation. Even more uncertain results can be expected
when multiple reactions take place. Thus, the data in Table 1
suggest that the effect of shape cannot be ignored and that, in
order to avoid 2D or 3D calculations without loosing accuracy,
the 1D analogue (or any other kind of approximation) will have
to be defined on the basis of sensible criteria. It seems obvious
that these criteria should involve a geometrical characterization
of the actual catalyst.

The analysis of the behavior at high reaction rates can provide
a geometrical characterization of a given catalyst. For the case
of a single reaction and uniform activity on 1D catalysts (see,
e.g., refs 4-6), the effectiveness factorη for high values of the
Thiele modulusΦ can be expressed as

whereI1 andI2 are coefficients depending on the type of kinetic
law (all quantities in eqs 1 will be precisely defined in the next
section) andσ ) (0, 1, and 2) for a slab, a long circular cylinder,
and a sphere, respectively.

For very fast reactions, eq 1.a can be truncated toη ) I1/Φ,
a very well-known expression (see, e.g., ref 7) corresponding
to conditions that will be identified here as thelimiting regime.
The second-order term in eq 1.a is characterized by the
coefficientΓ that depends on the shape of the catalyst, eq 1.b.
Conditions under which the two-term expression (eq 1.a) applies
(i.e., for reaction rates not necessarily as high as those for the
limiting regime) will be identified as theasymptotic regime.
Recently, Keegan et al.1 expressedΓ for 2D or 3D catalysts
restricted to geometries showing smooth external surfaces. The
effect of activity gradients was also included in that contribution.

If a 1D geometrical model with adjustable parameters is
intended as an approximation to avoid 2D or 3D calculations,
a reasonable criterion can be stated by forcing the model to
show the same behavior as the actual particle at large values of
Φ. This can be done in practice if both, the model and the actual
particle, present the same value ofΓ.

The main purpose of this paper is to develop a general
expression ofΓ for catalyst geometries showing edges, extending
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Table 1. Maximum Relative Difference (∆) between the
Effectiveness Factors of a Slab (1D) and a Circular Cylinder with a
Height/Radius Ratio of 1.7 (2D), Compared at the Samel

r(Y) Y2 Y Y1/2 1 (if Y > 0) 36Y/(1 + 5Y)2

∆ (%) 18 19 22 34 38

η )
I1

Φ
-

I2

Φ2
Γ + ... (1.a)

Γ ) σ
σ + 1

(1.b)
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in this way the results presented by Keegan et al.1 This task
includes the development of restrictions for the validity of the
two-term truncated series (eq 1.a). Actually, except for the case
of spherical particles, practically all types of commercial pellets
are finite cylinders (of different cross-sectional shapes) and,
therefore, show edges at the intersections of the bases and the
cylindrical envelope. In addition, multilobe pellets also show
longitudinal edges.

The two-term truncated series (eq 1.b) constitutes an ap-
proximation for η that can be used for complementing the
numerical solution of 2D or 3D conservation equations: a
numerical algorithm can be used for low values ofΦ, and the
truncated series can be used at large values ofΦ, when steep
(and difficult to evaluate) solutions take place. This application
and the potential use ofΓ as a shape factor will be discussed
and exemplified.

For the most part, a single catalytic reaction will be assumed.
However, arguments will be given to show that the significance
of the present contribution can be extended to the very important
case of multiple-reaction systems.

2. Problem Statement

Although a catalytic pellet will be frequently invoked, the
treatment in this and following sections can be directly extended
to catalytic coatings on structured devices. A single catalytic
reaction, with the following restrictions, will be considered: (a)-
Uniform composition and temperature exist at the permeable
part of the catalyst external surface (Sp). (b) ConstitutiVe
equations for the fluxes (transport model) are isotropic and
intrinsically independent of position inside the catalyst.

It was discussed by Keegan et al.1 that these conditions allow
employing a single state variable to represent the system. As
such, a dimensionless variableY is defined by

whereCA is the molar concentration of a key reactant A,CAS

is the value ofCA on Sp and CAe is the value ofCA when
chemical equilibrium is reached inside the pellet.D(CA) is such
that the flux of A can be expressed asNA ) -D(CA) ∇ CA,
after taking into account the relations betweenCA and the
remaining molar concentrations and temperature, which arise
by combining the mass and energy conservation balances.1 The
conservation balance for species A is then written in terms of
Y,

where L is the Laplacian and theglobal reaction scaleλ is
defined by

The dimensionless reaction rate in eq 3.a is defined byr(Y) )
πA(Y)/πAS, whereπA is the net consumption rate of A andπAS

is its value atSp. Note thatr(1) ) 1 onSp and, according to eq
2.a,Y ) 0 whenCA ) CAe; hence,r(0) ) 0.

The activitya, a function of the spatial coordinate vectorx
) (x1, x2, x3), is normalized according to

Sp stands for the permeable parts, andSN stands for the sealed
parts (inaccessible to reactants) of theVp boundary. (The symbol
Vp will stand for both the spatial domain corresponding to the
catalyst and its volume. Similarly,Sp stands for the domain of
the permeable external surface and for its area.)

It will be assumed that the activity at any point onSp is finite
but not necessarily uniform.

3. Asymptotic Behavior at High Reaction Rates

It was shown by Keegan et al.1 that, for a catalytic body
showing a smooth surfaceSp, eq 3.a can be reduced to the
following asymptotic form at low enough values ofλ,

with the boundary conditions

Equation 4.a applies at each point onSp (local basis). To describe
the symbols, letaS be the local value ofa on Sp andên be the
coordinate along the local normal toSp, increasing inwardly
and with the origin atSp. Then,λS ) λ/aS

1/2 is thelocal reaction
scaleandú ) ên/λS is thestretched coordinate. Also, (TS/2) is
the localaVerage curVature that can be expressed in terms of
the principal radii of curvatureRa andRb as

Ri (i ) a, b) is positive if the center of curvature is inwardly
oriented and negative otherwise. [For a pointP on a surface,
assume the normal unit vectorn is identified. Then, anormal
planeat P is any plane containingn (there is a bundle of such
planes), anormal sectionat P is a curve resulting from
intersection of the surface and a normal plane, anormal
curVature is the curvature of a normal section atP, aprincipal
curVature is either the minimum or the maximum normal
curvature, and aradius of curVature is the inverse of a normal
curvature.] Finally,

The primary conditions for eqs 4 to hold at each point ofSp

are1

where d is the thickness of the pellet in the local normal
direction.

Restriction 7.c is necessary for the boundary condition of eq
4.c to apply; that is, the catalyst can be considered to be much

Y ) 1
JA

∫CAe

CAD(CA) dCA (2.a)

JA ) ∫CAe

CASD(CA) dCA (2.b)

L(Y) ) 1

λ2
a(x) r(Y) in Vp (3.a)

Y ) 1 onSp (3.b)

∇Y ) 0 onSN (3.c)

λ2 ) JA/πAS (3.d)

1
Vp
∫Vp

a(x) dV ) 1 (3.e)

d2Y

dú2
- λSTS

dY
dú

) (1 - 2úλSAS)r(Y) (4.a)

ú ) 0: Y ) 1 (4.b)

úf ∞: Y f 0, (dY/dú) f 0 (4.c)

TS ) 1
Ra

+ 1
Rb

(5)

AS ) -
a′S
2aS

(6.a)

a′S ) (∂a/∂ên)|ên)0 (6.b)

λS , min{|Ra|,|Rb|} (7.a)

λS , aS/|a′S| (7.b)

λS , d (7.c)
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deeper than the distance (penetration depth) needed to approach
equilibrium conditions (Y ) 0, dY/dú ) 0). It can be shown
that the penetration depthø in the asymptotic regime is of the
same order of magnitude asλS.

The edges on the external surface can be described as the
boundaries betweensmooth sectorsshowing continuous cur-
vature properties. If values ofø are smaller than the linear
dimensions of those sectors, it becomes clear that the effect of
edges will be circumscribed to small zones around them, where
the concentration fields from two sectors become overlapped.
In this case, the main contribution to the overall rate of mass
transfer will be that obtained by using the previous formulation
for the whole surface of each sector, as if the edges were absent.
Accordingly, the solution obtained for eqs 4, as given by Keegan
et al.,1 can be used for the local flux on each sector

where

By integration of eq 8 over the surfaceSj of each sectorj, the
amount of moles of A transferred per unit time will be

It is worth stressing that the terms associated with curvature
effects and activity gradients (TS andAS) in eqs 4.a, 8, and 10
are of a second order of magnitude, due to the relatively low
values imposed by restrictions 7.a and 7.b toλS.

