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Behavior of Catalytic Pellets at High Reaction Rates. The Effect of Edges
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The diffusion and reaction problem in catalytic pellets of any shape subject to diffusive transport limitations
is undertaken in this contribution. Effective reaction rates in three-dimensional (3D) catalysts can be evaluated
through a series solution written in terms of powers off({Livhen strong diffusion limitations are present.

In a recent paper, Keegan et alHem. Eng. J2005 110, 41] have clearly demonstrated for smooth catalysts
that the second-order term [in @)% depends essentially on the shape of the pellet. In this context, the
purpose of this paper is to develop expressions of the second-order term for two-dimensional (2D) or 3D
catalytic bodies showing edges. While the first-order term allows definition of the psigeof a catalyst,

the second-order term provides a characterization fosttageof the catalyst. The possibility of using this
characterization of catalyst shape in a geometrical one-dimensional (1D) model to approximate the behavior
of given 2D or 3D pellets is analyzed. Also, the direct use of the two-term truncated series for complementing
the numerical evaluation of the conservation equation is described.

1. Introduction Table 1. Maximum Relative Difference @A) between the
Effectiveness Factors of a Slab (1D) and a Circular Cylinder with a

Diffusive transport in most kinds of commercial catalytic Height/Radius Ratio of 1.7 (2D), Compared at the Samé
pellets proceeds along more than one spatial coordinate. The r(y) Y2 Y Y2 1 (if Y> 0) 36Y/(1 + 5Y)2
gener'al case will be a three-dimgnsional (3D) problem, while —, (%) 18 19 2 34 38
two-dimensional (2D) problems will be frequent [The term “3D”

means that no suitable coordinate system can be chosen to The analysis of the behavior at high reaction rates can provide
reduce the number of coordinate directions taken by the flux 3 geometrical characterization of a given catalyst. For the case
of reactants from 3. 1D or 2D applies when either 1 or 2 suitable of a single reaction and uniform activity on 1D catalysts (see,

coordinate directions can be found (e.g., axisymmetric problems e g., refs 4-6), the effectiveness factarfor high values of the
will be 2D and problems on a sphere will be 1D).], mainly due Thjele modulus® can be expressed as
to axisymmetry, and will also apply for monolith reactors with

a catalytic coating on noncircular channéls. S

As discussed in recent contributich?in practical applica- =9~ gzr T (1.2)
tions it will be convenient to avoid 2D or 3D computations by
employing some kind of approximation to the actual problem. r=_2¢ (1.b)
This is feasible largely because it is a well-known fact that if o+1 '

different catalytic bodies are compared in terms of the charac-

teristic length) = V,/S;, the effect of shape is tempered. Table Where.7; and.%; are coefficients depending on the type of kinetic
1 shows deviations between the effectiveness factors in a oneJaw (all quantities in egs 1 will be precisely defined in the next
dimensional (1D) slab (the simplest 1D geometry) and in a finite section) andr = (0, 1, and 2) for a slab, a long circular cylinder,

circular cylinder (a 2D problem) compared at the sanfier and a sphere, respectively.
different kinetics (a precise definition afY) is given in the For very fast reactions, eq 1.a can be truncateg+o.%/®,
next section). a very well-known expression (see, e.g., ref 7) corresponding

If the actual problem is that of the cylinder, Table 1 shows © conditions that will be identified here as thm@iting regime

that the correct order of magnitude is provided by the slab, but The second-order term in eq l.a is characterized by the
it is evident that the deviations warrant the search for a better CoefficientI" that depends on the shape of the catalyst, eq 1.b.
approximation. Even more uncertain results can be expectedConditions under which the two-term expression (eq 1.a) applies
when multiple reactions take place. Thus, the data in Table 1 (i.e., for reaction rates not necessarily as high as those for the
suggest that the effect of shape cannot be ignored and that, infimiting regime) will be identified as thesymptotic regime
order to avoid 2D or 3D calculations without loosing accuracy, Recently, Keegan et &lexpressed” for 2D or 3D catalysts

the 1D analogue (or any other kind of approximation) will have restricted to geometries showing smooth external surfaces. The
to be defined on the basis of sensible criteria. It seems obviouséffect of activity gradients was also included in that contribution.

that these criteria should involve a geometrical characterization  |f @ 1D geometrical model with adjustable parameters is
of the actual catalyst. intended as an approximation to avoid 2D or 3D calculations,

a reasonable criterion can be stated by forcing the model to
show the same behavior as the actual particle at large values of
®. This can be done in practice if both, the model and the actual
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in this way the results presented by Keegan €t Hhis task
includes the development of restrictions for the validity of the

two-term truncated series (eq 1.a). Actually, except for the case

of spherical particles, practically all types of commercial pellets

are finite cylinders (of different cross-sectional shapes) and,
therefore, show edges at the intersections of the bases and th

cylindrical envelope. In addition, multilobe pellets also show
longitudinal edges.

The two-term truncated series (eq 1.b) constitutes an ap-

proximation for# that can be used for complementing the
numerical solution of 2D or 3D conservation equations: a
numerical algorithm can be used for low valuesdyfand the
truncated series can be used at large value®,ofvhen steep
(and difficult to evaluate) solutions take place. This application
and the potential use df as a shape factor will be discussed
and exemplified.

For the most part, a single catalytic reaction will be assumed.

The activitya, a function of the spatial coordinate vector
= (X1, X2, X3), IS normalized according to

1
v, fvpa(x) av=1 (3.e)

%g stands for the permeable parts, éhdstands for the sealed
parts (inaccessible to reactants) of theooundary. (The symbol
V, will stand for both the spatial domain corresponding to the
catalyst and its volume. Similarlyg, stands for the domain of
the permeable external surface and for its area.)

It will be assumed that the activity at any point s finite
but not necessarily uniform.

3. Asymptotic Behavior at High Reaction Rates

It was shown by Keegan et &lthat, for a catalytic body
showing a smooth surfacg, eq 3.a can be reduced to the

However, arguments will be giVen to show that the Signiﬂcance fo”owing asymptotic form at low enough values bf

of the present contribution can be extended to the very important

case of multiple-reaction systems.

2. Problem Statement

Although a catalytic pellet will be frequently invoked, the

treatment in this and following sections can be directly extended
to catalytic coatings on structured devices. A single catalytic

reaction, with the following restrictions, will be considered: (a)-

% - ASTS% = (1 - 2Chg (V) (4.2)

with the boundary conditions
=0 Y=1 (4.b)
{—o: Y—O0, (dv/d§)—0 (4.0)

Uniform composition and temperature exist at the permeable Equation 4.a applies at each point®{local basis). To describe

part of the catalyst external surface S (b) Constitutve
equations for the fluxes (transport model) are isotropic and
intrinsically independent of position inside the catalyst

It was discussed by Keegan etldhat these conditions allow

the symbols, lebs be the local value o& on S, and§, be the
coordinate along the local normal ®, increasing inwardly
and with the origin a&,. Then,As= A/as'?is thelocal reaction
scaleand¢ = &y /Asis thestretched coordinateAlso, (T/2) is

employing a single state variable to represent the system. Asthe localaverage cupaturethat can be expressed in terms of

such, a dimensionless variableis defined by

1 ¢

Y=(z CA‘;D(CA) dc, (2.a)
_ Cas
In= Che D(C,) dCy (2.b)

whereC, is the molar concentration of a key reactant@s
is the value ofCp on § and Cpe is the value ofCa when
chemical equilibrium is reached inside the pel2{C,) is such
that the flux of A can be expressed Bg = —D(Ca) V Ca,
after taking into account the relations betwe€n and the

remaining molar concentrations and temperature, which arise

by combining the mass and energy conservation baldrtks.

