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Glycosyltransferase complexes improve glycolipid synthesis
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ABSTRACT

The synthesis of gangliosides GM3 and GD3 is carried out by the successive addition of sialic acid
residues on lactosylceramide (LacCer) by the Golgi located sialyltransferases Sial-T1 and Sial-T2,
respectively. CHO-K1 cells lack Sial-T2 and only express GM3. Here we show that the activity of
Sial-T1 was near 2.5-fold higher in homogenates of CHO-K1 cells transfected to express Sial-T2
(CHO-K152"2) than in untransfected cells. The appearance of Sial-T1 enzyme or gene transcription
activators or the stabilization of the Sial-T1 protein were discarded as possible causes of the activa-
tion. Sial-T2 lacking the catalytic domain failed to promote Sial-T1 activation. Since Gal-T1, Sial-T1
and Sial-T2 form a multienzyme complex, we propose that transformation of formed GM3 into
GD3 and GT3 by Sial-T2 in the complex leaves Sial-T1 unoccupied, enabled for new rounds of LacCer
utilization, which results in its apparent activation.

© 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Glycolipid oligosaccharides are synthesized in the Golgi appara-
tus by a complex membrane-bound machinery formed by glycosyl-
transferases, sugar nucleotide transporters, and ceramide bound
acceptors [1]. Glycolipid glycosyltransferases form multienzyme
complexes [2-6] that may modify the activity of partners of the
complex [5,9], or the sub cellular localization of the participating
enzymes [7-9]. At least two complexes of ganglioside glycosyl-
transferases have been described in Chinese Hamster Ovary
(CHO)-K1 cells, one formed by Gal-T1, Sial-T1, and Sial-T2 [10]
and another by Gal-T2 and GalNAc-T, of more distal Golgi location
[2]. In this work we examined if the presence of Sial-T2 in the
complex formed by Gal-T1/Sial-T1/Sial-T2 affects the activity of
the preceding enzyme (Sial-T1).

2. Materials and methods
2.1. Cell culture and transfection

CHO-K1 cells (ATCC, Manassas, VA) (wt) and clones of CHO-K1
cells that stably expresses full-length chicken SialT2-HA
(CHO-K159-T2 cells) [11] or the N-terminal domain of Sial-T2
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(CHO-K15™N cells) were grown in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal calf serum, 100 pig/ml peni-
cillin, and 100 pig/ml streptomycin.

2.2. Determination of ganglioside glycosyltransferase activities and its
synthesized products

Sial-T1 activity was determined essentially as described [12] in
homogenates of CHO-K1"* and CHO-K1513""2, Briefly, the incuba-
tion system contained, in a final volume of 30 pl, 400 pM LacCer,
100 uM CMP-[>H]NeuAc (250,000 cpm; sp. act. 33 cpm/pmol),
20 mM MnCl,,1 mM MgCl,, 20 pg of Triton CF54/Tween 80 (2:1
w/w), 100 mM sodium cacodylate-HCI buffer (pH 6.5), and cell ex-
tract (40 pg of protein). Sial-T2 activity was determined in the
same incubation system except that 400 uM GM3, instead of
LacCer, was the acceptor. Incubations were performed at 37 °C
for 90 min. Under these conditions the incorporation into LacCer
was linear with time and protein concentration. Samples without
exogenous acceptor were used to correct the incorporation into
endogenous acceptors. Reactions were stopped with 1 ml of 5%
(w/v) trichloroacetic acid/0.5% phosphotungstic acid, and the
radioactivity incorporated into lipids was determined by liquid
scintillation counting. For high performance TLC (HPTLC) analysis,
lipids were extracted with 1 ml of chloroform: methanol (2:1 v/v),
the extract passed through Sephadex-G25 column, the solvent
evaporated and glycolipids separated using as solvent chloro-
form:methanol (4:1 v/v) in a first run up to two-thirds of the plate
and chloroform:methanol:0.2% CaCl, (60:36:8 v/v) in a second run
up to the front of the plate. Radioactivity in chromatograms was
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recorded either by phosphorimaging or by exposure to radio-
graphic films. Densitometric quantification of X-ray plates was
done using Image] software (National Institute of Health, USA).

2.3. Semi-quantitative RT-PCR

Total RNA was purified from CHO-K1"* and CHO-K15""2 cells
using the “illustra RNAspin® Mini Kit” (GE Healthcare Biosciences,
Pittsburgh, PA, USA), and total mRNA with “PolyATtract® System
1000” (Promega Corporation, WI, USA). Total mRNA was used for
total cDNA synthesis using oligo dT as primers for the reverse tran-
scription reaction using T7 reverse transcriptase. Fragments for
Sial-T1 and B-actin genes were amplified by PCR using specific
primers and the synthesized cDNA as template. PCR conditions
were set up and the optimal numbers of cycles for each of tran-
scripts were defined. PCR reaction products were analyzed by aga-
rose gel electrophoresis and quantified using the Image] software.
Raw quantifications were normalized to the level of B-actin
transcript.

