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ABSTRACT
Introduction: Despite the approval of a large number of antiepileptic agents over the past 25 years,
there has been no significant improvement in efficacy of treatments, with one third of patients suffering
from intractable epilepsy. This scenario has prompted the search for innovative drug discovery solu-
tions. While network pharmacology and explanations of the drug resistance phenomena have been
proposed to drive the search for more efficacious therapeutic solutions, such alternative approaches
have not fully taken hold within the antiepileptic drug discovery community so far.
Areas covered: Herein, the author discusses the impact that network pharmacology and the current
hypotheses of refractory epilepsy and drug repurposing could have if integrated with anti-epileptic
computer-aided discovery.
Expert opinion: With many complex diseases, the advancement in the understanding of disorder
pathophysiology in addition to the contribution of systems biology have rapidly translated into the
discovery of novel drug candidates. However, antiepileptic drug developers have fallen a little behind in
this regard, with fewer examples of computer-aided antiepileptic drug design and network-based
approximations appearing in scientific literature. New generation single-target agents have so far
shown limited success in terms of enhanced efficacy; in contrast, multi-target agents could possibly
demonstrate improved safety and efficacy.
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1. Introduction

Epilepsy, a large group of disorders consisting in recurrent
unprovoked seizures, is the most common brain disorder,
affecting around 0.4–1% of the world population [1]. Despite
more than 15 third-generation antiepileptic drugs (AEDs) have
been approved from 1990 to date, including selective drugs
discovered through target-driven approaches, such as vigaba-
trin or tiagabine [2], no significant improvement in the overall
efficacy has been achieved [3,4]: seizures are not controlled
with pharmacotherapy in about one-third of the patients, a
condition known as refractory or intractable epilepsy.

The failure of existing AEDs to meet the expectations has
led to growing disappointment at different levels of the drug
discovery community, from basic scientists to the pharmaceu-
tical industry, and to a perceived loss of industry interest [3,5].
Faced with this situation, leading experts in the field of AED
discovery have underlined the need of new concepts and
fresh thinking to improve novel AED discovery [3].

While computational models are presently used in virtually all
fields of drug discovery, computational approaches for the
screening or design of novel AEDs have been underexplored in
comparison with other therapeutic categories. This may arise
from a persistent and major obstacle to apply structure-based
approximations in the field of AED development: most validated
molecular targets for AEDs are either voltage- or ligand-based
ion channels whose structure has not been experimentally
solved yet, which forces drug designers in the epilepsy field to
resort to homology modeling or ligand-based approximations.

For instance, homology models of relevant targets such as
gamma-aminobutyric acid transaminase (GABA) transaminase,
GABA transporters, and synaptic vesicle protein 2A (SV2A) have
recently been reported [6–8]. A notorious exception is carbonic
anhydrase, a putative AED target whose human isoforms have
already been solved and are being actively used to search for
novel antiepileptic therapies [9–12].

In order to provide innovative and more efficacious solu-
tions for the management of epilepsy, computational model-
ing should integrate the most recent experimental data on the
underlying causes of epilepsy and drug-resistant epilepsy and
address paradigm shifts in the field of drug discovery for the
treatment of complex disorders. Here, we will discuss how
(and why) recent knowledge related to the physiopathology
of epilepsy (including available hypothesis on the nature of
refractory epilepsy) should be incorporated into the process of
computer-guided AED design and identification. A flow dia-
gram illustrating some of the ideas discussed in the review is
presented in Figure 1.

2. Are selective and potent drugs the most
adequate solution for epilepsy?

2.1. Incorporating systems biology principles to the AED
discovery field

Some decades back, the pharmaceutical industry adopted tar-
get-driven (allegedly ‘rational’) approaches to drug discovery.
The general idea behind this paradigm was that exquisitely
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selective agents interacting with a validated target would avoid
off-target interactions, thus arriving to safer therapeutic solu-
tions. While ‘clean’ drugs developed through target-based
approaches seem well suited to find therapeutic agents to treat
monogenic diseases, they are generally less efficacious for the
treatment of complex disorders and are usually cited as one of
the reasons for the decline of new drugs that reach the market
despite the increased investment in drug discovery [13–15], a
reality that is particularly marked in the field of central nervous
system (CNS) pharmacology [16,17]. Inquiringly, the number of
small-molecule first-in-class drugs emerging from phenotypic
screening seemingly outnumbers those emerging from target-
centered discovery [18].

In some cases, the clinical reality has challenged the theore-
tically improved safety of target-based therapeutics. For instance,
in the case of retigabine, a first-in-class K+ channel opener for the
adjunctive treatment of partial-onset seizures, back in 2013, the
Food and Drug Administration (FDA) approved changes to drug
label (black boxed warning) in order to warn that the drug
can cause blue skin discoloration and eye abnormalities

characterized by pigment changes in the retina that may lead
to permanent vision loss [19]. Accordingly, the FDA advises
periodic eye examinations to people taking retigabine; the
drug should be discontinued if ophthalmic changes are
observed. Similarly, retigabine indication was restricted to last-
line use in UK, and patients taking the drug should be subjected
to comprehensive ophthalmic examination every 6 months [20].
Furthermore, interaction of this drug with Kv7 potassium chan-
nels expressed in the smooth muscle of the urinary bladder
explains other adverse reactions such as urinary retention, hesi-
tation, and dysuria, which have led to a Risk Evaluation
Mitigation Strategy program for urinary retention [21].

It is to be noted, though, that the contribution of very
recently approved selective AEDs such as the allosteric
alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
(AMPA) receptor antagonist perampanel has still to be seen,
while vigabatrin is the first-line drug against infantile spasms
due to tuberous sclerosis [22,23]. Thus, whereas introduction
of selective AEDs to the market has still not shown an overall
improvement on the successful rate in the management of
epilepsy, selective agents could be advantageous against spe-
cific types of epilepsy, and the impact of recently approved
selective agents will not be known until some years from now.

From the perspective of systems biology, biological organ-
isms are resilient to perturbation, and disease is often an also
resilient state that emerges from multiple and simultaneous
perturbations of an intricate network of elements [14], a view-
point that seems particularly valid to explain complex disorders.
A number of authors have begun to realize that epilepsy, as a
complex, multifactorial, multigenic, and dynamic pathology is
particularly suited to be approached through systems biology
[24–28]. One of the current hypotheses that provide explana-
tion to the drug resistance phenomenon in epilepsy points to
the role of the disturbed state in complex networks of interact-
ing components that are reorganized following epileptogenic
activity [29,30]. How could the ‘system pharmacology’ approach
be translated into the drug discovery field? Mainly, in four ways.

First, by complementing single-target approaches with
multi-target ones (either through multidrug therapeutics or
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● Last generation antiepileptic drugs have failed to meet the expecta-
tions regarding improved efficacy in the treatment of refractory
patients.