conservation balance for species A is then written in terms of

Y,
Q) = /%Za(x) (V) inV, (3.a)
Y=1o0nS§, (3.b)
vVY=0o0nS (3.0)

where /’is the Laplacian and thglobal reaction scalel is
defined by

2= Jplias (3.d)
The dimensionless reaction rate in eq 3.a is defined(lgy =
wa(Y)lmas, wherema is the net consumption rate of A amds

is its value atS,. Note thatr(1) = 1 on S, and, according to eq
2.a,Y = 0 whenCp = Cag; hence,r(0) = 0.

the principal radii of curvatur®, andR, as
1,1
_ _l’_ -
R. R

R (i = a, b) is positive if the center of curvature is inwardly
oriented and negative otherwise. [For a pdhbn a surface,
assume the normal unit vectaris identified. Then, aaxormal
planeatP is any plane containing (there is a bundle of such
planes), anormal sectionat P is a curve resulting from
intersection of the surface and a normal planenamal
curvatureis the curvature of a normal sectionRta principal
curvature is either the minimum or the maximum normal
curvature, and @adius of cuvatureis the inverse of a normal
curvature.] Finally,

Ts= ()

as
t,/{sz - ZS (63.)
as = (9a/9Ey) o (6.b)

The primary conditions for egs 4 to hold at each pointSpf
aret

As<min{|R|,IRy[} (7.2)
Ag<< adlay (7.b)
lg<<d (7.c)

where d is the thickness of the pellet in the local normal
direction.

Restriction 7.c is necessary for the boundary condition of eq
4.c to apply; that is, the catalyst can be considered to be much
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deeper than the distance (penetration depth) needed to approach
equilibrium conditions Y = 0, dY/d¢ = 0). It can be shown

that the penetration depghin the asymptotic regime is of the
same order of magnitude as.

The edges on the external surface can be described as the
boundaries betweesmooth sectorshowing continuous cur-
"‘.”‘t“re propertles. If values QJ are smaller than the linear Figure 1. Perspective of the region close to an eddes the plane normal
dimensions of those sectors, it becomes clear that the effect oy, the edge at poin®. I and. Iii are normal sections defined by the
edges will be circumscribed to small zones around them, whereintersections betweeH and the smooth sectors | and II.
the concentration fields from two sectors become overlapped.

In this case, the main contribution to the overall rate of mass Equation 12 can now be used to obtain an approximate
transfer will be that obtained by using the previous formulation expression for the penetration depthwhich can be defined as
for the whole surface of each sector, as if the edges were absentthe distance fron, at whichr(Y) reaches a residual valugr*)
Accordingly, the solution obtained for egs 4, as given by Keegan = 0.1,

et al. can be used for the local flux on each sector

1 —
1= A f ) 2 dY (14)

(7A d (7A —_1/2 .
N =——(—Y) — A gal? — AT+ 4J] (8
AShign As\dCje=0 4 172 (s S @ The exact value of the integral in eq 14 depends on the form of

r(Y), but it does not rise above a few units (e.qg.,Ifee Y4,

where =2.04lg forr =Y, y = 2.3lg and forr = Y2, y = 1.919). As
v quoted before, botjp andisare of the same order of magnitude.
AYo) =2 L °r(Y) dY (9.a) Now, we have presented the necessary elements for a
conceptual description of the effect of edges. Consider two
Ty = [AL]? (9.b) smooth sectors (I, 1) that intersect defining an edge.lldde
the plane normal to the edge at a generic p@iritelonging to
7= %fl[f/(Yo)] 12 dy, (9.0) it. This plane is also a normallplane for bc:th sectorg at p@int
970 and defines two normal sectiongi{and. 1y)), as depicted in
Figure 1. The tangents of; and.}; at the edge define the
By integration of eq 8 over the surfa&of each sectoj, the intersection anglé. From.Iyand.{;; and over the plangl, we
amount of moles of A transferred per unit time will be can identify the strips of widtly where the catalytic reaction

1 takes place. Both strips interpenetrate in the dashed region close
A 245 — 7 (T4 A d# 10 to the edge, as shown in Figure 1.

A 1f§as Zfﬁ( s J (10) It is evident that, by integrating the flux over both sectors

) ) ) . independently of each other just up to the edge (as done for eq
It is worth stressing that the terms associated with curvature 10), the region of interpenetration is, up to some extent
effects and activity gradientd¢and.(s) in eqs 4.a, 8, and 10 qnsidered twice: for the reaction of the reactants incoming
are of a second order of magnitude, due to the relatively oW from sector | and from sector II. To estimate the correction to

A
Mhighj _(/'A

values imposed by restrictions 7.a and 7.5.40 eq 10, an amount proportional to the moles transferred from
Next, a correction to eq 10 will be developed to account for ;e of the sectors should be discounted.
the effect of the edges. The portion of each sector involved in the interpenetration

3.1. The Contribution of Edges.In this section, we deal  ggion will present a width, whose order of magnitude will be
with edges between two smooth sectors belonging,tavhile that ofy, and a length, which will be that of the edgsi (“K’

cases involvingsy will be considered in section S. _is the suffix to denote a generic edge). It follows that an order
We should first recall that if in eq 4.a the terms depending s magnitude estimate of the correction to eq 10 will be

on Ts and . (s are ignored, the conservation balance for the (WirNas). EmployingNaso (eq 13) forNas and eq 14 fory, we

limiting regime is obtained obtain
2 2 _
dYy/dg"=r(Yy) (11.3) [AM] ~ W 7n 7% [ AY) 2 dY (15)
=0: Y,=1 (11.b)

Equation 15 suggests that the correctiaiv]]x does not depend
on 4 or on the catalytic activity field, as a first approximation,
e o _ ) when small values of are considered. In other words, if a series
where the suffix “0” identifies the limiting regime. Equation expansion for AM]y in powers of? is envisaged, the leading

E—o: Yy—0, (dVydE)—0 (11.)

11.a can be rewritten as term will be independent of and of the activity field. As a
12 consequence, it will be comparable with the contribution
dYy/dd = —AYo) (12) Ia%[s(Ys + (9 dSin eq 10. The leading term ofAM]y,

) _ ) denoted as AMnign]k, iS what we need to complete the
with AYo) given in eq 9.a. From eq 12, the flux at the surface formulation of Mg,

is given by Accordingly, we will develop in the following paragraphs
7 [dY. o an appropriate expression faxWnigr]«, based on a geometrical
NI _(é(_o) Zfﬁ(/ (13) simplification and assuming uniform activity. However, this

ASO As\dE/e=0 Agt treatment does not allow one to visualize the restrictions that

should be imposed on values bfor being considered “small
which is the dominant term in eq 8. enough”, i.e., restrictions that play the role of inequalities (7.a
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Then, the local correction for sector | can be expressetiNas
= Naswedge — Nasfar:

Ial I
ANus= =72 0YI39),0 = 7%
w W

Because of symmetry, exactly the same valué\Ns will
also hold for sector Il. The overall correction per unit length of
Figure 2. Sketch of the straight wedge. the wedge can be obtained by integratingXRs) over the radial

o ) ) _variableR up to a certain radiust., large enough foANasto
and 7.b), but for the edge zones. This issue is covered in detailygcome essentially nil. Then,

in the Supporting Information for this paper, and the whole body

of restrictions for the asymptotic regime to apply will be d(AMhigh) R. »
summarized in the next section. —aw 2f0 AN gdR= ZiWL AN,gdp
To find out an expression forAMnighlk, We should realize
that, at a given point of an edge, the local fieldYobn the The stretched radial coordinatehas been introduced in the

planelT (Figure 1) will be largely determined by the dihedral  third term. In practice, values gfneeded for\Nas to become
angled defined by the tangents of'and /i at the edge. Then,  pj| are of only a few units (the upper limit taken ass adopted

the approximation of the local field can be evaluated by for the sake of definiteness). By explicitingNas, we finally
considering a straight wedge with a very long edge and faces gxpress

(sectors) and, hence, geometrically defined just by the dihedral

angle#, as depicted in Figure 2. Besides, it will be assumed d(AMhigh) )
that the activity in the straight wedge is uniform and equal to —aw — In72w(0) (17.d)
a certain valuey, (it will be shown later thatAMpign does not
effectively depend on this quantity). _2 “[1 g
As the wedge is assumed to be very long, we can ignore (0) yzﬁ) p(m{/a(p)(/’zodl_‘/1 dp (17.€)

variations ofY in the direction parallel to the edge. Then, by
using polar coordinates (see Figure 2), the conservation balancevhere the coefficient; (eq 9.c) that depends on the form of
is written r(Y) is introduced as a matter of convenience. It will be
understood throughout this paper that the definitiom () (eq
L(Ra_;) I 19y _ ir(Y) (16) 17.e) is associated with the solution of eqs +€aAlthough
RIRl 9 R 8(02 1.2 only the dependence @ on 6 is made explicit, it should be
W recalled thatw will also depend on the form af(y).