Next, a correction to eq 10 will be developed to account for
the effect of the edges.

3.1. The Contribution of Edges. In this section, we deal
with edges between two smooth sectors belonging toSp, while
cases involvingSN will be considered in section 5.

We should first recall that if in eq 4.a the terms depending
on TS and AS are ignored, the conservation balance for the
limiting regime is obtained

where the suffix “0” identifies the limiting regime. Equation
11.a can be rewritten as

with I(Y0) given in eq 9.a. From eq 12, the flux at the surface
is given by

which is the dominant term in eq 8.

Equation 12 can now be used to obtain an approximate
expression for the penetration depthø, which can be defined as
the distance fromSp at whichr(Y) reaches a residual valuer(Y*)
) 0.1,

The exact value of the integral in eq 14 depends on the form of
r(Y), but it does not rise above a few units (e.g., forr ) Y1/4, ø
) 2.04λS; for r ) Y, ø ) 2.3λS; and forr ) Y2, ø ) 1.9λS). As
quoted before, bothø andλS are of the same order of magnitude.

Now, we have presented the necessary elements for a
conceptual description of the effect of edges. Consider two
smooth sectors (I, II) that intersect defining an edge. LetΠ be
the plane normal to the edge at a generic pointO belonging to
it. This plane is also a normal plane for both sectors at pointO
and defines two normal sections (NI and NII), as depicted in
Figure 1. The tangents ofNI and NII at the edge define the
intersection angleθ. FromNI andNII and over the planeΠ, we
can identify the strips of widthø where the catalytic reaction
takes place. Both strips interpenetrate in the dashed region close
to the edge, as shown in Figure 1.

It is evident that, by integrating the flux over both sectors
independently of each other just up to the edge (as done for eq
10), the region of interpenetration is, up to some extent,
considered twice: for the reaction of the reactants incoming
from sector I and from sector II. To estimate the correction to
eq 10, an amount proportional to the moles transferred from
one of the sectors should be discounted.

The portion of each sector involved in the interpenetration
region will present a width, whose order of magnitude will be
that ofø, and a length, which will be that of the edge,Wk (“k”
is the suffix to denote a generic edge). It follows that an order
of magnitude estimate of the correction to eq 10 will be
(WkøNAS). EmployingNAS,0 (eq 13) forNAS and eq 14 forø, we
obtain

Equation 15 suggests that the correction [∆M]k does not depend
on λ or on the catalytic activity field, as a first approximation,
when small values ofλ are considered. In other words, if a series
expansion for [∆M]k in powers ofλ is envisaged, the leading
term will be independent ofλ and of the activity field. As a
consequence, it will be comparable with the contribution
JAI2∫Sj(ΥS + AS) dS in eq 10. The leading term of [∆M]k,
denoted as [∆Mhigh]k, is what we need to complete the
formulation ofMhigh.

Accordingly, we will develop in the following paragraphs
an appropriate expression for [∆Mhigh]k, based on a geometrical
simplification and assuming uniform activity. However, this
treatment does not allow one to visualize the restrictions that
should be imposed on values ofλ for being considered “small
enough”, i.e., restrictions that play the role of inequalities (7.a

NAS,high ) -
JA

λS
(dY
dú)ú)0

)
JA

λ
[I1aS

1/2 - I2λ(TS + AS)] (8)

I(Y0) ) 2∫0

Y0r(Y) dY (9.a)

I1 ) [I(1)]1/2 (9.b)

I2 ) 1
I1
∫0

1
[I(Y0)]

1/2 dY0 (9.c)

Mhigh,j ) JA[1λI1∫Sj
aS

1/2 dS- I2∫Sj
(TS + AS) dS] (10)

d2Y0/dú2 ) r(Y0) (11.a)

ú ) 0: Y0 ) 1 (11.b)

ú f ∞: Y0 f 0, (dY0/dú) f 0 (11.c)

dY0/dú ) -I(Y0)
1/2 (12)

NAS,0 ) -
JA

λS
(dY0

dú )
ú)0

)
JA

λS
I1 (13)

Figure 1. Perspective of the region close to an edge.Π is the plane normal
to the edge at pointO. NI and NII are normal sections defined by the
intersections betweenΠ and the smooth sectors I and II.

ø ) λS∫Y*

1
I(Y)-1/2 dY (14)

[∆M]k ∼ WkJAI1∫Y*

1
I(Y)-1/2 dY (15)
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and 7.b), but for the edge zones. This issue is covered in detail
in the Supporting Information for this paper, and the whole body
of restrictions for the asymptotic regime to apply will be
summarized in the next section.

To find out an expression for [∆Mhigh]k, we should realize
that, at a given point of an edge, the local field ofY on the
planeΠ (Figure 1) will be largely determined by the dihedral
angleθ defined by the tangents ofNI andNII at the edge. Then,
the approximation of the local field can be evaluated by
considering a straight wedge with a very long edge and faces
(sectors) and, hence, geometrically defined just by the dihedral
angleθ, as depicted in Figure 2. Besides, it will be assumed
that the activity in the straight wedge is uniform and equal to
a certain valueaw (it will be shown later that∆Mhigh does not
effectively depend on this quantity).

As the wedge is assumed to be very long, we can ignore
variations ofY in the direction parallel to the edge. Then, by
using polar coordinates (see Figure 2), the conservation balance
is written

whereλw ) λ/aw
1/2 is the local reaction scale defined with the

constant value of activityaw.
Introducing the “stretched” radial coordinateF ) R/λw in eq

16,

As sectors I and II are assumed to extend boundlessly, the
appropriate boundary conditions are (see Figure 2)

The penetration of the key species will look like what is
sketched in Figure 2, where we can appreciate that far from the
edge the penetration depth corresponds to that of a flat sector.
Therefore, recalling that the activity is uniform, far enough from
the edge, the flux at the surface corresponds to that in eq 8
with (TS + AS) ) 0, which is the same as the value for the
limiting regime, expressed in eq 13,

Let us assume now that eqs 17 have been solved and the
normal derivative atæ ) 0, (1/F)(∂Y/∂æ)æ)0, has been evaluated.
The local flux at sector I is expressed as

Then, the local correction for sector I can be expressed as∆NAS

) NAS,wedge- NAS,far:

Because of symmetry, exactly the same value of∆NAS will
also hold for sector II. The overall correction per unit length of
the wedge can be obtained by integrating (2∆NAS) over the radial
variableR up to a certain radius,R∞, large enough for∆NAS to
become essentially nil. Then,

The stretched radial coordinateF has been introduced in the
third term. In practice, values ofF needed for∆NAS to become
nil are of only a few units (the upper limit taken as∞ is adopted
for the sake of definiteness). By expliciting∆NAS, we finally
express

where the coefficientI2 (eq 9.c) that depends on the form of
r(Y) is introduced as a matter of convenience. It will be
understood throughout this paper that the definition ofω(θ) (eq
17.e) is associated with the solution of eqs 17.a-c. Although
only the dependence ofω on θ is made explicit, it should be
recalled thatω will also depend on the form ofr(Y).

Equation 17.d accounts for the correction along an elementary
length dW, at whichθ is regarded as being essentially constant.
To evaluate the correction [∆Mhigh]k over the whole lengthWk

of the edge, eq 17.d should be integrated, accounting for possible
variations of the angleθ. Then,

As was previously pointed out,∆Mhigh does not depend onaw

(eqs 17.e and 18).
By adding eq 10 applied to all sectors in whichSp is assumed

to be decomposed and eq 18 for the total number of edges, we
obtain forMhigh

where

Figure 2. Sketch of the straight wedge.