● Novel strategies towards the development of new antiepileptic
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● Modern approaches (e.g. multi-target drugs, computer-guided drug
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● Target-driven approaches towards antiepileptic drug discovery
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line with the network pharmacology perspective.

● Systematic drug repurposing poses excellent opportunities for the
antiepileptic drug discovery community.
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Figure 1. Flow diagram illustrating some of the points discussed in this review.
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through multi-target single drugs) [24,28]. Whereas highly
selective agents may display greater efficacy in selected
patient subgroups (i.e. to treat specific syndromes) [5], many
of the existing and more used AEDs are in fact (unintended)
multi-target agents that have been selected through pheno-
typic approaches [25,27]. A diversity of studies in animal mod-
els of seizure and epilepsy suggest that the combination of
drugs associated to different mechanisms tends to enhance
the efficacy of the treatment [3,31–34]. Remarkably, the pro-
tective effects of other AEDs are enhanced by levetiracetam
(an AED with distinctive mechanisms of action) despite the
seizure model or drug combination studied [31]. Second, by
conferring genome-wide analysis a prominent role in the drug
discovery process, exploiting modern technologies (high-con-
tent technological platforms, ‘omics’) that allow exploring the
interactions among thousands of genes and their products in
different states [3]. Third, by scrutinizing ‘the more potent the
better’ paradigm of hit selection under the light of the net-
work pharmacology approach. And fourth, by developing
quantitative structure–activity relationships (QSARs) using bio-
logical responses obtained in animal or cellular models,
instead of the classical suggestion of preferring binding affi-
nity data obtained at the in vitro level. It should be remem-
bered that, as mentioned previously, the term epilepsy
encompasses a large number of complex disorders with dis-
tinctive etiology and manifestations. Being so, it is possible
than some types of epilepsy could be better addressed
through single-target agents, while others could require ther-
apeutic agents linked to a more complex pharmacology.
Accordingly, we would like to highlight that, in our opinion,
the evolution of the AED discovery does not call for the
replacement of target-driven approximations by network-
based approaches, but for the integration of system pharma-
cology thinking to existing paradigms.

As we discuss in further subsections, the network pharma-
cology paradigm has vast applications in the realms of
cheminformatics and bioinformatics, including tailored
multi-target agents, automated network analysis tools, and
automated comparison of gene signatures. These tools have,
however, been scarcely applied in the field of AED develop-
ment, thus far.

2.2. Tailored multi-target/multifunctional AEDs –
arguments in favor of and against hybrid molecules:
recent applications

Before target-driven drug discovery, new leads emerged
from serendipitous discovery, traditional medicine, or pheno-
typic screening in cellular or animal disease models.
Although it was possible to find multi-target agents through
such approaches, those targets were, if lucky, defined a
posteriori, and the combination of targets attacked was
unpremeditated and sometimes not fully understood. As an
example, note that even today, the molecular mechanisms of
action of aspirin itself are not completely uncovered, and
new modes of action of this centennial drug are constantly
being reported [35–37].

In the discussion on phenotypic- versus target-based stra-
tegies, tailored multi-target agents can be regarded as the

middle way. They are an extension of the target-centered
approach that incorporates the perspective of network phar-
macology. Tailored (or designed) multifunctional agents are
purposely conceived to selectively modulate a number of
chosen targets of interest, frequently relying on computer-
aided design and data analysis tools and simplifying (costly)
target deconvolution. In principle, multi-target agents are
equivalent to the combined therapy with different single-tar-
get agents, but they are advantageous in terms of reduced
probability of drug interactions, simplified pharmacokinetics,
and better patient compliance [38]. The pharmacodynamics
of the components of a hybrid drug should be, however,
compatible [39]; in other words, the ratio of activities at the
different targets should usually be adjusted so that the multi-
target drugs hit every target with approximately the same
potency, and thus the same dose could be used to modulate
a diversity of targets, a requirement which could prove
complicated to attain [40]. Furthermore, multi-target agents
display, comprehensibly, higher probability of off-target
interactions.

While tailored multi-target agents to address other com-
plex CNS conditions (including neurodegenerative diseases
and mood disorders) have been abundantly explored [41–
43], this strategy has been (at most) meagerly applied in the
search of novel solutions for epilepsy (Figure 2) [23]. The
application of this type of hybrid drugs in epilepsy is restricted
by our incomplete understanding of the pathophysiology of
this disorder, which limits our possibilities to rationally choose
an appropriate combination of mechanisms (however, limited
knowledge on the underlying pathological mechanisms has
not hampered the development of multi-target agents as
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Figure 2. Comparison of the number of published scientific articles per year
related to the multi-target approach and epilepsy, Alzheimer’s disease and
cancer. Whereas the three compared disorders are undeniably complex and
their underlying pathological mechanisms are not fully understood, the differ-
ences in the number of articles are overwhelming. In the author’s opinion, these
differences reflect not only differences in the R&D investment for these dis-
orders (cancer is, probably, the disorder that attracts the most funding) but also
particular challenges posed by epilepsy and some delay in the antiepileptic drug
discovery community to embrace innovative strategies. The search was per-
formed in titles, abstracts and keywords of scientific articles indexed by Scopus.
Search criteria where: for epilepsy, ‘epilepsy’ and ‘hybrid molecule’ or ‘hybrid
drug’ or ‘hybrid approach’ or ‘multi-target’; for Alzheimer’s disease, ‘Alzheimer’
and ‘hybrid molecule’ or ‘hybrid drug’ or ‘hybrid approach’ or ‘multi-target’ and;
for cancer, ‘cancer’ and ‘hybrid drug’ or ‘hybrid approach’ or ‘multi-target’ or
‘tumor’ and ‘hybrid drug’ or ‘hybrid approach’ or ‘multi-target’.
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potential solutions to other complex disorders, e.g., cancer).
On the other hand, empirical evidence indicates that some
AEDs could be effective to address some epilepsy types while
paradoxically worsening seizures in others [44–46]; therefore,
the combination of mechanisms of action and the clinical
applications of the resulting hybrid molecules should be care-
fully examined to avoid seizure aggravation. The previous
scenario is complicated by the inherent complexity of defining
‘causes’ in epilepsy [47,48]: while causal conditions of epilepsy
based on notable structural change and monogenic illnesses
have been identified, mechanisms of genetic influences and
proximate molecular mechanisms are less clearly established
[47]. The self-perpetuating nature of epilepsy and the rela-
tively low availability of brain tissue samples from epileptic
patients constitute other major obstacles to differentiate
causes from effects.