Equation 17.d accounts for the correction along an elementary
length dV, at which@ is regarded as being essentially constant.
To evaluate the correctiom\Mhign]x over the whole length\i
of the edge, eq 17.d should be integrated, accounting for possible

wherel,, = A/a,}2is the local reaction scale defined with the
constant value of activitg,.
Introducing the “stretched” radial coordinaée= R/A,, in eq

1
6. variations of the anglé. Then,
DMLY a0 0sg<0  (17.9) - g
p dp P ap p2 3¢2 » p= V== ' [AMyignl = _O/A</2fwkw(9) dw (18)
As sectors | and Il are assumed to extend boundlessly, theAs was previously pointed out\Mhg, does not depend oy
appropriate boundary conditions are (see Figure 2) (egs 17.e and 18).
By adding eq 10 applied to all sectors in whighis assumed
Y=1latg =0andy =0 (17.b) to be decomposed and eq 18 for the total number of edges, we

Y=1latp=0; Y=0ifp—cwand0<¢ <6 (17.c)  obtain forMign

The penetration of the key species will look like what is :aZA a2 1o p
sketched in Figure 2, where we can appreciate that far from the Mhigh A S8 oy = A%A(Ts Aoy T+ Rl
edge the penetration depth corresponds to that of a flat sector. (19.9)
Therefore, recalling that the activity is uniform, far enough from
the edge, the flux at the surface corresponds to that in eq 8
with (Ts + .¢g) = 0, which is the same as the value for the U2 _ oI 14 12
limiting regime, expressed in eq 13, @ z)a" S Z][as ! (19.b)

where

7 [ag"’s, = fqa;’2 ds (19.c)

" (st Qa=5 "y [(Ts+ QT (19.d)

Let us assume now that eqs 17 have been solved and the ) _ )
normal derivative ap = 0, (1/)(9Y/d¢)¢=0, has been evaluated. [(Ts+ ;= fS(TS+ S (19.€)
The local flux at sector | is expressed as 1
Qavz %) Zk[wvwk (190

(8Y19¢p) g [wW], = fwkw dw (19.9)

|
2 |-

NASwedgez

~

w
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By definingR = .%/.%, thecharacteristic lengttof the catalyst Activity gradients usually involve processes subject to
I = VS, and diffusion limitations, as in the case of poisons, carbonaceous
deposits, or the impregnation of active agents during catalyst
| manufacturing. As a point at an edge constitutes a singular point
IF'=—7"7—"(Tg+ A, + R 19.h o ) ; R
1/2)av[( S Jav al ( ) for the gradient of properties subject to diffusion limitations,

the restriction arising from activity gradients around the edge
(eq S37 in the Supporting Information) becomes more difficult
to formulate than that for the smooth sectors (eq 7.b). It is
7S 1/2) 7 probable that if the constraint given in eq 7.b is satisfied outside
M., . =<M 1-— R/—ll“ 20.a the region immediately close to an edge, the specific restriction
high 2 | ( ) . . . h . e
discussed in the Supporting Information will also be satisfied.
To evaluate AMyigr]k, it was assumed that very long edges
and normal sections were involved. As the linear dimensions
of the zones affected by the presence of an edge will be related
to the penetration depth, restrictions of the following type should

we can alternatively write foMnign

Employing the usual definition of the effectiveness facgjor
M/(tasVp) and the Thiele modulu®? = (1/1)? = 127ad 7a,

/

_ fjl(asl 2)av 1— BF (20.b) be additionally written down in regard to an edgef length

"high ) P ' W and a normal section (generated from a point of the edge)
of lengthL:
For the case of uniform activity, i.ea = 1,
7w Ma ' < W, (23.a)
_ _ Y1
@=1  me=gl-gl  @La el o5
I'=1[(Tg, + R4l (21.b)

whereax anda, are suitable average activities.

Equations 19-21 constitute the main results of this paper. In general, the restrictions discussed above should be locally
In essence, the formulation for(eq 19.h) allows the evaluation  satisfied at each point of each smooth sector (egs 7), or at each
of M or # for short4 (or high ®) up to a second order of point of each edge (eqs 22.a, 22.b, and 23.b). However, the
magnitude. integral formulation for the asymptotic regime (eqs-I4) can

Comparing eq 19.h fof with the corresponding expression  still be accurately used if some of the restrictions are not strictly
developed by Keegan et &for smooth surfaces, it is easy to  satisfied in relatively narrow portions of the sectors or of the
recognize that the former just adds the té2y due to the effect edges. It will be very important to determine a valygsuch

of the edges. that if A < A, the asymptotic regime will applyly represents

for a given catalyst a practical value satisfying the previously
4. Constraints and Limitations for the Use of Equations discussed restrictions up to a degree depending on the accuracy
19-21 desired in the use of eqs ¥21. This point will be further

discussed in section 6.

A final and important issue concerns the presence of vertexes
on the pellet surface. We can assess the magnitude of their effect
by following a similar line of reasoning as that used for edges
in the previous section. Assume a vertex at which three sectors
are converging, e.g., the vertex of a cube. If the penetration
depthy is small, there will be a small zone around the vertex
with side lengthy in which the concentration fields from the
three sectors interact. Then, we cannot compute independently
1 1 the reaction of the species coming from the three sectors. Hence,
Al=—+=s—1x1 (22.a) as a first approximation, we should subtract from eq 10 an

4 Ml amount corresponding to two of the sectors, M ~ 2y?Nas,

Constraints on the value éfarise from the analysis of smooth
sector and from the treatment of edges. They involve
curvatures ofS,, activity gradients atS,, and some specific
dimensions of the catalyst body. Equations—faare the
relevant restrictions for the smooth sectors.

Two restrictions, holding at each point of an edge and
concerning the curvature effects, arise from the analysis in the
Supporting Information for this paper,

1 Employing egs 8 and 14 fdias andy, we can conclude that
fwl oy 1 (22.b)  AM will be proportional tai. As such, it will be negligible, in
30R;; Ry regard to the evaluation dflngh, provided that the previously
discussed restrictions fdr are fulfilled.
where y, = Aayl2, a, is the activity at the edgeR 7 is the
radius of curvature ofl at the edge, an®c, is the radius of 5. Evaluation of &(0)
curvature of the normal sectio@, perpendicular tol; at the
edge (i.e., in the same direction of the edge); all quantities are We undertake in this section the calculation of the coefficient
defined on a local basis. (At the given point of the edge, its w(0) defined in eq 17.e.
osculating plane will not be, in general, normal to any of both  The functionw(6) is a decreasing function of the dihedral
sectors; then, the radius of curvature of the edge will not, in angle6 that passes through zerott 7, as depicted in Figure
general, coincide with eitheRc, or Rcy.) Similar definitions 3 for a first-order reactionr (= Y) for which the notationw1(60)
apply forR 3 andRg . is employed. (When invoking “first-order reaction” conditions,
When expression 22.a is satisfied, the assumption of negli- it is assumed thata = kCa, that the system is isothermic, and
gible variations ofY in the direction of the edge will be thatNa = —Da V Ca, with a constanDa; hence,Y = Ca/Cas
validated. If expression 22.b is fulfilled, the normal sectioiis andr(Y) = Y.) When6 = =z, the external surface is actually
and. Iy behave, in practice, as straight lines. smooth through the edge, in the sense that the vector normal to
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20.0
©,(0)