∆NAS) -
JA

λw

1
F
(∂Y/∂æ)æ)0 -

JA

λw
I1

d(∆Mhigh)

dW
) 2∫0

R∞∆NAS dR ) 2λw∫0

∞
∆NAS dF

d(∆Mhigh)

dW
) -JAI2ω(θ) (17.d)

ω(θ) ) 2
I2
∫0

∞[1F(∂Y/∂æ)æ)0 + I1] dF (17.e)

[∆Mhigh]k ) -JAI2∫Wk
ω(θ) dW (18)

Mhigh )
JA

λ
Sp{I1(aS

1/2)av - λI2[(TS + AS)av + Ωav]}
(19.a)

(aS
1/2)av ) Sp

-1∑j[aS
1/2S] j (19.b)

[aS
1/2S] j ) ∫Sj

aS
1/2 dS (19.c)

(TS + AS)av ) Sp
-1∑j[(TS + AS)S] j (19.d)

[(TS + AS)S] j ) ∫Sj
(TS + AS) dS (19.e)

Ωav ) Sp
-1∑k[ωW]k (19.f)

[ωW]k ) ∫Wk
ω dW (19.g)

∂

R ∂R(R ∂Y
∂R) + 1

R2

∂
2Y

∂æ2
) 1

λw
2
r(Y) (16)

∂

F ∂F(F ∂Y
∂F) + 1

F2

∂
2Y

∂æ2
) r(Y); F g 0, 0e æ eθ (17.a)

Y ) 1 atæ ) 0 andæ ) θ (17.b)

Y ) 1 atF ) 0; Y ) 0 if F f ∞ and 0< æ < θ (17.c)

NAS,far )
JA

λw
I1

NAS,wedge) -
JA

λw

1
F
(∂Y/∂æ)æ)0

88 Ind. Eng. Chem. Res., Vol. 45, No. 1, 2006



By definingR ) I2/I1, thecharacteristic lengthof the catalyst
l ) Vp/Sp, and

we can alternatively write forMhigh

Employing the usual definition of the effectiveness factorη )
M/(πAsVp) and the Thiele modulusΦ2 ) (l/λ)2 ) l2πAs/JA,

For the case of uniform activity, i.e., a ) 1,

Equations 19-21 constitute the main results of this paper.
In essence, the formulation forΓ (eq 19.h) allows the evaluation
of M or η for short λ (or high Φ) up to a second order of
magnitude.

Comparing eq 19.h forΓ with the corresponding expression
developed by Keegan et al.1 for smooth surfaces, it is easy to
recognize that the former just adds the termΩav due to the effect
of the edges.

4. Constraints and Limitations for the Use of Equations
19-21

Constraints on the value ofλ arise from the analysis of smooth
sectors1 and from the treatment of edges. They involve
curvatures ofSp, activity gradients atSp, and some specific
dimensions of the catalyst body. Equations 7.a-c are the
relevant restrictions for the smooth sectors.

Two restrictions, holding at each point of an edge and
concerning the curvature effects, arise from the analysis in the
Supporting Information for this paper,

whereλw ) λ/aw
1/2, aw is the activity at the edge,RN,I is the

radius of curvature ofNI at the edge, andRC,I is the radius of
curvature of the normal sectionCI perpendicular toNI at the
edge (i.e., in the same direction of the edge); all quantities are
defined on a local basis. (At the given point of the edge, its
osculating plane will not be, in general, normal to any of both
sectors; then, the radius of curvature of the edge will not, in
general, coincide with eitherRC,I or RC,II.) Similar definitions
apply for RN,II andRC,II.

When expression 22.a is satisfied, the assumption of negli-
gible variations ofY in the direction of the edge will be
validated. If expression 22.b is fulfilled, the normal sectionsNI

andNII behave, in practice, as straight lines.

Activity gradients usually involve processes subject to
diffusion limitations, as in the case of poisons, carbonaceous
deposits, or the impregnation of active agents during catalyst
manufacturing. As a point at an edge constitutes a singular point
for the gradient of properties subject to diffusion limitations,
the restriction arising from activity gradients around the edge
(eq S37 in the Supporting Information) becomes more difficult
to formulate than that for the smooth sectors (eq 7.b). It is
probable that if the constraint given in eq 7.b is satisfied outside
the region immediately close to an edge, the specific restriction
discussed in the Supporting Information will also be satisfied.

To evaluate [∆Mhigh]k, it was assumed that very long edges
and normal sections were involved. As the linear dimensions
of the zones affected by the presence of an edge will be related
to the penetration depth, restrictions of the following type should
be additionally written down in regard to an edgek of length
Wk and a normal section (generated from a point of the edge)
of lengthL:

whereak andaL are suitable average activities.
In general, the restrictions discussed above should be locally

satisfied at each point of each smooth sector (eqs 7), or at each
point of each edge (eqs 22.a, 22.b, and 23.b). However, the
integral formulation for the asymptotic regime (eqs 19-21) can
still be accurately used if some of the restrictions are not strictly
satisfied in relatively narrow portions of the sectors or of the
edges. It will be very important to determine a valueλM such
that if λ e λM, the asymptotic regime will apply.λM represents
for a given catalyst a practical value satisfying the previously
discussed restrictions up to a degree depending on the accuracy
desired in the use of eqs 19-21. This point will be further
discussed in section 6.

A final and important issue concerns the presence of vertexes
on the pellet surface. We can assess the magnitude of their effect
by following a similar line of reasoning as that used for edges
in the previous section. Assume a vertex at which three sectors
are converging, e.g., the vertex of a cube. If the penetration
depthø is small, there will be a small zone around the vertex
with side lengthø in which the concentration fields from the
three sectors interact. Then, we cannot compute independently
the reaction of the species coming from the three sectors. Hence,
as a first approximation, we should subtract from eq 10 an
amount corresponding to two of the sectors, i.e., ∆M ∼ 2ø2NAS.
Employing eqs 8 and 14 forNAS andø, we can conclude that
∆M will be proportional toλ. As such, it will be negligible, in
regard to the evaluation ofMhigh, provided that the previously
discussed restrictions forλ are fulfilled.

5. Evaluation of ω(θ)

We undertake in this section the calculation of the coefficient
ω(θ) defined in eq 17.e.

The functionω(θ) is a decreasing function of the dihedral
angleθ that passes through zero atθ ) π, as depicted in Figure
3 for a first-order reaction (r ) Y) for which the notationω1(θ)
is employed. (When invoking “first-order reaction” conditions,
it is assumed thatπA ) kCA, that the system is isothermic, and
thatNA ) -DA ∇ CA, with a constantDA; hence,Y ) CA/CAS

and r(Y) ) Y.) Whenθ ) π, the external surface is actually
smooth through the edge, in the sense that the vector normal to

Γ ) l

(aS
1/2)av

[(TS + AS)av + Ωav] (19.h)

Mhigh)
JASp(aS

1/2)avI1

λ [1 - R
λ
l
Γ] (20.a)

ηhigh )
I1(aS

1/2)av

Φ (1 - R

Φ
Γ) (20.b)

(a ) 1) ηhigh )
I1

Φ(1 - R

Φ
Γ) (21.a)

Γ ) l[(TS)av + Ωav] (21.b)

λw| 1
RC,I

+ 1
RC,II

| , 1 (22.a)

λw

3θ
| 1
RN,I

+ 1
RN,II

| , 1 (22.b)

λ/ak
1/2 , Wk (23.a)

λ/aL
1/2 , L (23.b)
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the surface is continuous. Hence, an edge withθ ) π makes
no contribution toMhigh. For θ < π, ω(θ) > 0 means that the
edge promotes a negative contribution toMhigh (eqs 19 and 20.a),
as the flux lines from the two normal sections tend to converge,
and the opposite effect is achieved whenθ > π.

The evaluation ofω1(θ) can be done by means of a series
solution (e.g., ref 8) for eqs 17.a-c when r(Y) ) Y. In the
general case, a numerical solution should be employed, which
is not a trivial task as a 2D semi-infinite medium is involved.
Fortunately, the behavior ofω(θ) turns out to be a very weak
function of the form ofr(Y). Hence, an approximate closed
expression forω(θ) can be developed, which will be shown to
provide a quite satisfactory degree of precision for most
expressions ofr(Y). To develop such an approximation, we have
used numerical results ofω(θ) obtained with FEMLAB v3.1
by Comsol Inc. and additional analytical information has been
obtained from the behavior ofω(θ) at anglesθ close to zero
and close toπ, as detailed in the Appendix of this paper.

Let us first summarize the results from the Appendix. For
small values ofθ, the following series is shown to hold

where the dominant coefficientb0 is given by

The magnitudeηp(Φ) is the effectiveness factor for a slab with
uniform activity; that is, ifY(ú) is the solution of d2Y/dú2 )
Φ2r(Y) subject toY(0) ) 1 andY′(1) ) 0, then

The coefficientb0 depends weakly on the form ofr(Y). For
a zero-order reaction (i.e.,r ) 1 if Y > 0; r ) 0 if Y ) 0), b0

) 6, and for a first-order reaction,b0 ) 8 ln 2 ≈ 5.545 (ratio
of the values ofb0 is 1.08).