Despite the intrinsic limitations to the development of tai-
lored multi-target AEDs, the theoretical applications of hybrid
molecules in the field of epilepsy are enormous. First, multi-
target agents could be a viable solution to deal with drug-
resistant epilepsy linked to acquired or constitutive target mod-
ifications [49]. Second, multi-target agents could be designed to
address, simultaneously, the symptoms and underlying causes
of the disease. For instance, it is suspected that seizures and
inflammation take part in a complex interplay that results in a
negative circle [40,51] where inflammation may be both cause
and consequence of seizures. Clinical evidence, particularly in
children, suggests that steroids and other anti-inflammatory
treatments display anticonvulsant activity in some drug-resis-
tant epilepsy syndromes. Furthermore, some of the most effi-
cacious AEDs (valproic acid, levetiracetam, and carbamazepine)
have also shown anti-inflammatory effects [52–54]. Thus, it
could be speculated that a combination of anticonvulsant and
anti-inflammatory properties (and other properties with positive
impact on disease progression, e.g., neuroprotective effect) in
novel tailored multi-target agents could have a positive impact
on epilepsy treatment. Finally, since a very high percent of
epilepsy patients (and in particular, refractory patients) suffer
from comorbid psychiatric disorders (e.g. anxiety, depression,
and suicidal ideation) [55,56], the simultaneous treatment of
epilepsy and comorbid manifestations of epilepsy would be a
third possible application of multi-target agents. Remarkably,
many widely used AEDs have shown benefits against mood
disorders [57–60], while others seem to possibly aggravate or
trigger negative behaviors linked to epilepsy [60–63]. Even so
(positive or negative), collateral effects of AEDs are not usually
considered when making treatment decisions (the choice of
which AED the neurologist will prescribe in the treatment of
epilepsy is most frequently based on the classic benefits, i.e.,
seizure control efficacy) [59,64]. Clinical and epidemiological
studies on epileptic patients examining the behavioral effects
associated with particular AEDs are still limited and in some
cases conflicting (see for instance [60, 65–67]).

Some hybrid molecules for the treatment of epilepsy have
recently been designed, with interesting results. Hassan and cow-
orkers, for example, developed a series of N-(substituted ben-
zothiazol-2-yl)amide combining riluzole (an anticonvulsant with
phenytoin-like spectrum of activity and neuroprotective proper-
ties) with a moiety containing a GABA-like pharmacophore on a

benzothiazole nucleus [68]; the most promising candidate pre-
sentedmedian effective doses (ED50s) around 41 and 85mg/kg in
the maximal electroshock seizure (MES) and subcutaneous pen-
tylenetetrazole (scPTZ) tests, respectively. Similarly, hybrid mole-
cules of ameltolide and GABA amides have been obtained by
Yogeeswari et al. [69]. One of the resulting compounds, 4-(2-(2,6-
dimethylaminophenylamino)-2-oxoethylamino)-N-(2,6-
dimethylphenyl) butanamide, emerged as the most potent deri-
vative effective in three different animal models of seizure: MES,
scPTZ, and subcutaneous pricrotoxin test.

An attractive application of the hybrid molecule concept in
the field of AED discovery was reported some years back by
Wang and colleagues. Based upon a CoMFA model, they
proposed novel compounds containing both the phenytoin
pharmacophore or the hydroxyamide pharmacophore and the
local anesthetic lidocaine, which were predicted as potent
binders to the neuronal sodium channel as they would poten-
tially have the ability to bind to an expanded binding region
encompassing both the phenytoin and local anesthetics-bind-
ing sites [70]. The idea of designing a compound capable of
binding two distinct sites of the same target could be inter-
esting to address target-based drug resistance, under the
notion that it is less probable that target modifications lead
to loss of sensitivity to such kind of hybrid agents.

2.3. Tailored multi-target agents: some general and
specific considerations to guide their computer-aided
search

Multi-target drugs are based on the general idea of merging
two pharmacophores into a single molecule (which can dis-
play different degrees of overlapping; Figure 3) [71] or, alter-
natively, finding a common pharmacophore between two
molecular targets of interest. In the absence of commonalities
between the pharmacophoric requisites, distinct pharmaco-
phores can be joined together through a linker (fragment-
based approach). Such arrangement corresponds to what
Sturm and coworkers have called bianchor ligands, which
use different sets of atoms to interact with each target protein
[72]. The fragment-based approach tends to produce ligands
that violate drug-like criteria [24,73,74]; logically, the chance of
violating drug-likeness rules and compromising bioavailability

non-overlapping

(bianchor)

partially

overlapping

fully

integrated/merged

Figure 3. The design of multi-target drugs can integrate pharmacophores with
completely distinctive features (left) or common structural features. Fully over-
lapping pharmacophores are advantageous considering biopharmaceutical and
ligand efficiency metrics. Nevertheless, it is possible that two given molecular
targets present mutually excluding pharmacophores or a complete absence of
commonalities.
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increases as the number of distinct anchors does. The designer
must thus carefully watch for possible bioavailability issues of
the resulting molecule, a statement that is particularly relevant
in the case of AED design owing to the special restrictions on
physicochemical properties imposed by the blood–brain bar-
rier (BBB). In this regard, Wager and coworkers have devel-
oped an interesting yet simple Central Nervous System
Multiparameter Optimization and Desirability Score to decide
if a given drug candidate is likely to display favorable pharma-
cokinetic and safety properties for its use as a CNS therapeutic
agent [75]. The score is easily calculated through computation
of six theoretical physicochemical properties: calculated parti-
tion coefficient (clogP), calculated distribution coefficient at
pH = 7.4 (clogD), molecular mass, topological polar surface
area, number of hydrogen bond donors, and the pKa of the
most basic center. A direct relationship between this desirabil-
ity score and alignment of key in vitro attributes of drug
discovery (absence of P-glycoprotein efflux, metabolic stabi-
lity, and safety) has been observed by Wager and colleagues in
marketed CNS drugs as well as in Pfizer’s candidate set.

The ligand efficiency of the multi-target agents is another
aspect that should not be ignored during the design process
[24,74,76]. In 1999, the empirical study by Kuntz et al. showed
that, across a wide variety of small molecule–macromolecule
complexes, maximal contributions to binding free energy per
ligand non-hydrogen atom are similar to −1.5 kcal/mol; these
authors also noticed a trend to a smaller free energy contribu-
tion per atom as the molecular mass of the ligand increases
[77]. From then, ligand efficiency metrics have gained increas-
ing acceptance within the drug discovery community, with
retrospective analysis of recently marketed oral drugs showing
that they usually have highly optimized ligand efficiency
values for their targets [78]. In the case of the bianchor agents,
it might be speculated that efficiency metrics will tend to be
low since only a fraction of the molecule takes part in an
efficient interaction between the ligand and each molecular
target. The ‘density’ of efficient contacts between the drug
and the targets will consequently tend to be low. Highly
integrated pharmacophores may serve to solve the binding
efficiency and bioavailability issues typical of fragment-based
approximations. Sturm et al. have observed a class of multi-
target agents that they called ‘flexible ligands,’ which includes
ligands that can adopt different conformations in the binding
sites of the different targeted proteins; whereas the same set
of heavy atoms locates in the binding sites, different atoms are
involved in direct interactions with each of the targets [72]. It
should be warned, though, that an excessive flexibility could
conspire against the binding free energy owing to the entropy
loss associated to decreased conformational freedom resulting
from drug–target recognition event.