16.0 +
12.0
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Figure 3. Plot of w1(0) [r(Y) = Y.

the surface is continuous. Hence, an edge Witk 7 makes
no contribution toMpigh. For 6 < s, w(6) > 0 means that the
edge promotes a negative contributioMegn (egs 19 and 20.a),

Now, it has been assumed that the valbgandA suffice to
characterize a given expressiqiy), and the following correla-
tion, which generally satisfies(r) = 0, w'(r) = —1 (from eq
26), lim [0 w(#)] — bg if 6 — 0 (from eq 24), andv(27) =
—A, is proposed to evaluate(0)

b, 0\72bg
o]
TA r —Q i <0<
(n—A)6+Jr(2A—Jr)|,1 7T itz 0_2'”(27)

fo<6=<ux
w(0) =

The maximum errors from eq 27 are less than 2%. In general,
the second-order term in eq 20.b fp#gn can contribute at most
about 25%, for applicable values &f. Hence, the deviations
in 17nign introduced by using eq 27 will be well below 1%.

To obtain a completely closed formulation ef(6), it is

as the flux lines from the two normal sections tend to converge, Necessary to have correlations fgrandA.

and the opposite effect is achieved whgrr .
The evaluation ofv1(0) can be done by means of a series
solution (e.g., ref 8) for eqs 17#& whenr(Y) = Y. In the

5.1. Approximate Evaluation ofby and A. We have carried
out numerical evaluations of both parameters in eqbi@and
A, for a number of kinetic expressiongY) that can be

general case, a numerical solution should be employed, whichsummarized by the general expression

is not a trivial task as a 2D semi-infinite medium is involved.
Fortunately, the behavior a@f(6) turns out to be a very weak

function of the form ofr(Y). Hence, an approximate closed
expression forw(0) can be developed, which will be shown to

(28)

rn =4 v(EES

provide a quite satisfactory degree of precision for most Form= 0, values ofn were tested in the range® n < 3.

expressions af(Y). To develop such an approximation, we have
used numerical results @#(0) obtained with FEMLAB v3.1

Values ofm = 1 and 2 were used along with=1.1f 6 > 0
(exothermic reaction effect) an > n, multiple solutions may

by Comsol Inc. and additional analytical information has been arise. The numerical experiments were restrained to values of

obtained from the behavior @(0) at anglest close to zero
and close tor, as detailed in the Appendix of this paper.

Let us first summarize the results from the Appendix. For
small values 0, the following series is shown to hold

w(0) = %(b0 + by6% + bo'+ ) (24)
where the dominant coefficiefy is given by
4 pe
b= [ 1% — ©ny(@)] d (25)

The magnitudey,(®P) is the effectiveness factor for a slab with
uniform activity; that is, ifY({) is the solution of &Y/d¢? =
®2r(Y) subject toY(0) = 1 andY'(1) = 0, then

1y(®) = —Y'(0)/d*

The coefficienthy depends weakly on the form ofY). For
a zero-order reaction (i.er,= 1if Y> 0;r =0if Y=10), by
= 6, and for a first-order reactioty = 8 In 2 ~ 5.545 (ratio
of the values oty is 1.08).

For values of around = =, it is shown in the Appendix
that

w(0) = (T — 6) + o(r — 6) (26)

whereo(x) represents a variable such tloéx)/x — 0 if x — 0.

Evidently, the behavior ab(6) aroundw = x is independent

of r(Y).

0 andK for which multiplicity does not take place in a catalytic
slab [e.g., for §, n, m) = (0, 1, 2) up toK = 9 or for (n, m) =
(2, 0) up too = 5].

Values of parametds, span the range 5 by < 7; the lower
values are for high reaction orders, and the higher values
correspond to conditions approaching multiplicity. It was found
that the values oy correlate well with coefficients; and.%.

For a giverr(Y), these can be straightforwardly calculated from
their definitions in egs 9. The correlation,

by=5.2%°%.%,>* (29.a)
presents an error less than 3%, and it allows the evaluation of
7high With an error safely below 1%.

The parametef shows a very weak dependence on the form
of r(Y). The range 1.85< A < 2.10 encompasses all values
evaluated with FEMLAB v3.1 by Comsol Inc. The following
correlation allows the evaluation &f with errors below 1%:

A= —w(27) = 1.9/(%,%)*" (29.b)

5.2. Final Assessment of the Effect af(Y) upon w(6). As
will be further discussed in the next section, it would have been
highly desirable that»(0) had been independent ifY). From
a practical point of view, howevery(6) behaves as a weak
function of the kinetic expression, particularly in the rang2
< 0 < 27. The valuew,(0) for a first-order reaction can be
adopted as a representative value for most kinds of kinetics.
Accepting a deviation of 5% in the value af(6), we can
directly employw,(6) if either (a)/2 < 6 < 27 andr(Y) does

The third point considered for developing a general expressionnot lead to multiple steady states in a slab or (3 @ < 27

of w(0) is the valueA = —w(27), that has been obtained
numerically for a number of kinetic expressions. In particular,
for r =Y, the valueA = 2 is obtained.

(the full range off) and 5.2< by < 5.8.
For power law kineticsy = Y", the condition 5.2< bp< 5.8
is approximately equivalent td/s < n < 3. The specific
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Figure 4. Sketch of a hypothetical pellet.

Table 2. Contributions to I' for a Hollow Cylinder with a
Hemispherical Head (Figure 4)

fixed
sectors S Ts [TsS; dimensions
external ZRH =12.57 1IR.=1 12.6 Re=1
internal 2ZIR(H+h)=9.00 —-1/R=-2 -18.0 R=1,
spherical zZRh=5.44 2R.=2 10.9 H=2
flatbase m(RZ—R3) =236 0 0.0
derived
edges Wk w(6) [wW]k quantities
| 27R =3.14  w(a/3)=4.55 143 h=0.866
O = 7l3
Il 27R =3.14 w(/2)=2.54 8.0 $=29.4
Vp,=6.07
1 27R.=6.28  w(n/2)=2.54 16.0 | =0.206
I'=0.307
v 27R.=6.28 w(1)=0 0.0
Sum: 43.8

approximate expression fes,(0) [r = VY] is derived from eq
27,

n2
%1—@) /(8'”2)] fo<6<x
0 7T
27° . 0.

1-2 ifr<6<27
(717—2)0+7[(4—JI)|, J'[] "

w4(0) =

(30)

The exact value for the common casefof 7/2 is w1(/2) =
8/m = 2.5465.
5.3. Edges Separating Permeable and Sealed Sectddp
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cylinder is negative, the anglearound each edge is uniform,
and the angle around edge IVés= x; hence, this edge does
not contribute tal".

Most commercial catalytic pellets show a regular shape, and
the difficulty in evaluatingl” will not be higher than that for
the previous example, at least for cases of uniform activity.

Reference values df for uniform activity are 0.67 (sphere),
0.5 (long circular cylinder), and 0 (slab). The body in Figure 4
(' = 0.31 from Table 2) is expected to behave intermediately
between the case of a slab and the case of a long circular
cylinder.

6. Discussion and Use of the Second-Order Expansion

We will consider first in this section the case of single
reactions. Also, it will be assumed that uniform catalytic activity
is involved (i.e.,a = 1), unless specifically mentioned.