For values of aroundθ ) π, it is shown in the Appendix
that

whereo(x) represents a variable such thato(x)/x f 0 if x f 0.
Evidently, the behavior ofω(θ) aroundω ) π is independent

of r(Y).
The third point considered for developing a general expression

of ω(θ) is the valueA ) -ω(2π), that has been obtained
numerically for a number of kinetic expressions. In particular,
for r ) Y, the valueA ) 2 is obtained.

Now, it has been assumed that the valuesb0 andA suffice to
characterize a given expressionr(Y), and the following correla-
tion, which generally satisfiesω(π) ) 0, ω′(π) ) -1 (from eq
26), lim [θ ω(θ)] f b0 if θ f 0 (from eq 24), andω(2π) )
-A, is proposed to evaluateω(θ)

The maximum errors from eq 27 are less than 2%. In general,
the second-order term in eq 20.b forηhigh can contribute at most
about 25%, for applicable values ofΦ. Hence, the deviations
in ηhigh introduced by using eq 27 will be well below 1%.

To obtain a completely closed formulation ofω(θ), it is
necessary to have correlations forb0 andA.

5.1. Approximate Evaluation ofb0 and A. We have carried
out numerical evaluations of both parameters in eq 27,b0 and
A, for a number of kinetic expressionsr(Y) that can be
summarized by the general expression

For m ) 0, values ofn were tested in the range 0e n e 3.
Values ofm ) 1 and 2 were used along withn ) 1. If δ > 0
(exothermic reaction effect) orm > n, multiple solutions may
arise. The numerical experiments were restrained to values of
δ andK for which multiplicity does not take place in a catalytic
slab [e.g., for (δ, n, m) ) (0, 1, 2) up toK ) 9 or for (n, m) )
(2, 0) up toδ ) 5].

Values of parameterb0 span the range 5< b0 < 7; the lower
values are for high reaction orders, and the higher values
correspond to conditions approaching multiplicity. It was found
that the values ofb0 correlate well with coefficientsI1 andI2.
For a givenr(Y), these can be straightforwardly calculated from
their definitions in eqs 9. The correlation,

presents an error less than 3%, and it allows the evaluation of
ηhigh with an error safely below 1%.

The parameterA shows a very weak dependence on the form
of r(Y). The range 1.85< A < 2.10 encompasses all values
evaluated with FEMLAB v3.1 by Comsol Inc. The following
correlation allows the evaluation ofA with errors below 1%:

5.2. Final Assessment of the Effect ofr(Y) upon ω(θ). As
will be further discussed in the next section, it would have been
highly desirable thatω(θ) had been independent ofr(Y). From
a practical point of view, however,ω(θ) behaves as a weak
function of the kinetic expression, particularly in the rangeπ/2
e θ e 2π. The valueω1(θ) for a first-order reaction can be
adopted as a representative value for most kinds of kinetics.
Accepting a deviation of 5% in the value ofω(θ), we can
directly employω1(θ) if either (a)π/2 e θ e 2π andr(Y) does
not lead to multiple steady states in a slab or (b) 0e θ e 2π
(the full range ofθ) and 5.2e b0 e 5.8.

For power law kinetics,r ) Yn, the condition 5.2e b0e 5.8
is approximately equivalent to1/3 e n e 3. The specific

Figure 3. Plot of ω1(θ) [r(Y) ) Y].

ω(θ) ) 1
θ

(b0 + b1θ
2 + b2θ

4+ ...) (24)

b0 ) 4
I2
∫0

∞
[I1 - Φηp(Φ)] dΦ (25)

ηp(Φ) ) -Y′(0)/Φ2

ω(θ) ) (π - θ) + o(π - θ) (26)

ω(θ) ) {b0

θ [1 - (θπ)π2/b0] if 0 e θ e π

π2A
(π - A)θ + π(2A - π)[1 - θ

π] if π < θ e 2π
(27)

r(Y) ) eδ(1-Y)Yn( 1 + K
1 + KY)m

(28)

b0 ) 5.2I1
0.3/I2

0.1 (29.a)

A ) -ω(2π) ) 1.9/(I1I2)
0.07 (29.b)
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approximate expression forω1(θ) [r ) Y] is derived from eq
27,

The exact value for the common case ofθ ) π/2 is ω1(π/2) )
8/π = 2.5465.

5.3. Edges Separating Permeable and Sealed Sectors.Up
to this point, we have considered edges between two smooth
sectors belonging toSp. Instead, if a permeable sector shares
an edge with a sealed sector (belonging toSN), the values ofω
for this edge should be computed asω ) 1/2ω(2θ), whereθ is
the actual angle from the intersection of both sectors. This
relationship arises from considering that a sealed sector is
characterized by a null flux: the same as if it were an element
of symmetry. Asθ can reach a maximum of (2π), it would be
necessary to extend the evaluation ofω up to a hypothetical
angle (4π). We have not carried out a systematic study in the
range 2π < θ < 4π. As a point of reference, we quote that
ω1(3π) ) -3.15 [compare withω1(2π) ) -2.0]. A rough
approximation in the range 2π < θ < 4π can still be achieved
by extrapolating eq 27 or 30.

5.4. Example.Figure 4 schematizes a hypothetical pellet of
uniform activity consisting of a hollow cylinder with a
hemispherical head. We can identify four smooth sectors
corresponding to the external and internal cylindrical surfaces,
the spherical zone, and the flat base. There are four circular
edges: two formed from the intersection of the sphere and the
internal and external cylindrical surfaces (I and IV), and two
(II, III) enclosing the flat base. The contributions toΓ (eq 21.b)
from those geometrical elements are displayed in Table 2.

It is worth noting some specific features: the curvature is
uniform on each of the four sectors, the curvature of the internal

cylinder is negative, the angleθ around each edge is uniform,
and the angle around edge IV isθ ) π; hence, this edge does
not contribute toΓ.

Most commercial catalytic pellets show a regular shape, and
the difficulty in evaluatingΓ will not be higher than that for
the previous example, at least for cases of uniform activity.

Reference values ofΓ for uniform activity are 0.67 (sphere),
0.5 (long circular cylinder), and 0 (slab). The body in Figure 4
(Γ ) 0.31 from Table 2) is expected to behave intermediately
between the case of a slab and the case of a long circular
cylinder.

6. Discussion and Use of the Second-Order Expansion

We will consider first in this section the case of single
reactions. Also, it will be assumed that uniform catalytic activity
is involved (i.e.,a ) 1), unless specifically mentioned.

For the general case of nonlinear kinetics, the natural way to
solve the problem of evaluating the effectiveness factor involves
a numerical procedure. It is well-known that the difficulty in
solving an equation like eq 3.a increases asλ decreases or,
equivalently, asΦ increases. Villadsen and Michelsen9 described
how the global orthogonal collocation method, a very efficient
procedure for 1D problems, collapses at high values ofΦ.
Methods based on local approximations, on the other hand, will
require meshing of a size comparable toλ. This leads to a
number of nodes (or elements) of the orderΦd (d is the number
of spatial coordinates in the conservation equations), if uniformly
spaced. Some kind of adaptive meshing will eventually be
necessary,10 but still, there will be a high numerical cost
associated with its implementation and the obvious need for a
more sophisticated solver.

Therefore, it would be highly convenient to have an alterna-
tive to avoid the use of a numerical procedure at high values of
Φ. In this sense, eq 20.b can be valuable for complementing
the use of a numerical routine. The computational savings will
be particularly relevant for 3D geometries.

As a specific example, consider a cube (Γcube ) ω(π/2)/3)
and assume that an error of 2% is tolerable in the evaluation of
η. Numerical values ofη were evaluated by employing
FEMLAB v3.1. For a first-order reaction (r ) Y), the deviation
betweenηhigh from eq 20.b and the numerical value is-2.0%
atΦ ) 2.1 (ηhigh ) 0.380). DefiningΦm as the lowestΦ needed
for using eq 20.b, a numerical solution will be required in this
example forΦ < Φm ) 2.1. Around 50 equally sized elements
were employed by FEMLAB v3.1 (in an eighth of the cube,
taking advantage of symmetry) to render an evaluation ofη
with an error around 2.0% atΦ ) 2.1.