There are many other molecular features that have shown a
correlation with promiscuity and can presumably be tuned dur-
ing the drug design process to adjust the degree of promiscuity.
For instance, several studies suggest that ligand promiscuity is
inversely related to molecular weight [72,79,80] though some
other studies have failed to find a correlation or have shown an
opposite trend [78,79,81], suggesting that the correlation
between molecular mass and promiscuity is context dependent
[80]. Sturm et al. identified a class that multi-target compounds

that they labeled as ‘superpromiscuous,’ which could bind to
nonhomologous targets, with the same ligand-atoms being
involved in direct interactions with each of the targets.
Remarkably, these superpromiscuous ligands tend to present
either low or high complexity [72]. Direct correlations have
also been found between promiscuity and clogP [82,83] or the
fraction of molecular framework (for large molecular framework
values) among other properties [83]. Since the fraction of mole-
cular framework is defined as the number of heavy atoms in the
molecular framework divided by the total number of heavy
atoms in the molecule, a smaller molecular framework and
more side chain atoms will improve selectivity.

Regarding the application of in silico screening cam-
paigns, one should bear in mind that application of inde-
pendent models to identify multi-target agents is expected
to yield lower hit rates than virtual screening campaigns
oriented to single-target drug candidates [16,73,74,76]. If it
is assumed that being a ligand for one of the pursued
targets does not increase or decrease the chance of being
a ligand for another one (a situation that corresponds to
neither overlapping nor mutually exclusive pharmaco-
phores), each model used in the in silico screening process
functions as a structural restriction that filters out the mole-
cules that do not gather the model’s requisites; thus, the
more models used, the less probable it is to find chemical
compounds accomplishing all the models’ structural con-
straints. Considering this situation, when choosing the
score thresholds to consider a compound as a predicted
(multi-target) active drug, it can be a reasonable alternative
to sacrifice specificity in favor of sensitivity; such strategy, of
course, will result in an increment of experiment-related
costs (diminished active enrichment). Alternatively, choosing
the pursued targets on the basis of empirical or theoretical
evidence on common determinants of specificity could be a
good advice to improve the likelihood of success. There is a
plenty of evidence on the existence of molecular coevolu-
tion (coordinated changes that occur in pairs of biomole-
cules to maintain or refine functional interactions between
them), and a number of bioinformatics tools have been
developed to detect it [84]; these could be used to identify
pairs of molecular targets with similar binding sites.

2.4. Gene signature comparison

Gene expression profiles offer a picture of globally measured
transcript levels in a given cell, tissue, or organism at a
specific point of time [85]; gene signatures are characteristic
of particular conditions, i.e., disease states or exposure to a
certain drug. They can be particularly relevant to character-
ize the phenotypic response to long-term drug exposure
(which is the general case for drugs used to treat chronic
condition, e.g., AEDs) to shed light about the mechanisms of
action of drugs and to identify potential treatments for a
given disease. The Broad Institute has pioneered such
applications through its Connectivity Map. It is a publicly
available resource conceived to connect disease and small
molecules through gene profiles [86]. It compiles gene
expression profiles derived from the treatment of human
cells cultured with a large number of perturbagens,
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including more than 1300 FDA-approved drugs. Query
expression signatures can be compared to the stored ones
through pattern-matching algorithms: those at the top and
bottom of the resulting similarity rank are considered
related to the query state by shared (direct similarity) or
opposite (inverse similarity) expression changes, in that
order. It is presumed that compounds eliciting similar
expression changes than the ones observed in a given dis-
ease state will aggravate such condition, whereas com-
pounds displaying inverse signatures to the disease state
would likely work as therapeutic agents. Naturally, robust-
ness of gene signature-based studies is highly dependent on
the quality of the expression profiles from which they are
generated.

Gene expression profiling studies have been conducted in
the past years to help comprehending the molecular changes
underlying epilepsy and epileptogenesis and identifying
potential molecular targets for intervention [87–91]. More
recently, gene profiling was used to investigate gene expres-
sion in the hypoxic seizure model of acquired epilepsy in the
rat, with and without treatment with an AMPA receptor
antagonist, a compound under investigation as modulator
of epileptogenesis [92]. The gene profiles obtained in the
previous studies could be a good starting point to reveal
novel drugs with disease-modifying properties, by applica-
tion of the inverse similarity idea proposed by the
Connectivity Map.

At this point, it is worth mentioning emerging approaches
to AED target discovery based on the targeting of transcrip-
tional processes. Epigenetic mechanisms involved in tran-
scriptional regulation of multiple molecular pathways are
attractive therapeutic interventions for epilepsy, since sin-
gle-target therapies are unlikely to provide both anticonvul-
sant and disease-modifying effects. Mazzuferi and coworkers
found a significant increase in nuclear factor erythroid 2-
related factor 2 (Nrf2) (a transcription factor that promotes
the expression of anti-inflammatory, antioxidant, and neuro-
protective gene products) in human epileptic hippocampal
tissue and in mice following pilocarpine-induced status epi-
lepticus [93]. A review on Nrf2 as a therapeutic target for
epilepsy has recently been published [94]. McClelland et al.
found that interfering with the repression of numerous genes
by the transcriptional repressor neuron-restrictive silencer
factor can attenuate the development of epilepsy in the
short term, supporting a mechanistic role in epileptogenesis
[95]. Through application of system genetics to surgically
acquired hippocampal tissue from temporal lobe epilepsy
patients, Johnson et al. identified a gene-regulatory network
genetically associated with epilepsy that contains a specia-
lized, highly expressed transcriptional module encoding pro-
convulsive cytokines and Toll-like receptor signaling genes
[96]. The proconvulsant module was mapped to the SESN3,
and it was verified that it was conserved across species.
These reports illustrate the potential of system genetics to
unveil pathways related to epilepsy onset and progression.
Such pathways could be targeted to arrive to next-genera-
tion disease-modifying therapeutic solutions in line with
some of the most recent hypotheses of drug-resistant epi-
lepsy (i.e. the network hypothesis).