For the general case of nonlinear kinetics, the natural way to
solve the problem of evaluating the effectiveness factor involves
a numerical procedure. It is well-known that the difficulty in
solving an equation like eq 3.a increasesladecreases or,
equivalently, asb increases. Villadsen and Michel$atescribed
how the global orthogonal collocation method, a very efficient
procedure for 1D problems, collapses at high valuesbof
Methods based on local approximations, on the other hand, will
require meshing of a size comparable o This leads to a
number of nodes (or elements) of the ord¥¥(d is the number
of spatial coordinates in the conservation equations), if uniformly
spaced. Some kind of adaptive meshing will eventually be
necessary? but still, there will be a high numerical cost
associated with its implementation and the obvious need for a
more sophisticated solver.

Therefore, it would be highly convenient to have an alterna-
tive to avoid the use of a numerical procedure at high values of
@. In this sense, eq 20.b can be valuable for complementing
the use of a numerical routine. The computational savings will
be particularly relevant for 3D geometries.

As a specific example, consider a culig e = w(/2)/3)
and assume that an error of 2% is tolerable in the evaluation of
1. Numerical values ofy were evaluated by employing

to this point, we have considered edges between two smoothFEMLAB v3.1. For a first-order reaction & ), the deviation

sectors belonging t&,. Instead, if a permeable sector shares
an edge with a sealed sector (belongingid the values oty
for this edge should be computed@s= Y,w(20), wheref is

betweenynign from eq 20.b and the numerical value+2.0%
at® = 2.1 (ynigh = 0.380). Defining®y, as the lowes® needed
for using eq 20.b, a numerical solution will be required in this

the actual angle from the intersection of both sectors. This example for® < @, = 2.1. Around 50 equally sized elements
relationship arises from considering that a sealed sector iswere employed by FEMLAB v3.1 (in an eighth of the cube,
characterized by a null flux: the same as if it were an element taking advantage of symmetry) to render an evaluation of

of symmetry. Asf can reach a maximum of £2, it would be
necessary to extend the evaluationeofup to a hypothetical
angle (4r). We have not carried out a systematic study in the
range Zr < 0 < 4m. As a point of reference, we quote that
w1(37) = —3.15 [compare withwi(27) = —2.0]. A rough
approximation in the rangen2< 6 < 4z can still be achieved
by extrapolating eq 27 or 30.

5.4. Example.Figure 4 schematizes a hypothetical pellet of
uniform activity consisting of a hollow cylinder with a

with an error around 2.0% ab = 2.1.

Instead, if we assume that the only piece of available
analytical information at high values df is #jimit = A/® (i.e.,
the expression for the limiting regime), we will have to use the
numerical procedure up to abod@® = 21 to keep an error of
2%. FEMLAB v3.1 employs around 100 000 equally sized
elements to evaluatgat ® = 21 with an error of 2%. Probably,
this number of elements cannot be tolerated for any practical
application in which the evaluation of should be repeated

hemispherical head. We can identify four smooth sectors many times. Of course, the use of an adaptive procedure will
corresponding to the external and internal cylindrical surfaces, be beneficial in this case.

the spherical zone, and the flat base. There are four circular

In the previous example, eq 20.b allowed one to avoid the

edges: two formed from the intersection of the sphere and the use of the numerical procedure for valuesio§panning 1 order

internal and external cylindrical surfaces (I and 1V), and two
(11, 111) enclosing the flat base. The contributionsqeq 21.b)
from those geometrical elements are displayed in Table 2.

It is worth noting some specific features: the curvature is

of magnitude (fromd = 2.1 to® = 21). In terms of changes
in intrinsic kinetics, this range ab is equivalent to a 100-fold
increase of the reaction rate coefficient.

The effect of the type of reaction rate expression can be

uniform on each of the four sectors, the curvature of the internal appreciated in Table 3, where minimum valuestofor using
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Table 3. Effect of the Kinetic Expression on Minimum Values ofd®
Needed for Usinganigh (Eq 20.b) or niimi = .%1/® with a Tolerable
Error of 2% in a Cube

r(y) Y2 \% 1(fY>0)  36Y/(L+5Y)?
Dy (for 7high) 2.10 2.10 1.53 1.30
@ (for Riimir) 20.5 21.0 20.8 18.5
I = w(n/2)/3 0.820 0.836 0.866 0.885
R 0.49 0.50 0.47 0.41 ¢=r-0
S 0.816 1 1.41 1.66

Figure 5. Cross section of a round-nose wedge.
either nnigh from eq 20.b orgimiy = A/® are displayed (the
same expressions as in Table 1 were used, excep¥/2 for
which convergence problems arose in the numerical procedure)
In all cases, the parameter(r/2) for calculatingTcupe Was
calculated from approximations 27 and 29.a. Valuesiodnd
R are also shown in Table 3. The span ®f between the
minimum values for usingjnigh and nimit is similar for the
different kinetics, and there is a beneficial trend by, to
decrease as the (effective) reaction order decreases.

For the direct use of eq 20.b, as illustrated above, we should
know the critical valueb,,. To determine this value for a given
problem (i.e., pellet geomgtry, reaction rate expression, and The contribution of the lateral surface of the cylindrical sector
tolerable error), the numerical procedure can be used in an, (T i
exploring initial stage. To minimize this effort (or better, to avoid Slav
it), it would be highly desirable to have some guidelines for _ (o
evaluatingdn,. At present and based on the restrictions discussed (Ts9w= (1/Rp)(¢R”W) == ow (32)
in section 4, we are trying to systematize a body of results in
this direction. The majority of examples suggest that 2,

particulate material and application, without a specific associa-
tion to the asymptotic regime in catalysts.

" Actually, Buffham? extended the use of eq 31 for geometries
with flat faces (plane smooth sectors) and, therefore, straight
edges (prisms, parallelepipeds, and tetrahedra).

To this end, instead of considering wedges with sharp edges
(Figure 2), Buffharn®? assumed that they present a round nose
in the form of a sector of a circular cylinder of radiis. As
depicted in Figure 5, on a normal plane of such wedges, the
nose meets the faces at straight angles. Hence, the cylindrical
sector angle becomes defined py= 7 — 6.

where W is the length of the wedge. The radi& is then
considered to be very small, so the lateral surface area of the

< 2.5 for first-order kinetics and 2% of tolerable error, although - . A
. . cylindrical sector can be neglected in computgConsidering
there are geometries that promote valuesbgf outside that X - . Lo )
only bodies with uniform angleé (infinite regular prisms,

g;\%ﬁbx\,[/iirl?oloe o undertake this point more amply in aSeparateparallelepipeds, and a regular tetrahedron), it follows that
6.1. Use ofl' as a Shape FactorWhen it is desired, or = 1.9(7 — O)W./ 33
needed, to completely avoid 2D or 3D evaluations of the Q Al ) S (33)
effective reaction rate, some kind of approximation should be
introduced. A convenient approach is adopting a geometrical
1D model to approximate the behavior of a given 2D or 3D

whereWr is the total length of the edges.
Buffham!2 compared the effectiveness factor of a first-order

. . A . .~ reaction for different catalyst geometries. Three kinds of
pellet. There are available in the literature some interesting comparisons were made. In the first case, geometries with

fo Characterze the geomelric shape of 2 gven catalyst and us SO0 SUTACeS (e.g. a sphere o a very long Rascig fing)
a simple 1D geometry (thgeometric modglholding the same and the sam® were mvolved. \_Nhgn compared at t_he same
value of the shape factor to compute the effective reaction rates value of @, the maximum deviation iy betwegn the d.|ffer(.ant
. . i . ‘'smooth geometries was about 1%. Parallelepipeds with different
A suitable 1D geometric model presenting one adjustable

ter i ich the sh fact d by Burahard spect ratios, but with the sar@e were compared in the second
parameter to m? ch the shape factor was proposed by Burgnard,qe o conclusion similar to that in the first case arose for the
and Kubaczkd! The shape factor proposed by them to