Instead, if we assume that the only piece of available
analytical information at high values ofΦ is ηlimit ) I1/Φ (i.e.,
the expression for the limiting regime), we will have to use the
numerical procedure up to aboutΦ ) 21 to keep an error of
2%. FEMLAB v3.1 employs around 100 000 equally sized
elements to evaluateη atΦ ) 21 with an error of 2%. Probably,
this number of elements cannot be tolerated for any practical
application in which the evaluation ofη should be repeated
many times. Of course, the use of an adaptive procedure will
be beneficial in this case.

In the previous example, eq 20.b allowed one to avoid the
use of the numerical procedure for values ofΦ spanning 1 order
of magnitude (fromΦ ) 2.1 toΦ ) 21). In terms of changes
in intrinsic kinetics, this range ofΦ is equivalent to a 100-fold
increase of the reaction rate coefficient.

The effect of the type of reaction rate expression can be
appreciated in Table 3, where minimum values ofΦ for using

Figure 4. Sketch of a hypothetical pellet.

Table 2. Contributions to Γ for a Hollow Cylinder with a
Hemispherical Head (Figure 4)

sectors Sj TS [TSS] j

fixed
dimensions

external 2πReH ) 12.57 1/Re ) 1 12.6 Re ) 1
internal 2πRi(H + h) ) 9.00 -1/Ri ) -2 -18.0 Ri ) 1/2
spherical 2πReh ) 5.44 2/Re ) 2 10.9 H ) 2
flat base π(Re

2 - Ri
2) ) 2.36 0 0.0

edges Wk ω(θ) [ωW]k

derived
quantities

I 2πRi ) 3.14 ω(π/3) ) 4.55 14.3 h ) 0.866
θsp ) π/3

II 2πRi ) 3.14 ω(π/2) ) 2.54 8.0 Sp ) 29.4
Vp ) 6.07

III 2πRe ) 6.28 ω(π/2) ) 2.54 16.0 l ) 0.206
Γ ) 0.307

IV 2πRe) 6.28 ω(π) ) 0 0.0

Sum: 43.8

ω1(θ) ) {8 ln 2
θ [1 - (θπ)π2/(8 ln 2)] if 0 e θ e π

2π2

(π - 2)θ + π(4 - π)[1 - θ
π] if π < θ e 2π

(30)
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either ηhigh from eq 20.b orηlimit ) I1/Φ are displayed (the
same expressions as in Table 1 were used, exceptr ) Y1/2 for
which convergence problems arose in the numerical procedure).
In all cases, the parameterω(π/2) for calculatingΓcube was
calculated from approximations 27 and 29.a. Values ofI1 and
R are also shown in Table 3. The span ofΦ between the
minimum values for usingηhigh and ηlimit is similar for the
different kinetics, and there is a beneficial trend forΦm to
decrease as the (effective) reaction order decreases.

For the direct use of eq 20.b, as illustrated above, we should
know the critical valueΦm. To determine this value for a given
problem (i.e., pellet geometry, reaction rate expression, and
tolerable error), the numerical procedure can be used in an
exploring initial stage. To minimize this effort (or better, to avoid
it), it would be highly desirable to have some guidelines for
evaluatingΦm. At present and based on the restrictions discussed
in section 4, we are trying to systematize a body of results in
this direction. The majority of examples suggest that 2< Φm

< 2.5 for first-order kinetics and 2% of tolerable error, although
there are geometries that promote values ofΦm outside that
range. We hope to undertake this point more amply in a separate
contribution.

6.1. Use ofΓ as a Shape Factor.When it is desired, or
needed, to completely avoid 2D or 3D evaluations of the
effective reaction rate, some kind of approximation should be
introduced. A convenient approach is adopting a geometrical
1D model to approximate the behavior of a given 2D or 3D
pellet. There are available in the literature some interesting
proposals in this regard. The basic idea is defining ashape factor
to characterize the geometric shape of a given catalyst and use
a simple 1D geometry (thegeometric model) holding the same
value of the shape factor to compute the effective reaction rates.

A suitable 1D geometric model presenting one adjustable
parameter to match the shape factor was proposed by Burghardt
and Kubaczka.11 The shape factor proposed by them to
characterize 2D or 3D geometries is based on an effective
diffusion length. A general procedure to evaluate this property
for any pellet geometry was not given in that paper. Mariani et
al.4 employed the same geometric model but used the geo-
metrical coefficient γ arising from the expansion of the
effectiveness factorη at low values ofΦ (e.g.,η ≈ 1 - γΦ2,
for a first-order reaction) as the shape factor. Thus, the shape
factor becomes unambiguously defined for any pellet geometry.
The results obtained for a single first-order reaction in hollow
circular cylinders and parallelepipeds were very accurate over
the whole range ofΦ (maximum errors less than 1%).

Buffham12 proposed a magnitude calledcompactness(here
denoted asQ) as a shape factor:

Therefore,Q is proportional to the value ofΓ in the case of
uniform activity and a smooth surface (cf. eq 21.b withΩav )
0). The factor 1.5 yieldsQ ) 1 for a sphere. The author put
forward the use ofQ as a general shape factor for any kind of

particulate material and application, without a specific associa-
tion to the asymptotic regime in catalysts.

Actually, Buffham12 extended the use of eq 31 for geometries
with flat faces (plane smooth sectors) and, therefore, straight
edges (prisms, parallelepipeds, and tetrahedra).

To this end, instead of considering wedges with sharp edges
(Figure 2), Buffham12 assumed that they present a round nose
in the form of a sector of a circular cylinder of radiusRp. As
depicted in Figure 5, on a normal plane of such wedges, the
nose meets the faces at straight angles. Hence, the cylindrical
sector angle becomes defined byφ ) π - θ.

The contribution of the lateral surface of the cylindrical sector
to (TS)av is

where W is the length of the wedge. The radiusRp is then
considered to be very small, so the lateral surface area of the
cylindrical sector can be neglected in computingSp. Considering
only bodies with uniform angleθ (infinite regular prisms,
parallelepipeds, and a regular tetrahedron), it follows that

whereWT is the total length of the edges.
Buffham12 compared the effectiveness factor of a first-order

reaction for different catalyst geometries. Three kinds of
comparisons were made. In the first case, geometries with
smooth surfaces (e.g., a sphere or a very long Raschig ring)
and the sameQ were involved. When compared at the same
value ofΦ, the maximum deviation inη between the different
smooth geometries was about 1%. Parallelepipeds with different
aspect ratios, but with the sameQ, were compared in the second
case. A conclusion similar to that in the first case arose for the
deviations inη. Finally, a parallelepiped and smooth geometries
with the sameQ were compared. In this case, the values ofη
for the parallelepiped showed deviations up to around 8.5% (in
defect) when compared to the case of the smooth geometries,
i.e., about an order of magnitude higher than in the previous
cases.

These results can be explained by recalling the connection
betweenQ andΓ. It should be stressed first that if any pair of
geometries should present very close values ofη for the whole
range ofΦ, a necessarycondition is that the values ofΓ turn
out to be similar, as required by eq 20.b for high values ofΦ.
The first two comparisons explained above verified this require-
ment. The first case is rather obvious, asQ ) 1.5Γ for smooth
surfaces. On the other hand, for a first-order reaction in
parallelepipeds [θ ) π/2, ω1(π/2) ) 8/π], Γ ) l(8/π)WT/Sp;
then, eq 33 yieldsQ ) 1.5(π2/4)Γ ) 0.925Γ. Thus, paral-
lelepipeds of the sameQ present the sameΓ. But, a paral-
lelepiped and a smooth catalyst showing the same value ofQ
will necessarily show significantly different values ofΓ (the
ratio is 1.5/0.925) 1.62), that explains the results of the third
case.

Table 3. Effect of the Kinetic Expression on Minimum Values ofΦ
Needed for Usingηhigh (Eq 20.b) or ηlimit ) I1/Φ with a Tolerable
Error of 2% in a Cube

r(Y) Y2 Y 1 (if Y > 0) 36Y/(1 + 5Y)2

Φm (for ηhigh) 2.10 2.10 1.53 1.30
Φ (for ηlimit) 20.5 21.0 20.8 18.5
Γ ) ω(π/2)/3 0.820 0.836 0.866 0.885
R 0.49 0.50 0.47 0.41
I1 0.816 1 1.41 1.66

Figure 5. Cross section of a round-nose wedge.