2.5. Are the most potent drugs the best choice to move
forward?

From a network pharmacology perspective, targeting hubs
(highly connected nodes in a biochemical network) might not
be the best strategy, especially if we are targeting sensitive
organs (such as the brain). Using low-affinity, multi-target
ligands to modulate multiple non-crucial nodes adjacent to
key nodes sounds as a more rational approach to restore the
network to its normal functioning without severe side effects
[97]. Partial weakening of regulatory networks at a small number
of selected nodes may have a greater impact than the complete
elimination of a single selected node [98]. As clearly expressed
by Bianchi and coworkers, ‘the complexity of neural processes
underlying seizure activity may be more amenable to multiple
small perturbations than a single dominant mechanism’ [27].

Memantine (Figure 2) constitutes a good example of the
potential benefits of low-affinity multi-target ligands on CNS
disorders [99,100]. It is currently prescribed for the treatment of
moderate-to-severe Alzheimer’s disease and other types of
dementia when acetylcholinesterase inhibitors are not tolerated;
memantine produces moderate decrease in clinical deterioration.
Unlike high-affinity uncompetitive inhibitor of the N-methyl-D-
aspartate receptors (NMDAR) dizocilpine, which has not reached
the market due to severe side reactions including psychotic
reactions, cognitive disruption, and Olney’s lesions, memantine
possesses surprising low-affinity binding to NMDARs (in the high
nanomolar to low micromolar range), fast on/off kinetics, and
almost no selectivity among NMDARs subtypes [99], being much
better tolerated. It also shows uncompetitive antagonism on
other receptors, including serotonin type 3 [101], nicotinic
[102], and dopamine D2 receptors [103] (in all cases, with com-
parable potency than for the NMDA receptors) (Figure 4).

The AED imepitoin (approved in the US and Europe for the
treatment of epilepsy in dogs) constitutes another example of
the potential of low-affinity ligands for the treatment of epi-
lepsy [104]. It is a broad-spectrum AED that acts as a low-
affinity partial agonist for the benzodiazepine-binding site in
GABAA receptors. Identified through a pharmacophore-based
screening, it was originally thought as a novel AED for
humans, but development was terminated because of phar-
macokinetic differences between smokers and nonsmokers.
Effectiveness was demonstrated in a wide range of preclinical
models of seizure and epilepsy, including electrically and
chemically induced seizures, genetic models of seizures and
amygdala, and hippocampal kindling models. Observed

Figure 4. Memantine (left) illustrates the potential advantages of low-affinity
multi-target ligands compared with high affinity drugs like dizocilpine (right),
questioning the predominant ‘the more potent the better’ paradigm.
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Ki values are in the low micromolar range. Interestingly, the
drug has a similar activity profile than benzodiazepines but is
much better tolerated and lacks the tolerance and abuse
liability of other full and more potent agonists.

However, the old paradigm (the more potent and the
better) still prevails in the primary screening for novel AEDs
(and novel drugs, in general). Note that the National Institutes
of Health’s Anticonvulsant Screening Program still considers
the acute potency of drug candidates in acute seizure models
to decide which candidates will progress to further testing
[105], a decision-making scheme that may underestimate the
efficacy of the drugs in on a long-term basis [106]. The same
principle is often applied in the context of a computer-aided
screening campaign, where the best scored hits (e.g. those
having higher predicted affinities) are more likely to progress
to experimental testing.

Remarkably, it has been underlined that levetiracetam (a
new-generation AED that enjoys increasing attention within
the epilepsy community and probably the new-generation anti-
epileptic agent with the most innovative pharmacologic profile)
exerts multiple, mild, and modulatory actions on neurons,
rather than a straightforward dose-dependent inhibition of
one single effect [25]. In this regard, it should also be noted
that in 2016 the European Commission and the FDA approved
brivaracetam, a selective, high-affinity ligand of the SV2A (one
of the known molecular targets of levetiracetam) [107], as an
add-on treatment to other medications to treat partial-onset
seizures in patients with epilepsy aged 16 years and older.
Brivacetam was discovered during a large-scale drug discovery
program aimed at optimizing the pharmacodynamics activity at
such novel molecular target. In preclinical models, brivaracetam
displayed more potent seizure suppression and greater antiepi-
leptogenic potential than levetiracetam. It has a 15- to 30-fold
increased affinity for SV2A compared with levetiracetam.
Accordingly, the coming years could prove crucial to judge
whether low-affinity multi-target agents like levetiracetam are
clinically more efficacious than high-affinity and selective drugs
such as brivaracetam and what are the clinical implications of
their differential pharmacological profiles.

2.6. What response should be modeled?

In the context of classical QSAR theory, and particularly in the
case of 3D QSAR, it is preferred that the training example used
for model building share the same mechanism of action (and
the same binding mode) [108–110]. It is argued that all 3D
QSAR methods were conceived to describe only one interac-
tion step in the lifetime of ligands [108], a statement that is
supported by the fact that many 3D QSAR methods are highly
alignment dependent. Furthermore, it is recommended to
consider in vitro biological data only, since in vivo data reflect
a number of parallel processes (e.g. transport, binding to
multiple targets, biotransformation, and bioactivation)
[108,109]. It is true that in vitro data are cleaner than in vivo
data, in the sense that interpretation of the test results is more
straightforward and less affected by confounding factors,
while cellular models and living organisms undergo significant
time-dependent changes. However, as stated previously, such
excessive reductionist approach could be insufficient when

dealing with complex disorders such as epilepsy. Against dog-
matic or conservative viewpoints, very common biological
data obtained from phenotypic models are used to build
QSAR models and despite that the models attain considerable
descriptive and predictive ability (see, for instance [111–114]).
In this line, several successful QSAR models and in silico
screening applications for the discovery of AEDs rely on in
vivo biological data for modeling purposes [115–122], includ-
ing reports by leading experts in the QSAR field [115]. What is
more, QSAR theory has greatly evolved in the last years; multi-
tasking QSAR models are suitable to predict multiple features
complex behaviors, exploiting latent commonalities across
tasks [123,124].

On the basis of already alleged advantages of multi-target
ligands over single-target ones against epilepsy, building pre-
dictive models from biological responses obtained in pheno-
typic screening might be the best choice to obtain efficacious
novel AEDs (transferring the philosophy of phenotypic screen-
ing to in silico screening). Most of the previously cited articles
report models to predict the effect of a drug in (traditional)
seizure models (prominently, MES test). The current challenge
in this field is to intend modeling biological data obtained
from actual models of epilepsy or at least other acute models
so far understudied through the QSAR theory (e.g. 6-Hz test).

3. Incorporating refractory epilepsy hypotheses into
computer-guided AED design

Biological mechanisms underlying drug-resistant epilepsy have
not been fully elucidated yet [5]. There exist five predominant
hypotheses that try to explain the nature of this phenomenon:
the transporter hypothesis [125,126], the target hypothesis
[126,127], the neural network hypothesis [29], the gene variant
hypothesis [128], and the intrinsic severity hypothesis [129].
Chronologically, the transporter and target hypotheses have
been proposed earlier and have therefore been more exten-
sively examined from an experimental perspective.