. T . _deviations iny. Finally, a parallelepiped and smooth geometries
charaptenze 2D or 3D geometries is based on an effective with the sameQ were compared. In this case, the valueg;of
diffusion length. A general proced_ure to evaluate this Propernty fo the parallelepiped showed deviations up to around 8.5% (in
fozany pellet geometry was not givenin that paper. Mariani et defect) when compared to the case of the smooth geometries,
al: gmployed _the same.g_eometnc model but l,!SEd the geo'i.e., about an order of magnitude higher than in the previous
metrical coefficienty arising from the expansion of the

ffecti factop at low values of® ~1-p@2, RS

eliectiveness factop at low vaiues o (€.9.n~ 75 These results can be explained by recalling the connection
for a first-order reactlo_n) as the sh_ape factor. Thus, the ShapebetweenQ andT. It should be stressed first that if any pair of
factor becomes gnamblguou.sly deflned for any pe]let geometry. geometries should present very close values fafr the whole
The results obtained for a single first-order reaction in hollow range of®, a necessancondition is that the values df turn
circular cylinders and parallelepipeds were very accurate OVEr |t 1o be s:imilar as required by eq 20.b for high valuesbof

the whole range ofd (maximum errors less than 1%). '

, The first two comparisons explained above verified this require-
le o0 )
Buffham'” proposed a magnitude calledmpactnesgnere ment. The first case is rather obvious,@s= 1.5I" for smooth
denoted a®)) as a shape factor:

surfaces. On the other hand, for a first-order reaction in
parallelepipedsq = n/2, w1(n/2) = 8/x], T = |(8I1)W/S;;
Q=18(T9.y (31)  then, eq 33 yieldQ = 1.5@%4) = 0.929". Thus, pa??;tl-
lelepipeds of the sam@ present the samE&. But, a paral-
Therefore,Q is proportional to the value df in the case of lelepiped and a smooth catalyst showing the same val@@ of
uniform activity and a smooth surface (cf. eq 21.b W@k, = will necessarily show significantly different values bf(the
0). The factor 1.5 yield®) = 1 for a sphere. The author put ratio is 1.5/0.925= 1.62), that explains the results of the third
forward the use of) as a general shape factor for any kind of case.
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these cases, the catalyst geometry should be identifidubthy
coefficients,y andT.
It is interesting to remark at this point that the coefficignt
is defined from the solution of a Laplace equatigffy) = 0]
for the actual catalyst geometry, and as such, this definition
involves solving a 2D or 3D problem. Although approximate
solutions have been presented for a number of practical éases,
it is a general conclusion that the evaluation of the coefficient
¢ I" is considerably simpler than that ¢f Hence, when it is
known that for a given type of geometry both coefficients are
correlated, the use @fto characterize the geometry is preferred,
for the sake of simplicity.
In previous paragraphs, we have referredl't@s a shape
As a further example, let us compare a long parallelepiped factor. However, it should be recalled that it also depends on
(P) with sides (1, 1.42, and 14.2), a sphere with an inert core the activity distribution, throughe&?)sy and (-(J)av (€q 19.h).
(Sc) with radii 0.726 and 1, and a solid sphe&)( P andSc Thus, T' includes geometric and activity gradient effects,
have the sam@, equal to 0.617, buP and Ss have the same although both are clearly separable. On the other hand, we also
I, equal to?s. The maximum relative deviation forbetween  recall that the effect of the form af(Y) cannot be separated
Sc andP (sameQ) is 7.0% (at® ~ 1.4), and that betweel from the edge coefficienb(6). This could have been a major
andSs (samer’) is 0.80% (at® ~ 1.0). drawback for assigning a neat geometrical significancé&'to
The reason tha is not compatible withl' for bodies but the influence of (Y) turns out to be so weak that using the
presenting edges stems from the fact that the approximationvalue®: (eq 30) will be quite satisfactory most of the time, as
employed for the edges (eq 32) involves assuming a tiny radius "oted in section 5.

Figure 6. Cross section of a “wagon wheel” tablet.

of curvature R, — 0) for the cylindrical sectors, which cannot
fulfill restriction 7.a.

The appropriateness bfas a characteristic shape factor was

As a partial conclusion, there is clear evidence from single-
reaction results thdt is a significant coefficient for character-
izing the catalyst shape and, as such, it can be used in connection

with 1D geometrical approximations. A more detailed and

parameter of the 1D geometric model of Burghardt and systematic report in this regard is currently being prepared.
Kubaczka! with the values ofl" for several pellet shapes, 6.2. Extension to Multiple Reactions.The development in
including cylinders, parallelepipeds, Raschig rings, and other this paper and the preceding discussion were made on the basis
hollow cylinders. The values of for a first-order reaction  Of a single reaction. The effort of solving 2D or 3D conservation
calculated from the 1D model differ from the actual values by balances in multiple-reaction systems would be much more
no more than 1.5%. significant, in terms of implementation and computation, than

As a specific example of the use of the 1D geometric model, that for a single reac;ion. Itis then important to analyze h_ow
consider a “wagon wheel” tablet, for which the cross section is the formulation for a single reaction can be extended to multiple
that outlined in Figure 6, with curved and flat walls of the same eactions. We do not know of other systematic studies aimed
thicknesst = (16/81)R. (R. is the outer radius) and a length at evaluating the use of any 1D moo_lel as an approximation for
= (25/27)R.. This tablet corresponds to the geometry of an actual complex (2_D or 3D) catalyst geometries when multiple reactions
commercial catalyst for the steam reforming process. Employing occur. In view of the lack of enough background and the fact
values ofw, (first-order kinetics) from eq 30, we calculafe that a proper formulation would require significantly increasing
= 0.293. From Figure 6, we can see that there are 14 axial the extent of the present manuscript, we will only advance here
edges withw,(27 — f8), 7 axial edges withvy(27 — ¢), and some co_nclusmns re_gardlng the characterization of the asymp-
the edges of the bases (total length given by twice the perimetertotic regime for multiple reactions.
of the cross section) withw;(72/2). The tablet will show a It was verified in the work of Keegan et &that for smooth
behavior somewhere between that of a slk=(0) and that of catalyst geometries with multiple reactions the overall reaction
an infinitely long circular cylinderI{ = 0.5). The free parameter ~ rates depend on the same coefficient as for the single reaction,
of the 1D model was chosen so that the model also prefents Lsmooth= |(Ts + -7s)a/(as’?av (cfs. eq 19.h), provided thaill
= 0.293. Forr(Y) = Y, the maximum difference between values reactions take place sufficiently close $g Therefore I'smootn
of n from the 1D model and the actual tablet (using FEMLAB can be employed, in connection to a 1D model, just as for a
v3.1) was 0.5% (atb ~ 1.0). single reaction.

It remains to ask i universallysufficesfor characterizing The effect of edges can be evaluated by following a similar
the catalyst shape. Keegan etlajave examples of smooth treatment as was done for a single reaction. It is not difficult to
geometries, arising in monolithic reactors and presenting the Visualize that a set of equations similar to egs 17, but extended
same value of" but showing deviations between their values to all reactions, will arise. From this, a set of values(0)}
of 5 that rise well above 15%. The reason for this discrepancy Will come out, instead of a single value as in the case of a single
was that those geometries present significantly different values reaction. Then, there will be no single coefficidhfor the whole

also shown by Mariani et al® by fitting the adjustable

of the coefficienty representing the lowb range. This result is
not surprising: y reflects an incipient diffusion limitation that
arises from thewhole catalyst body, whilel’ reflects the

diffusion limitation just in theouter partof the catalyst, close

system but a set of valug¢$’} derived from the sefw(0)}. In

a strict sense, this fact prevents the use of a geometric 1D model.
Nonetheless, given the fact tha{(0) for a single reaction

was shown to vary very weakly with reaction kinetics, it can

to S. Even though for a vast amount of geometries both be reasonably expected that this feature will hold for multiple

coefficients,I andy, are very strongly correlated and either of

reaction systems. Specifically, we can expect that the value

them can be used to characterize the geometrical effect, therew1(0) (eq 30) will be suitable to define a sindleto characterize
are exceptions to the rule, as in the examples from ref 1. In the system, allowing a 1D geometric model to be defined. When
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the conservation balances are linear (linear reaction rates and axis w (u=0)
linear dependence of fluxes with concentration gradients), it can
be shown that a single coefficiehtdefined withw1(0) strictly
holds.