(TSS)w ) (1/Rp)(φRpW) ) (π - θ)W (32)

Q ) 1.5l(π - θ)WT/Sp (33)

Q ) 1.5l(TS)av (31)
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As a further example, let us compare a long parallelepiped
(P) with sides (1, 1.42, and 14.2), a sphere with an inert core
(SIC) with radii 0.726 and 1, and a solid sphere (SS). P andSIC

have the sameQ, equal to 0.617, butP andSS have the same
Γ, equal to2/3. The maximum relative deviation forη between
SIC andP (sameQ) is 7.0% (atΦ ≈ 1.4), and that betweenP
andSS (sameΓ) is 0.80% (atΦ ≈ 1.0).

The reason thatQ is not compatible withΓ for bodies
presenting edges stems from the fact that the approximation
employed for the edges (eq 32) involves assuming a tiny radius
of curvature (Rp f 0) for the cylindrical sectors, which cannot
fulfill restriction 7.a.

The appropriateness ofΓ as a characteristic shape factor was
also shown by Mariani et al.,13 by fitting the adjustable
parameter of the 1D geometric model of Burghardt and
Kubaczka11 with the values ofΓ for several pellet shapes,
including cylinders, parallelepipeds, Raschig rings, and other
hollow cylinders. The values ofη for a first-order reaction
calculated from the 1D model differ from the actual values by
no more than 1.5%.

As a specific example of the use of the 1D geometric model,
consider a “wagon wheel” tablet, for which the cross section is
that outlined in Figure 6, with curved and flat walls of the same
thicknesst ) (16/81)Re (Re is the outer radius) and a lengthH
) (25/27)Re. This tablet corresponds to the geometry of an actual
commercial catalyst for the steam reforming process. Employing
values ofω1 (first-order kinetics) from eq 30, we calculateΓ
) 0.293. From Figure 6, we can see that there are 14 axial
edges withω1(2π - â), 7 axial edges withω1(2π - æ), and
the edges of the bases (total length given by twice the perimeter
of the cross section) withω1(π/2). The tablet will show a
behavior somewhere between that of a slab (Γ ) 0) and that of
an infinitely long circular cylinder (Γ ) 0.5). The free parameter
of the 1D model was chosen so that the model also presentsΓ
) 0.293. Forr(Y) ) Y, the maximum difference between values
of η from the 1D model and the actual tablet (using FEMLAB
v3.1) was 0.5% (atΦ ≈ 1.0).

It remains to ask ifΓ universallysufficesfor characterizing
the catalyst shape. Keegan et al.1 gave examples of smooth
geometries, arising in monolithic reactors and presenting the
same value ofΓ but showing deviations between their values
of η that rise well above 15%. The reason for this discrepancy
was that those geometries present significantly different values
of the coefficientγ representing the lowΦ range. This result is
not surprising:γ reflects an incipient diffusion limitation that
arises from thewhole catalyst body, whileΓ reflects the
diffusion limitation just in theouter partof the catalyst, close
to Sp. Even though for a vast amount of geometries both
coefficients,Γ andγ, are very strongly correlated and either of
them can be used to characterize the geometrical effect, there
are exceptions to the rule, as in the examples from ref 1. In

these cases, the catalyst geometry should be identified byboth
coefficients,γ andΓ.

It is interesting to remark at this point that the coefficientγ
is defined from the solution of a Laplace equation [L(Y) ) 0]
for the actual catalyst geometry, and as such, this definition
involves solving a 2D or 3D problem. Although approximate
solutions have been presented for a number of practical cases,4

it is a general conclusion that the evaluation of the coefficient
Γ is considerably simpler than that ofγ. Hence, when it is
known that for a given type of geometry both coefficients are
correlated, the use ofΓ to characterize the geometry is preferred,
for the sake of simplicity.

In previous paragraphs, we have referred toΓ as a shape
factor. However, it should be recalled that it also depends on
the activity distribution, through (aS

1/2)av and (AS)av (eq 19.h).
Thus, Γ includes geometric and activity gradient effects,
although both are clearly separable. On the other hand, we also
recall that the effect of the form ofr(Y) cannot be separated
from the edge coefficientω(θ). This could have been a major
drawback for assigning a neat geometrical significance toΓ,
but the influence ofr(Y) turns out to be so weak that using the
valueω1 (eq 30) will be quite satisfactory most of the time, as
noted in section 5.

As a partial conclusion, there is clear evidence from single-
reaction results thatΓ is a significant coefficient for character-
izing the catalyst shape and, as such, it can be used in connection
with 1D geometrical approximations. A more detailed and
systematic report in this regard is currently being prepared.

6.2. Extension to Multiple Reactions.The development in
this paper and the preceding discussion were made on the basis
of a single reaction. The effort of solving 2D or 3D conservation
balances in multiple-reaction systems would be much more
significant, in terms of implementation and computation, than
that for a single reaction. It is then important to analyze how
the formulation for a single reaction can be extended to multiple
reactions. We do not know of other systematic studies aimed
at evaluating the use of any 1D model as an approximation for
complex (2D or 3D) catalyst geometries when multiple reactions
occur. In view of the lack of enough background and the fact
that a proper formulation would require significantly increasing
the extent of the present manuscript, we will only advance here
some conclusions regarding the characterization of the asymp-
totic regime for multiple reactions.

It was verified in the work of Keegan et al.1 that for smooth
catalyst geometries with multiple reactions the overall reaction
rates depend on the same coefficient as for the single reaction,
Γsmooth) l(TS + AS)av/(aS

1/2)av (cfs. eq 19.h), provided thatall
reactions take place sufficiently close toSp. Therefore,Γsmooth

can be employed, in connection to a 1D model, just as for a
single reaction.

The effect of edges can be evaluated by following a similar
treatment as was done for a single reaction. It is not difficult to
visualize that a set of equations similar to eqs 17, but extended
to all reactions, will arise. From this, a set of values{ω(θ)}
will come out, instead of a single value as in the case of a single
reaction. Then, there will be no single coefficientΓ for the whole
system but a set of values{Γ} derived from the set{ω(θ)}. In
a strict sense, this fact prevents the use of a geometric 1D model.

Nonetheless, given the fact thatω(θ) for a single reaction
was shown to vary very weakly with reaction kinetics, it can
be reasonably expected that this feature will hold for multiple
reaction systems. Specifically, we can expect that the value
ω1(θ) (eq 30) will be suitable to define a singleΓ to characterize
the system, allowing a 1D geometric model to be defined. When

Figure 6. Cross section of a “wagon wheel” tablet.
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the conservation balances are linear (linear reaction rates and
linear dependence of fluxes with concentration gradients), it can
be shown that a single coefficientΓ defined withω1(θ) strictly
holds.

We can take for granted that there will be a number of
multiple-reaction schemes for which the use ofω1(θ) and a
single value ofΓ will turn out to be valid, but a systematic
investigation is obviously necessary to find out eventual
limitations.

6.3. External Transport Limitations. The assumption of
uniform state variables overSp (assumption a in section 2) has
been briefly addressed by Keegan et al.1 It was argued that this
assumption can become invalid if mass (and heat) transfer
coefficients from the fluid bulk vary strongly overSp and,
simultaneously, the average impact of the external limitations
is also strong. In random beds of catalytic pellets, local
coefficients can indeed vary considerably, but in commercial
units, the average effect will be normally minimized due to the
high superficial velocities usually employed. Therefore, as-
sumption a will be appropriate in many practical cases, but
counterexamples cannot be ruled out. The whole issue is beyond
the scope of this manuscript, so caution should be taken in this
regard. In addition, to our knowledge, experimental information
about local fluid-to-particle mass and heat transfer coefficients
in packed beds is very limited. Probably, computational fluid
dynamics (CFD) studies can be of great help in this regard.

7. Conclusions

The main results of this paper are eqs 19-21 expressing the
effective reaction rate as a truncated series with a first-order
term (proportional toΦ-1) and a second-order term (proportional
to Φ-2) for any 2D or 3D catalyst shape. The conditions under
which these expressions apply are termed the asymptotic regime.
The parameterΓ (eq 19.h) defining the magnitude of the second-
order correction has been obtained by adding the effect of edges
to the expression previously developed for smooth surfaces.1

The contribution of a given edge can be evaluated by reducing
the zone close to it to a straight wedge. This is a 2D problem
whose relevant outcome is the coefficientω(θ) that depends
strongly on the dihedral angleθ and weakly on the shape of
the dimensionless rater(Y). A correlation forω(θ) applicable
for most types of kinetic expressionsr(Y) has been presented.
This correlation allows evaluatingΓ in a very simple way for
essentially any shape of known commercial pellets.