Briefly, the transporter hypothesis sustains that refractori-
ness could emerge from the local overactivity of polyspecific
adenosine triphosphate-binding cassette (ABC) transporters at
the BBB and/or the epileptic foci. If an AED was recognized by
such efflux pumps, these could impede achieving effective
levels of the therapeutic agents at the site of action. A major
argument against the transporter hypothesis is that not all
AEDs are substrates for the ABCB1 transporter (Pgp).
Seemingly contradictory evidence exists regarding which
AEDs are substrates and which are not [130,131], but it should
be kept in mind that results are highly dependent on the
experimental setting, including type of assay (in vitro, ex vivo,
or in vivo; animal or human models; and nonequilibrium con-
ditions or concentration equilibrium transport assay). Still, it
seems safe to say that some AEDs are unlike Pgp substrates or
weak Pgp substrates at best. Does this entirely preclude the
validity of the transporter hypothesis? Not really. First, Pgp is
one among many other efflux transporters possibly involved
in drug-resistant epilepsy. Most of the studies determining the
directional transport of AEDs have focused on Pgp; however,
some of the AEDs are transported by other members of the
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ABC superfamily. For instance, recent studies using double
knock-out Mdr1a/1b(−/−)/Bcrp(−/−) mice and the concentra-
tion equilibrium transport assays suggest that some AEDs are
breast cancer resistance protein (BCRP) substrates [132,133].
Moreover, due to the partial overlapping of the substrate
specificity of different ABC transporters (together with co-
localization and co-expression patterns that suggest a coop-
erative role in the disposition of common substrates) [132–
134], the role of a certain ABC transporter might be obscured
owing to the function of others, their concerted function, and
the possible compensatory regulation, thus requiring complex
models to study the phenomena. The difficulties to quantify
the levels of expression of a given transporter in different
regions of the brain of patients who have not been subjected
to surgical procedures and the uncertainties regarding the
ability of experimental models to reflect the absolute and
relative expression levels of the different ABC efflux transpor-
ters at the BBB and the epileptic foci contribute are other
obstacles to investigate the influence of a given transporter
in the regional AED bioavailability in the brain (note that high
local levels of an efflux transporter could even limit the bioa-
vailability of weak substrates). The current definition of refrac-
tory epilepsy itself [135] implies that the transporter
hypothesis may hold even if some of the known AEDs are
not recognized by ABC transporters. The definition indicates
that a patient should be diagnosed refractory after failure of
two well-tolerated and appropriately chosen and used AED
trials; the key to the preceding reasoning lies in what is
considered an appropriate drug choice. The definition of
drug-resistant epilepsy weakens the transporter hypothesis if
and only if one of the two appropriate therapeutic interven-
tions was in fact a non-substrate for ABC transporters. At
present, in the absence of definitive clinical proof of the
transporter hypothesis, clinical guidelines for the management
of epilepsy do not recommend to try at least one non-sub-
strate AED; thus, the quality of substrate or non-substrate is
presently unrelated to the appropriateness of the intervention.
As a result, the current figures on refractory epilepsy could be
related to a suboptimal treatment choice related to the lack of
definite validation of the transporter hypothesis at the clinical
level.

The target hypothesis suggests that the reduced sensitivity
to AEDs could be associated to acquired modifications in the
functionality and/or structure of AED molecular targets. The
gene variant hypothesis postulates genetic causes of drug
resistance (e.g. polymorphic variants of drug biotransforma-
tion enzymes, molecular targets, or transporters) [5]. The
neural network hypothesis maintains that recurrent episodes
of excessive neural activity lead to plastic modifications of the
neural network; the resulting anomalous networking might in
turn relate to the drug resistance phenomena. The hypothesis
is supported by the fact that surgical resection of the seizure
focus frequently results in seizure freedom [5], though the
differences between the alterations in brain plasticity in
responsive and nonresponsive patients are yet to be eluci-
dated [29]. The intrinsic severity hypothesis is based on epi-
demiologic studies showing that the most important factor
linked to the prognosis of epilepsy is the number of seizures at

the epilepsy onset. Again, the biological basis of disease
severity is not fully understood to the moment, so currently
the influence of the intrinsic severity hypothesis on treatment
choice or treatment development is limited. Finally, a possible
role of epigenetics in drug resistance epilepsy has also been
suggested (establishing a sixth hypothesis for refractory epi-
lepsy) although presently the experimental basis supporting
this mechanism remains scarce [136].

None of the previous hypotheses provides a universal,
satisfactory explanation to nonresponsive patients: a particular
hypothesis might be appropriate to a particular subgroup of
patients or, otherwise, some patients could require multiple
hypotheses to explain their refractoriness [5,49,137]. The net-
work hypothesis appears so far as the more holistic explana-
tion to drug resistance, since some of the others (e.g. the
target hypothesis) could be applied in its context. It is worth
emphasizing that the treatment approach should be highly
dependent on the drug resistance mechanisms present in a
particular patient [49].

The formerly discussed systems biology approach (Section
2), relying on the design of novel multi-target AEDs, seems as
a possible solution to the target and network hypotheses of
drug resistance, considering that it is less likely that two
separate drug targets are altered simultaneously in a single
patient. Concordantly, even if one of the molecular targets of a
multi-target agent has lost sensitivity, it can be speculated
that the other/s will remain sensitive, thus maintaining drug
efficacy. Some particular types of epilepsy, though, may
require drugs with specific mechanisms of action; in such
cases, as discussed previously, loss of sensitivity to a drug
could be prevented by designing drugs which are capable of
interacting with multiple binding sites of the same target.

In relation to therapeutic solutions to drug-resistant epilepsy
associated to ABC transporter overactivity, inhibition of ABC
transporters by co-treatment with on transporter inhibitors
could, theoretically, result in enhanced efficacy. However, clinical
trials with transporter inhibitors in the field of anticancer treat-
ment have been unsatisfactory ([49,138,139] and refs. therein)
due to severe safety issues. The physiologic role of ABC trans-
porters as a general detoxification mechanism and their involve-
ment in the traffic of endogenous substrates conditions the use
of add-on inhibitors in the context of long-term drug treatments
(such as AEDs). Weak inhibitors of ABC transporters and agents
directed to the signaling cascade that regulate efflux transpor-
ters expression could emerge as possible solutions [139]. An
extensive review on such approaches can be found in the excel-
lent articles by Potschka and Potschka and Luna-Munguia
[139,140]. Second, one may mention the use of a ‘Trojan horse’
subterfuge to achieve therapeutic concentrations of the ABC
transporters substrates to the epileptic focus, avoiding the recog-
nition of the efflux pumps. Pharmaceutical nanocarriers can be
included in this category [141,142]. In concordance with the
preceding strategy, we can mention the design of prodrugs of
AEDs either lacking affinity for ABC transporters or displaying
affinity for influx transporters that could compensate the efflux
pumps influence on BBB permeability [139].