We can take for granted that there will be a number of
multiple-reaction schemes for which the usewmif(f) and a
single value ofl" will turn out to be valid, but a systematic
investigation is obviously necessary to find out eventual
limitations.

6.3. External Transport Limitations. The assumption of Poi
uniform state variables ove&, (assumption a in section 2) has
been briefly addressed by Keegan et Hlwas argued that this anay-=0
assumption can become invalid if mass (and heat) transfer )
coefficients from the fluid bulk vary strongly ove®, and, Figure AL Coordinates to analyze the wedge at angies .

simultaneously, the average impact of the external limitations ) ) .
is also strong. In random beds of catalytic pellets, local at low reaction rates, a different coefficiept,also encompasses

coefficients can indeed vary considerably, but in commercial 980Mmetric and activity gradient effecté.Based on previous
units, the average effect will be normally minimized due to the 'esults from Buffani? Keegan et af, Mariani et al.}-** and

high superficial velocities usually employed. Therefore, as- SOMe examples provided here, it has been observed taadl
sumption a will be appropriate in many practical cases, but ¥ &€ frequently very stron_gly correlated. In th(_ase cases, it will
counterexamples cannot be ruled out. The whole issue is beyond®® More convenient to adjust the 1D geometric model With

the scope of this manuscript, so caution should be taken in thisWhich is more easily evaluated than

regard. In addition, to our knowledge, experimental information _ EVen thougH™ andy are very well correlated for many types
about local fluid-to-particle mass and heat transfer coefficients Of commercial catalysts, deviations from realistic shapes have
in packed beds is very limited. Probably, computational fluid been identified. It remains to systematize these cases and

dynamics (CFD) studies can be of great help in this regard. Propose alternatives for their approximate treatment. ,
A similar analysis of the asymptotic regime can be carried

out for systems of multiple reactions. The presence of edges
avoids, in general, the occurrence of a single valueci(#)

The main results of this paper are eqs-24 expressing the  and, hence, of a singld’. Nonetheless, considering the
effective reaction rate as a truncated series with a first-order insensitivity ofw(6) with the form of the reaction rate (as proved
term (proportional tab~1) and a second-order term (proportional for single reactions) and the fact that for linear system&@)
to ®~2) for any 2D or 3D catalyst shape. The conditions under holds as the unique coefficient for the system, it is reasonable
which these expressions apply are termed the asymptotic regimeto expect that the value of' calculated with w41(6) can
The parameter (eq 19.h) defining the magnitude of the second- characterize a variety of multiple-reaction systems, similarly as
order correction has been obtained by adding the effect of edgest did for single reactions.
to the expression previously developed for smooth surfaces.
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Basic restrictions f_or the settleme_nt_ of the asymptot_ic regime Appendix

have been summarized. Those arising from the existence of

edges have been developed in the Supporting Information for ~A.1l. Solution of Egs 17 in the Main Text aroundé = .

this paper. Equation 17.a in the main text can be rewritten in stretched
The expressions for the asymptotic regime can be applied Cartesian coordinatesandy (see Figure Al)

straightforwardly to complement a numerical evaluation of the

conservation equation. A numerical method can be employed Y %Y

for the relatively smooth concentration fields inside the catalyst y y =r(Y) (A1)

at low values of®, while the asymptotic expression can be

used at large values df, when steep (and difficult to evaluate) where the axix corresponds to the symmetry axis of the wedge

solutions take place. It is shown that the lowest valuédbr C
which the asymptotic expression can be used may reach 1 orderand the straight ling = x/tg(¢) corresponds to one of the normal

of magnitude less than that when using only the first-order term sections. Then, the boundary conditions are

(in @1 for the effectiveness factor. . . i . .
Another important application df is for fitting the adjustable Y=1laty=xlg(¢). dv/dy=0aty=0

parameter of a 1D geometric model intended for approximating Y=0atx— o

the diffusion-reaction problem in complex 2D or 3D shapes.

T is a characteristic coefficient enclosing the effect of geometry where¢ = (7 — 6)/2, and@ is the dihedral angle, which is

and activity profiles of any 2D or 3D catalytic body at high assumed to be close tn Hence,¢ will be small and positive

reaction rates. From the expansion of the effectiveness factorif 6 < & and negative if0 > z. The derivative ofY in the

i = X
axis u (w=0)

7. Conclusions



direction normal toy = x/tg(¢) can be written

aY/an = cosp)(9Y/0X)y—ytq(s) — SIN@)(AY/Y)y—ygsy  (A2)

The coefficientw(6) in eq 17.e of the main text can now be

expressed by

w(0) = —) j) [9Y/on +.77] dy (A3)

The following change of coordinates is introduced (see Figure

Al),
W =Y, U=XCosg) —ysin()
from which
aY/dy = —sin(gp) aY/du + aY/ow
aY/ox = cosg) aY/ou
and
Y 82Y Y PY .,
v S|n2(¢) + " 2 = sin@);
Y cod 0 Y
5 =cos(¢
) ( )
Replacing in eq A1
Y | &Y o AN
o >+ o Zau 8Wsm(qb) =r(Y) (A4)
the boundary conditions become
Y=1 atu=0
Y=0 whenu— oo} (A5)
sin(g) aY/ou = aY/ow atw = 0 (AB)
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obtained:
&Y, N &Y, V)
—_ —_—=r
W w 0
Yo=1latu=0

Y Jow=0atw=0

Y, = 0 whenu — o

Due to the boundary conditiodYy/aw = 0 atw = 0, this system
reduces to

d*Y,
E = I’(YO) (AlOa)
Yo,=1atu=0 (A10.b)
Y, = 0 whenu — oo (Al10.c)

which is equivalent to expressions 1t@in the main text
describing the limiting regime. Defining = dYo/du, eq A10.a
is written

p(dp/dYy) = r(Yo) (A11)
In turn, eq 12 in the main text can be rewritten
p= _3(Y0)1/2
where AYo) = 2 [.r(Y) dY (A12.2)

and

p(0) = (dYy/du), o= —% = — [AL]"? (A12.b)

Collecting now terms in sii) resulting from the expansions
defined in egs A9 and taking into account the definitre

From eq A2, the normal derivative on the normal section is gy, /du,

expressed as
aY/on = (aY/au) ,_, — Sin(@)(3Y/ow),_o

Since 0Y/ow)y—o = 0

aY/an = (dY/au),—q (A7)
Then, the integral in eq A3 becomes
0(0) = —2— [“[(aVIau),_o + Zl dw  (A8)
T, COS(H)” © u=0

By definition, sing) can be regarded as a small parameter in
the system of eqs A4A6. Hence, the following expansion is

proposed for the solutio:

Y=Y, +sin@) Y, + sif’(¢) Y, + (A9.a)

whereYy, Y, ... are functions ofi andw and do not depend on
sin(p). Expandingr(Y) aroundYo,
r(Y) =r(Yy) + r'(Yo)lsin(@) Y, + sir12(¢>) Y,+..]+

Y r (Yo)[sin(g) Y, + sirf(@) Y, + ..+ ... (A9.b)

Replacing eq A9.a and eq A9.b in eqs-A46 and collecting
the terms independent of si#)( the following expression is

Gz PV R 32\( "(YY, =0
—_— r =
W 0

0; 3Y1/8W= patw=0;
Y; = 0 whenu— o (A13.b)

(A13.a)

Y,=0atu=

Before attempting a solution foy; from eqs A13, it is
convenient to express(6), eq A8, according to expansion A9.a.
Considering eq A12.b, we can write

2tg(¢)
7

w(0) = “19Y,/ou] ,_o dw + o(sin ¢)

and becausé is small,

(r = 0)
%

w(6) = 3 1aYy/au] o 0w + o(r — 6) (A14)

Hence, our target is now finding an expression for the integral
in eq Al4. It will become apparent that this integral can be
directly evaluated by appropriately manipulating eqs A13,
without the need of knowing the field;.