Basic restrictions for the settlement of the asymptotic regime
have been summarized. Those arising from the existence of
edges have been developed in the Supporting Information for
this paper.

The expressions for the asymptotic regime can be applied
straightforwardly to complement a numerical evaluation of the
conservation equation. A numerical method can be employed
for the relatively smooth concentration fields inside the catalyst
at low values ofΦ, while the asymptotic expression can be
used at large values ofΦ, when steep (and difficult to evaluate)
solutions take place. It is shown that the lowest value ofΦ for
which the asymptotic expression can be used may reach 1 order
of magnitude less than that when using only the first-order term
(in Φ-1) for the effectiveness factor.

Another important application ofΓ is for fitting the adjustable
parameter of a 1D geometric model intended for approximating
the diffusion-reaction problem in complex 2D or 3D shapes.
Γ is a characteristic coefficient enclosing the effect of geometry
and activity profiles of any 2D or 3D catalytic body at high
reaction rates. From the expansion of the effectiveness factor

at low reaction rates, a different coefficient,γ, also encompasses
geometric and activity gradient effects.4,7 Based on previous
results from Buffam,12 Keegan et al.,1 Mariani et al.,4,13 and
some examples provided here, it has been observed thatΓ and
γ are frequently very strongly correlated. In these cases, it will
be more convenient to adjust the 1D geometric model withΓ,
which is more easily evaluated thanγ.

Even thoughΓ andγ are very well correlated for many types
of commercial catalysts, deviations from realistic shapes have
been identified. It remains to systematize these cases and
propose alternatives for their approximate treatment.

A similar analysis of the asymptotic regime can be carried
out for systems of multiple reactions. The presence of edges
avoids, in general, the occurrence of a single value forω(θ)
and, hence, of a singleΓ. Nonetheless, considering the
insensitivity ofω(θ) with the form of the reaction rate (as proved
for single reactions) and the fact that for linear systemsω1(θ)
holds as the unique coefficient for the system, it is reasonable
to expect that the value ofΓ calculated with ω1(θ) can
characterize a variety of multiple-reaction systems, similarly as
it did for single reactions.
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Appendix

A.1. Solution of Eqs 17 in the Main Text aroundθ ) π.
Equation 17.a in the main text can be rewritten in stretched
Cartesian coordinatesx andy (see Figure A1)

where the axisx corresponds to the symmetry axis of the wedge
and the straight liney ) x/tg(φ) corresponds to one of the normal
sections. Then, the boundary conditions are

whereφ ) (π - θ)/2, andθ is the dihedral angle, which is
assumed to be close toπ. Hence,φ will be small and positive
if θ < π and negative ifθ > π. The derivative ofY in the

Figure A1. Coordinates to analyze the wedge at anglesθ ≈ π.

∂
2Y

∂x2
+ ∂

2Y

∂y2
) r(Y) (A1)

Y ) 1 aty ) x/tg(φ); ∂Y/∂y ) 0 aty ) 0

Y ) 0 atx f ∞
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direction normal toy ) x/tg(φ) can be written

The coefficientω(θ) in eq 17.e of the main text can now be
expressed by

The following change of coordinates is introduced (see Figure
A1),

from which

and

Replacing in eq A1

the boundary conditions become

From eq A2, the normal derivative on the normal section is
expressed as

Since (∂Y/∂w)u)0 ) 0,

Then, the integral in eq A3 becomes

By definition, sin(φ) can be regarded as a small parameter in
the system of eqs A4-A6. Hence, the following expansion is
proposed for the solutionY:

whereY0, Y1, ... are functions ofu andw and do not depend on
sin(φ). Expandingr(Y) aroundY0,

Replacing eq A9.a and eq A9.b in eqs A4-A6 and collecting
the terms independent of sin(φ), the following expression is

obtained:

Due to the boundary condition∂Y0/∂w ) 0 atw ) 0, this system
reduces to

which is equivalent to expressions 11.a-c in the main text
describing the limiting regime. Definingp ) dY0/du, eq A10.a
is written

In turn, eq 12 in the main text can be rewritten

and

Collecting now terms in sin(φ) resulting from the expansions
defined in eqs A9 and taking into account the definitionp )
dY0/du,

Before attempting a solution forY1 from eqs A13, it is
convenient to expressω(θ), eq A8, according to expansion A9.a.
Considering eq A12.b, we can write

and becauseφ is small,

Hence, our target is now finding an expression for the integral
in eq A14. It will become apparent that this integral can be
directly evaluated by appropriately manipulating eqs A13,
without the need of knowing the fieldY1.

To this end, we should first recall from the main text that far
from the influence of the edge (i.e., at high values ofw) the
solutionY0 of the limiting regime holds. As a consequence,Y1

∂Y/∂n ) cos(φ)(∂Y/∂x)y)x/tg(φ) - sin(φ)(∂Y/∂y)y)x/tg(φ) (A2)

ω(θ) ) 2
I2 cos(φ)

∫0

∞
[∂Y/∂n + I1] dy (A3)

w ) y; u ) x cos(φ) - y sin(φ)

∂Y/∂y ) -sin(φ) ∂Y/∂u + ∂Y/∂w

∂Y/∂x ) cos(φ) ∂Y/∂u

∂
2Y

∂y2
) ∂

2Y

∂u2
sin2(φ) + ∂

2Y

∂w2
- 2

∂
2Y

∂u ∂w
sin(φ);

∂
2Y

∂x2
) cos2(φ)

∂
2Y

∂u2

∂
2Y

∂u2
+ ∂

2Y

∂w2
- 2

∂
2Y

∂u ∂w
sin(φ) ) r(Y) (A4)

Y ) 1 atu ) 0
Y ) 0 whenu f ∞ } (A5)

sin(φ) ∂Y/∂u ) ∂Y/∂w atw ) 0 (A6)

∂Y/∂n ) (∂Y/∂u)u)0 - sin(φ)(∂Y/∂w)u)0

∂Y/∂n ) (∂Y/∂u)u)0 (A7)

ω(θ) ) 2
I2 cos(φ)

∫0

∞
[(∂Y/∂u)u)0 + I1] dw (A8)

Y ) Y0 + sin(φ) Y1 + sin2(φ) Y2 + ... (A9.a)

r(Y) ) r(Y0) + r′(Y0)[sin(φ) Y1 + sin2(φ) Y2 + ...] +
1/2r′′(Y0)[sin(φ) Y1 + sin2(φ) Y2 + ...]2 + ... (A9.b)

∂
2Y0

∂u2
+

∂
2Y0

∂w2
) r(Y0)

Y0 ) 1 atu ) 0

∂Y0/∂w ) 0 atw ) 0

Y0 ) 0 whenu f ∞

d2Y0

du2
) r(Y0) (A10.a)

Y0 ) 1 atu ) 0 (A10.b)

Y0 ) 0 whenu f ∞ (A10.c)

p(dp/dY0) ) r(Y0) (A11)

p ) -I(Y0)
1/2

whereI(Y0) ) 2∫0

Y0r(Y) dY (A12.a)

p(0) ) (dY0/du)u)0 ) -I1 ) - [I(1)]1/2 (A12.b)

∂
2Y1

∂w2
+

∂
2Y1

∂u2
- r′(Y0)Y1 ) 0 (A13.a)

Y1 ) 0 atu ) 0; ∂Y1/∂w ) p atw ) 0;
Y1 ) 0 whenu f ∞ (A13.b)

ω(θ) )
2tg(φ)

I2
∫0

∞
[∂Y1/∂u]u)0 dw + o(sinφ)

ω(θ) )
(π - θ)

I2
∫0

∞
[∂Y1/∂u]u)0 dw + o(π - θ) (A14)
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and its derivates vanish at high values ofw. In particular,

On the other hand, we should also recall that the solutionY0

varies monotonically withu. Hence, both variables,Y0 andu,
can be exchanged, according to convenience. In particular,
partial derivatives with respect tou (for fixed values ofw) can
be expressed as partial derivatives with respect toY0. Then, the
following relation will be employed,

where

Equation A15.b can be checked by performing the derivative
of the right-hand term, recalling the definitionp ) dY0/du and
eq A11. Equation A13.a can now be written as

Integrating over variableY0, from Y0 ) 0 toY0 ) 1 (equivalently,
from u f ∞ to u ) 0), and recalling thatY0 and w are
independent variables:

As Y1 ) 0 at u ) 0, Ψ|u)0 ) p(0)(∂Y1/∂u)u)0 (see eq A15.c).
BesidesΨ|uf∞ ) 0, as foru f ∞, p f 0. By replacing these
terms and introducing∂/∂w under the integral, the following
relationship is obtained:

This expression is now integrated overw, from w ) 0 to w f
∞,

The integral evaluated atw f ∞ is nil (eq A15.a), and replacing
∂Y1/∂w ) p, at w ) 0 (eqs A13.b),

Finally, considering eqs A12 forp andp(0) and the definition
of I2 in eq 9.c in the main text,

Replacing the integral

in eq A14, we obtain forω(θ)

A.2. Solution of Eqs 17 in the Main Text for Small Angles
θ. If θ is close to zero, the flux in the angular directionæ of
the polar coordinates employed in eqs 17 of the main text will
be dominant with respect to the flux in the radial directionF, at
least at points sufficiently far from the edge. Thus, at a given
radiusF (not so small),Y will primarily depend on the generic
arc length (Fæ) measured fromæ ) 0 and on the total arc length
(Fθ/2), where the symmetry condition applies. Based on this
observation, the following expansion is proposed for the solution
of Y at small values ofθ

where

Expandingr(Y) aroundY0,

Considering the boundary conditionsY ) 1 at æ ) 0 and
∂Y/∂æ ) 0 atæ ) θ/2, we obtain for the functionsYi in eq A17

Replacing eqs A17 and A18 in eq 17.a of the main text and
collecting terms that contain powersF-2i (i ) 0, 1, 2, ...),

where the operatorLi (i ) 0, 1, 2, ...) is defined byLi ) (2i)2

+ (1 - 4i)P + P 2 andP ) s(∂/∂s) + ς(∂/∂ς).
It is recalled that the functionsYi(s; ς) only depend on one

spatial coordinate (s) and on a parameter (ς), so the boundary
conditions (eqs A19) and conservation balances (eqs A20)
actually describe 1D variations ofYi (on s) at a given value of
ς. Hence, a proper interpretation should be given to the partial
derivatives in eqs A19 and A20 and in the definition of the
operatorP.

The coefficientω(θ) in eq 17.e of the main text is now
expressed

∂Y1/∂w ) 0 if w f ∞ (A15.a)

∂
2Y1

∂u2
- r′(Y0)Y1 ) ∂Ψ

∂Y0
(A15.b)

Ψ ) p(∂Y1

∂u
- dp

dY0
Y1) (A15.c)

∂Ψ
∂Y0

+
∂

2Y1

∂w2
) 0

∫u)∞

u)0
dΨ + ∂

2

∂w2 ∫0

1
Y1 dY0 ) Ψ|u)0 - Ψ|uf∞ +

∂
2

∂w2 ∫0

1
Y1 dY0 ) 0

p(0)(∂Y1/∂u)u)0 + ∂

∂w∫0

1
(∂Y1/∂w) dY0 ) 0

p(0)∫0

∞
(∂Y1/∂u)u)0 dw + [∫0

1
(∂Y1/∂w) dY0]wf∞ -

[∫0

1
(∂Y1/∂w) dY0]w)0 ) 0

p(0)∫0

∞
(∂Y1/∂u)u)0 dw ) ∫0

1
p dY0

(-I1)∫0

∞(∂Y1

∂u )
u)0

dw ) -I1I2

∫0

∞(∂Y1

∂u )
u)0

dw

ω(θ) ) (π - θ) + o(π - θ) (A16)

Y ) Y0 + 1

F2
Y1 + 1

F4
Y2 + 1

F6
Y3 + ... (A17)

Yi ) Yi(s; ς) for i ) 0, 1, 2, ... withs ) Fæ andς ) Fθ/2

r(Y) ) r(Y0) + r′(Y0)( 1

F2
Y1 + 1

F4
Y2 + ...) +

1
2
r′′(Y0)( 1

F2
Y1 + 1

F4
Y2 + ...)2

+ ... (A18)

Y0 ) 1 ats ) 0; ∂Y0/∂s ) 0 ats ) ς (A19.a)

Yi ) 0 (i ) 1, 2, ...) ats ) 0; ∂Yi/∂s ) 0 ats ) ς
(A19.b)

i ) 0: ∂
2Y0/∂s2 ) r(Y0) (A20.a)

i ) 1: L0(Y0) + ∂
2Y1/∂s2 ) Y1r′(Y0) (A20.b)

i ) 2: L1(Y1) + ∂
2Y2/∂s2 ) Y2r′(Y1) + 1

2
Y1r′′(Y0), etc.

(A20.c)

ω(θ) )
2

I2

∫0

∞
[(∂Y/∂s)s)0 + I1] dF )

2

I2

∫0

∞
[(∂Y0/∂s)s)0 + I1] dF +

2

I2
∑
i)1

∞ ∫0

∞
F-2i(∂Yi/∂s)s)0 dF
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The derivatives (∂Yi/∂s)s)0 depend only onς. ReplacingF )
(2/θ)ς and dF ) (2/θ) dς, we obtain

where

The coefficientsbi (i ) 0, 1, 2, ...) depend only on the form of
r(Y).

We are specifically interested in the coefficientb0, for which
the solutionY0 of eq A20.a and boundary conditions A19.a
corresponds to the solution in a catalytic slab with uniform
activity and width (2ς). The Thiele modulus for this slab is
simply Φ ) ς. By denotingηp(Φ) as its effectiveness factor,
we can write

Supporting Information Available: Figures, equations, and
discussion describing the validation of the straight-wedge
approach accounting for the effect of edges. This material is
available free of charge via the Internet at http://pubs.acs.org.

Nomenclature

AS ) coefficient defined in eq 6.a [dimensionless]
a ) catalytic activity [dimensionless]
aS ) local catalytic activity onSp [dimensionless]
CA ) molar concentration of reactant A [mol m-3]
I1 ) coefficient defined in eq 9.b [dimensionless]
I2 ) coefficient defined in eq 9.c [dimensionless]
JA ) coefficient defined in eq 2.b [mol m-1 s-1]
l ) Vp/Sp, characteristic length [m]
L ) Laplacian operator [m-2]
M ) overall consumption rate [mol s-1]
n ) normal unit vector onSp [dimensionless]
NI,NII ) normal sections from the plane normal to the edge
NA ) molar flux of reactant A [mol m-2 s-1]
R ) I2/I1 [dimensionless]
R ) radial coordinate [m]
Ra, Rb ) principal radii of curvature [m]
r(Y) ) πA(Y)/πAS, relative reaction rate [dimensionless]
SN ) external surface area of the catalytic body inaccessible to

reactants [m2]
Sp ) external surface area of the catalytic body accessible to

reactants [m2]
Sj ) area of thejth smooth sector [m2]
TS ) sum of local principal curvatures onSp defined in eq 5

[m-1]
Vp ) volume of the catalytic body [m3]
Wk ) length ofkth edge [m]
Y ) concentration defined in eq 2.a [dimensionless]

Greek Letters

γ ) geometric coefficient [dimensionless]
Γ ) coefficient defined in eq 19.h [dimensionless]
λ ) global reaction scale defined in eq 3.d [m]
λS ) λ/aS

1/2, local reaction scale atSp [m]
πA ) specific consumption rate of reactant A [mol m-3 s-1]
Φ ) l(πAS/JA)1/2, Thiele modulus [dimensionless]
η ) effectiveness factor [dimensionless]
ên ) coordinate along the inward normal toSp

ú ) ên/λS, stretched coordinate [dimensionless]
ø ) penetration depth [m]
ω(θ) ) parameter defined in eq 17.e
θ ) dihedral angle defined by the tangents ofNI andNII at the

edge

Subscripts

e ) chemical equilibrium
high ) asymptotic regime
limit ) limiting regime
S ) value atSp
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ω(θ) ) 1
θ

(b0 + b1θ
2 + b2θ

4 + ...) (A21)

b0 ) 4
I2
∫0

∞
[(∂Y0/∂s)s)0 + I1] dς (A22.a)

(i g 1) bi )
4(1-i)

I2
∫0

∞
(∂Yi/∂s)s)0ς

-2i dς (A22.b)

b0 ) 4
I2
∫0

∞
[I1 - Φηp(Φ)] dΦ (A23)
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