The computer-assisted design of novel AEDs which are not
recognized by ABC transporters and the early screening
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during drug development to discard substrates (regarding
efflux transporters as anti-targets) constitute interesting but
mostly underexplored alternative solutions. Despite a multi-
plicity of models and algorithms for the computer-aided
recognition of substrates for ABC transporters have been
reported [143–145], few have been applied in the field of
AED discovery [122,146].

Some model developers offer their models online or in
software packages, either freely or commercially (see, for
instance, Biozyne [147,148] and Althotas Virtual Laboratory
[149,150]). Other models can be reproduced from literature
provided that the user has access to the required software
tools. In any case, it is always a good idea to inspect the
original articles in which such models are described, in order
to assess the suitability and limitations of the procedures that
have been used for model building. Very frequently reported
models related to ABC transporters are based on unbalanced
training sets in which substrates significantly outnumber non-
substrates, resulting in possible bias towards the prediction of
the prevailing category. What is more, several reported models
have been derived from congeneric series of molecules,
severely restricting their applicability domain.

Due to the polyspecificity that characterizes ABC transpor-
ters and the high inter-laboratory variability in experimental
data, predicting whether a substance is or is not a substrate
for members of the ABC superfamily is challenging. Back in
2007, based on the high variability of Pgp experimental affi-
nity data, Zhang and colleagues estimated the upper bound of
accuracy for Pgp models in those days in 85% [151], which is
quite low compared with the accuracy achieved for other
modeling tasks. Accordingly, most of the reported models on
ABC transporters display an overall accuracy around 80%.
Normally, modeling efforts rely on biological data and chemi-
cal data sets compiled from literature: classification models
can be used to alleviate the noise associated to such hetero-
geneous experimental data and large inter-laboratory variabil-
ity [152]; as stated by Polanski and coworkers, extensive data
independence implies qualitative rather than quantitative
solutions [153].

The intrinsic difficulty of predicting affinity for ABC trans-
porters has led many researches in the field to contemplate
more flexible techniques such as nonlinear models [145] and
robust approximations such as ensemble learning/consensus
QSAR or locally weighted methods [144,154–160]. Also note
that there is evidence that ensemble learning could reduce
the necessity of applicability domain assessment, assuring
broader coverage of the chemical space [161].

4. Computer-guided drug repurposing

Drug repurposing comprises finding new medical uses for
existing drugs, including marketed, investigational, discontin-
ued, and shelved ones. Repurposed drugs present higher
probability of surviving clinical trials than de novo drugs
(about 2.5 higher chances of surviving Phase II and 1.3 prob-
abilities of surviving Phase III) and a reduced development
timeline (3–5 years shorter) [162,163], since indication expan-
sion builds on already available safety, pharmacokinetic, sta-
bility, and manufacturing knowledge. While numerous AEDs

have been approved for other medical uses and/or possess
different off-label uses [57,164–168], the opposite is not true:
few drugs from other therapeutic category (with the exception
of hypnotics and anxiolytics) has so far been approved as
antiepileptic agent, and off-label prescription of drugs with
other indications for epilepsy is not a common practice. It can
thus be stated that drug repurposing for epilepsy is at present
quite underexplored. A critical question deserves examination:
is the relationship between epilepsy and other conditions
bidirectional? A large number of AEDs have been successfully
repurposed for other indications (either off-label or by gaining
regulatory approval); does this imply that drugs used for any
of those indications could potentially be used to treat epi-
lepsy? Could some therapeutic categories display systematic
connections? Interestingly, it has recently been reported that
drugs affecting the renin–angiotensin system do provide pro-
tection in seizure animal models, either alone or in combina-
tion with approved AEDs [168–171].

A diversity of approaches can be used to propose second
medical uses of existing drugs, from exploitation of serendipi-
tous clinical observations regarding possible unexpected ben-
eficial effects of a drug to epidemiological retrospective
studies. Another option is systematic drug repurposing,
which includes knowledge-based and computer-assisted
drug repurposing, in which chemical and pharmacological
information on the drugs and pathophysiological knowledge
on the diseases are examined to guide the indication shift.
Due to the unprecedented rate at which scientific data are
generated today, computational data analysis approaches can
provide a valuable support to organize information and gain
knowledge which can in turn be used to guide repurposing
initiatives.

4.1. Bioinformatics-based drug repurposing

One of the general principles that supports computer-aided
drug repositioning is that health disorders linked to the same
or similar dysregulated or dysfunctional proteins may be
treated with the same drugs (disease-centric approach).
Bioinformatic applications, from sequence alignment to
domain similarity identification tools, are useful to reveal
unknown protein–protein similarities. While experts in a
particular disorder are logically familiarized with the function
and/or molecular structure of target proteins associated to
their specific matter of study, they might well ignore which
other diseases are linked to the same or closely related targets.
Several online public resources can be used to find curated
information on gene–disease associations. For instance,
DisGeNET [172] is a discovery platform that contains
hundreds of thousands of associations between genes and
diseases (including both Mendelian and complex disorders).
Other interesting resources include the Comparative
Toxicogenomics Database [173], which delivers information
about interactions between environmental chemicals and
gene products and their relationship to diseases; the Online
Mendelian Inheritance in Man [174], an online catalog of
human genes and genetic disorders; and PsyGeNET [175],
which focuses on links between genes and psychiatric disor-
ders. The simpler way of inferring gene or protein homology is
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probably through sequence similarity; however, homologous
sequences do not always share significant sequence similarity
but are clearly homologous based on statistically significant
structural similarity or strong sequence similarity to an inter-
mediate sequence [176]. Using different approaches to find
homologs could be convenient for a wider coverage; homol-
ogy identification based on sequence alignment can be com-
plemented by structural homology approaches based on
manual or automated comparison of 3D protein structures.
For instance, Vector Alignment Search Tool (VAST) [177]
detects similar 3D protein structures solely by geometric cri-
teria and can identify distant homologs which are lost by
sequence comparison. Its extension, VAST+, explores struc-
tural similarity on the level of biological assemblies or macro-
molecular complexes [178], an attractive possibility in the field
of epilepsy since several AEDs such as ligand-operated ion
channels are macromolecular complexes. Once homologous
with suspected similar functions and conserved determinants
of specificity have been found, the previously discussed public
resources compiling associations between gene/gene pro-
ducts and disease can be used to propose new medical uses
for existing drugs.