To this end, we should first recall from the main text that far
from the influence of the edge (i.e., at high valuesnfthe
solution Yy of the limiting regime holds. As a consequen¥e,
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and its derivates vanish at high valuesvofin particular,
aY,/ow =0 if w— oo (Al5.a)

On the other hand, we should also recall that the solu¥ion
varies monotonically withu. Hence, both variable®) andu,

in eq Al4, we obtain fow(0)
w(0) = (T — 0) + o(r — 0) (A16)

A.2. Solution of Egs 17 in the Main Text for Small Angles
6. If 0 is close to zero, the flux in the angular directignof

can be exchanged, according to convenience. In particular,the polar coordinates employed in egs 17 of the main text will

partial derivatives with respect to(for fixed values ofw) can
be expressed as partial derivatives with respe®btdhen, the
following relation will be employed,

2

9°Y, , Y
E =T (YO)Yl = a—YO (A15.b)
where
8Y1 dp
Y= p(m - d_Yo Yl) (A15.C)

Equation A15.b can be checked by performing the derivative
of the right-hand term, recalling the definitigm= dYy/du and
eq All. Equation Al3.a can now be written as

2
R
o ow
Integrating over variabl¥p, from Yo = 0 to Yo = 1 (equivalently,

from u — o to u = 0), and recalling thatY, and w are
independent variables:

0

u=0 82 1
L dw+ 7 JoYrdYo =W o= W], ., +
¥ _
7 Sy dY,=0
As Y; = 0 atu = 0, W|,—o = p(0)(aY1/0u)y=o (see eq Al5.c).
Besides¥|,—» = 0, as foru — o, p — 0. By replacing these

terms and introducing/ow under the integral, the following
relationship is obtained:

Jd rl
P(0)(@Yy/0U) =g + 5 - [ (@Y,/ow) dY, =0

This expression is now integrated owerfromw = 0 to w—
00

P(0) [1(8Y/0U) o W + [ [ (3Y,/oW) AYgly, ., —
[ /;(8Y,/ow) dYgl,—o = O

The integral evaluated at— o is nil (eq Al5.a), and replacing
aY1/ow = p, atw = 0 (eqs Al13.b),

0o 1
p(0) [, (8Yy/u),—odw = [ 'pdY,

Finally, considering eqs A12 fqrandp(0) and the definition
of % in eq 9.c in the main text,

-[3Y.
CEAIN (a—ul)u_o dw

Replacing the integral

= -%%

aY,

S5 ow

be dominant with respect to the flux in the radial directigmt
least at points sufficiently far from the edge. Thus, at a given
radiusp (not so small),Y will primarily depend on the generic
arc length pp) measured fronp = 0 and on the total arc length
(p012), where the symmetry condition applies. Based on this
observation, the following expansion is proposed for the solution
of Y at small values ob

1 1 1

Y=Y+ SV, + Y, + Vs (A17)
P p

where
Y, =Y(s, ¢) fori=0,1, 2, ... withs = pp andg = p6/2
Expandingr(Y) aroundYp,
1 1

r¢Y) =r(Yy) + r’(YO)(?Y1 + EYZ + ) +

2
p p

Considering the boundary conditios= 1 at¢ = 0 and
aYlap = 0 atp = 6/2, we obtain for the function¥; in eq A17

Y,=1ats=0; dY/os=0ats=¢ (Al9.a)
Y, =0(@(=1,2,..)ats=0; dY/oss=0ats=¢
(A19.b)

Replacing egs A17 and A18 in eq 17.a of the main text and
collecting terms that contain poweps? (i = 0, 1, 2, ...),

i=0: 7Y 05 =r(Y,) (A20.a)
=10 /(Y + 02Y /oS’ = Y,r'(Yy)

1
2

(A20.b)
i =20 A(Y) + Y105 = Y,r'(Yy) + 5Y,r(Y,), etc.
(A20.c)

where the operatori (i = 0, 1, 2, ...) is defined by = (2i)?
+ (1 — 4) 2+ 2 and 2= §(013s) + ¢(3/dc).

It is recalled that the function¥i(s; ¢) only depend on one
spatial coordinatesf and on a parametet)( so the boundary
conditions (egs A19) and conservation balances (eqs A20)
actually describe 1D variations of (on s) at a given value of
¢. Hence, a proper interpretation should be given to the partial
derivatives in egs A19 and A20 and in the definition of the
operator?.

The coefficientw(0) in eq 17.e of the main text is now
expressed

2 ]
wo(®)=— [ 1(8Y109) + A dp =
2

2 [ G 2 o
P Jo [(0Yg08)o + 7] dp + 72; S0 2 (@Y39 o do



The derivatives qYi/0s)=o depend only org. Replacingp =
(2/160)c and ¢ = (2/0) dg, we obtain

o(0) = %(bo + b6+ b0t + ) (A21)
where
_4
b, = Z S T(@Y09)—o + 7] dg (A22.3)
, 447 2
(i=1) b == 7 [ (@Yi/09)oc ' ds (A22.b)

The coefficientdy (i =0, 1, 2, ...) depend only on the form of
r(Y).

We are specifically interested in the coefficidigt for which
the solutionYp of eq A20.a and boundary conditions Al9.a
corresponds to the solution in a catalytic slab with uniform
activity and width (2). The Thiele modulus for this slab is
simply @ = ¢. By denotingny(P) as its effectiveness factor,
we can write

4 oo
by== [ 1% — ©ny(@)] d (A23)

Supporting Information Available: Figures, equations, and
discussion describing the validation of the straight-wedge
approach accounting for the effect of edges. This material is
available free of charge via the Internet at http://pubs.acs.org.

Nomenclature

As = coefficient defined in eq 6.a [dimensionless]

a = catalytic activity [dimensionless]

as = local catalytic activity onS, [dimensionless]

Ca = molar concentration of reactant A [mol

% = coefficient defined in eq 9.b [dimensionless]

9 = coefficient defined in eq 9.c [dimensionless]

_9a = coefficient defined in eq 2.b [mol nt s77

| = Vy/S, characteristic length [m]

= Laplacian operator [T?]

M = overall consumption rate [mol§|

n = normal unit vector or§, [dimensionless]

A1 = normal sections from the plane normal to the edge

Na = molar flux of reactant A [mol m? s1]

R = %% [dimensionless]

R = radial coordinate [m]

Rs, Ry, = principal radii of curvature [m]

r(Y) = za(Y)/mas, relative reaction rate [dimensionless]

Sy = external surface area of the catalytic body inaccessible to
reactants [

S = external surface area of the catalytic body accessible to
reactants [

S = area of thgth smooth sector [A}

Ts = sum of local principal curvatures d®, defined in eq 5
[m~1]

V, = volume of the catalytic body [fh

W = length ofkth edge [m]

Y = concentration defined in eq 2.a [dimensionless]
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y = geometric coefficient [dimensionless]

I' = coefficient defined in eq 19.h [dimensionless]

A = global reaction scale defined in eq 3.d [m]

As = AMag!?, local reaction scale &, [m]

7z = specific consumption rate of reactant A [molfrs™]

® = |(7zad 7a)*?, Thiele modulus [dimensionless]

n = effectiveness factor [dimensionless]

&n = coordinate along the inward normal &

¢ = &4, stretched coordinate [dimensionless]

¥ = penetration depth [m]

w(0) = parameter defined in eq 17.e

6 = dihedral angle defined by the tangents gfand. |;; at the
edge

Subscripts

e = chemical equilibrium
high = asymptotic regime
limit = limiting regime

S = value atS,
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