Connections between ligand promiscuity and binding site
and global structure similarity have been established by Haupt
and coworkers [179]. Their results suggest that binding site
similarity and global structure similarity can be used as criteria
to guide drug repositioning initiatives. Interestingly, many
algorithms have been developed to identify, in an automated
manner, similarities between binding sites (see reference
[180]). Connectivity mapping is another bioinformatics
approach that can prove helpful to guide drug repurposing
[85]. By application of this approach, Zhuo et al. recently
revealed that valproate is able to reverse acquired erlotinib
resistance of lung cancer [181]. Likewise, Dudley and cow-
orkers discovered that topiramate is a potential therapy for
inflammatory bowel disease [182]. It is still to be seen if this
methodology will prove useful to assist repurposing in the
opposite direction, i.e., to detect drugs from other therapeutic
classes which could be useful to treat epilepsy.

4.2. Cheminformatics-based drug repurposing

The most common cheminformatic-based drug repositioning
approach involves virtual screening campaigns in which the
screened chemical repository/database is focused on
approved, discontinued, abandoned, and/or investigational
drugs. The methods used in cheminformatic-based drug repo-
sitioning are thus classified in the same way that for general
virtual screening approaches [183]. DrugBank and Sweetlead
[184,185] are excellent resources to carry out in silico drug
repurposing: they compile approved, discontinued, and inves-
tigational drugs from the FDA and other regulatory agencies.
It was recently highlighted that the importance of bioactiva-
tion in the context of in silico drug repurposing campaigns
might have been underestimated [186,187]. Since around 10%
of the known ‘drugs’ are in fact unintended or intended
prodrugs [188], it is advised to explicitly consider possible
active metabolites of the potentially repurposed compounds
during the screening protocol.

A different and conceptually interesting approach has been
presented by Wu and coworkers [189], in line with previous
work by Keiser and collaborators [190,191]. The general idea
behind their studies is that different therapeutic indications
could be related if each of them includes chemically similar
drugs. This approach provides a rational basis to decide which
pairs of therapeutic classes are more favorable to explore
possible cross-repurposing.

A current trend in computer-aided drug repurposing con-
sists in integrating large volumes of heterogeneous types of
data (e.g. experimental and predicted, chemical similarity, and
protein similarity) into large-scale drug protein networks or
even drug–protein–disease networks [192–194]. Small-scale
application of the previous concept led to the identification
of the anticonvulsant effects of artificial sweeteners cyclamate
and acesulfame [195,196], which in turn allow identifying the
anticonvulsant effects of natural sweeteners (steviol glyco-
sides) [197]. Saccharin and cyclamate have also shown selec-
tive and potent inhibitory effects on one carbonic anhydrase
VII, a putative AED target [12,198]. Large-scale networks pro-
vide similar possibilities, but in a more automated, high-
throughput manner.

5. Expert opinion

New-generation antiepileptic agents have failed to produce a
significant improvement in the efficacy of AEDs, with about
one-third of the patients still failing to attain a seizure-free
condition. Despite recent authoritative opinions on the poten-
tial contribution of network-based approaches to the devel-
opment of more efficacious antiepileptic treatments, these
considerations have been scarcely translated into novel drug
candidates, unlike what happened in other complex diseases,
such as neurodegenerative conditions. While it is true that the
impact of some recently approved highly selective agents
(perampanel and brivaracetam) on the overall success of phar-
macologic antiepileptic treatment has still to be seen, our
opinion is that there is a need to increase the presence of
the network pharmacology philosophy in the AED discovery
field, integrating such way of thinking to the lately dominating
target-focused strategies. The ultimate goal in the field is to
develop therapeutic solutions that (a) restore the life quality of
the patients, which implies attaining an enduring seizure-free
state and addressing frequent comorbidities that threat the
social integration of the people with epilepsy and (b) limit or
reverse the progression of the disorder. Inexorably, these
challenges require a holistic approach at both the drug dis-
covery level and the treatment choice stage.

Besides the need to rethink the rationality behind the
current drug discovery paradigms, attention should also be
paid to a couple of additional issues. First, current drug resis-
tance hypotheses have to date not been fully exploited for
drug development either. Second, computer-assisted drug
discovery campaigns related to epilepsy are scarce in compar-
ison with other diseases.

We have discussed four strategies to incorporate a network
pharmacology perspective in the field of computer-aided AED
discovery: tailored multi-target agents; gene signature compar-
ison; examining the suitability of ‘the more potent the better’
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paradigm as selection criteria at the AED screening stage; and
building QSAR models based on biological responses emerging
from phenotypic models, with emphasis on epilepsy models
and novel seizure models associated to novel mechanisms of
action. When seeking for multifunctional therapeutic answers, it
is highly relevant to consider other criteria (e.g. possible impact
on comorbidities) besides seizure control when selecting exist-
ing therapeutic agents and designing new ones.

The application of some of the previous innovative
approaches (in particular, the tailored multi-target approach)
is presently hindered by our incomplete knowledge of the
underlying causes of epilepsy and the molecular basis of epi-
leptogenesis, an obstacle that is stressed by our difficulties to
differentiate epilepsy causes from effects. We must also take
into consideration that epilepsy encompasses a wide range of
disorders, and one possible answer to generate more effica-
cious therapeutic alternatives could well involve focusing on
particular types of epilepsy (a growing trend in the field)
instead of searching broad-spectrum drugs. Facing this chal-
lenge, however, would also ideally require a fine knowledge
on the specific mechanisms that lead to onset and progression
of each type of epilepsy. How can we expect to design effec-
tive agents if the specific molecular and cellular mechanisms
behind the pathophysiology of the epilepsies are still unclear?
If adopting the designed multi-target approach, how shall we
decide, on a rational basis, on the suitable combination of
targets that will result in a better therapy?

In regard to current refractory epilepsy hypotheses, multi-
target agents seem as plausible solutions to the network and
target hypotheses, whereas the design of AEDs that are not
recognized by ABC transporters appears as a reasonable alter-
native to approach the transporter hypothesis, seemingly con-
stituting a safer strategy than add-on therapies based on
transporter inhibitors. Ensemble learning, nonlinear techni-
ques, and locally weighted methods are interesting computa-
tional approximations to deal with the polyspecificity of those
anti-targets; in turn, classification models are probably good
solutions to address the high inter-laboratory variability of
experimental data from transport assays.

Finally, we would like to draw the reader attention to the
fact that, while many AEDs have been successfully repurposed
for other therapeutic indications (and many more indication
expansions for AEDs seem on the way), the opposite direction
has not been explored with equivalent enthusiasm. There is
abundant evidence supporting two-way systematic relation-
ships between therapeutic classes, representing interesting
drug repurposing opportunities. Accordingly, the time may
have come to approach the exploration of other drug classes
for their potential as antiepileptic treatments.

Hopefully, as the impact of novel AEDs is examined and the
epilepsy community incorporates modern drug discovery stra-
tegies, the next few years will bring a reformulation of the way
in which AED development is approached, enhancing the
probability to achieve a better therapeutic outcome.
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