3. Results
3.1. Sial-T1 activity increases in cells expressing Sial-T2

In preparations from CHO-K1 cell clones that stably express dif-
ferent glycosyltransferases we noticed that in those from clones
stably expressing Sial-T2 (CHO-K1%1™2 cells) the activity of Sial-
T1 towards exogenous LacCer was increased near 2.5-fold with re-
spect to untransfected CHO-K1"* cells (Table 1).

Among several different possibilities to explain this observation it
was considered that the synthesis of new glycolipid products due to
the stable expression of Sial-T2 could affect positively the membrane
microenvironment of Sial-T1. To examine this possibility both CHO-
K1"tand CHO-K1%2"™2 cells were grown for four days in the presence
of 1.2 uM of the inhibitor of GlcCer synthase bp,i-threo-1-Phenyl-
2-hexadecanoylamino-3-pyrrolidino-1-propanol-HCl (P4). Under
these culture conditions the synthesis of glycolipids and gangliosides
is blocked and cell membranes are essentially devoid of them, as pre-
viously shown [12]. Incorporation of sialic acid into endogenous lipid
acceptors in P4 treated cells decreased to near background levels, as
expected from the overall depletion of sialic acid acceptor glycolipids
in Golgi membranes (Table 1). However, the Sial-T1 activity towards
exogenous LacCer was still higher (about 1.8-fold) in P4 treated CHO-
K152 cells than in P4 treated CHO-K1"* cells, thus making less
probable that Sial-T1 activation was due to the presence of some gly-
colipid activator in CHO-K151#"12 cells. It was also considered that
some soluble activator of Sial-T1 could have been formed in

Table 1

CHO-K1%2-"2 cells. This possibility was discarded because upon mix-
ing equal parts of CHO-K1"* and CHO-K1%"™ cell homogenates the
activity determined was essentially the sum of the activities of the
mixed parts (Table 1); in case of presence of such an activator (in
excess) the activity in the mixture should have been higher than the
sum.

3.2. Sial-T1 mRNA levels in CHO-K15%"™2 cells are comparable to those
in CHO-K1"* cells

To analyze the possibility of a specific transcriptional activation
of Sial-T1 genes by the expression of Sial-T2, the level of Sial-T1
transcripts was determined in CHO-K1"* and CHO-K1532 cells
by RT-PCR using specific primers. Fig. 1 shows that Sial-T1 tran-
script levels in CHO-K153"T2 cells were not higher but rather were
slightly lower than in CHO-K1"* cells, thus discarding the possibil-
ity that a transcriptional activation was the main cause for the ob-
served increase of Sial-T1 activity.

3.3. Sial-T1 stabilization is not the cause for its increased activity

Transfected Sial-T2, by participating in the formation of a com-
plex with Gal-T1 and Sial-T1 [10], may have increased the Sial-T1
half life and hence the enzyme pool size. To approach this possibil-
ity, CHO-K1"* and CHO-K151"T2 cells were cultured in the absence
and presence of 60 pg/ml of cycloheximide during 3 h before Sial-
T1 activity determination. This time approximates the half life
(3 h) of a B galactoside o sialyl transferase from a rat hepatoma cell
line [13]. Although the incorporation into endogenous acceptors
dropped to 53% and 49% in cycloheximide treated CHO-K1"* and
CHO-K1513-T2 cells, respectively, the activity of Sial-T1 decreased
only about 10% but maintaining the difference in activity in favor
of CHO-K153"T2 cells already shown in Table 1 (results not shown).
This result indicates that stabilization of Sial-T1 is not a main cause
for its increased activity in cells expressing Sial-T2.

3.4. The N-terminal domain of Sial-T2 is unable to activate Sial-T1

Gal-T1, Sial-T1 and Sial-T2 form a multi-enzyme complex and
their N-terminal domains (Ntds) are involved in the formation of
the complex [10]. To analyze if complex formation per se promotes
the increased activity of Sial-T1, a clone of CHO-K1 cells stably
expressing the Ntd of Sial-T2 (CHO-K15™V*%) was generated and
Sial-T1 activity was determined in CHO-K1"!, CHO-K15-™? and
CHO-K15™Nt cells, Surprisingly, the Ntd of Sial-T2 did not activate
Sial-T1 (Fig. 2), indicating that the Sial-T2 C-terminal, lumenal
domain containing the catalytic domain is required for the

In vitro incorporation of sialic acid into endogenous glycolipid acceptors and into LacCer (Sial-T1 activity) by homogenates from CHO-K1"* and CHO-K1%3"™2 cells grown in the

presence or absence of P4.

Cell clone and condition

Sialic acid incorporation (pmol mg protein h™!) into

Endogenous acceptors? Endogenous acceptors + LacCer® LacCer®?
CHO-K1"t 1103 235423 125+£22
CHO-K151-12 2724 576 +39 304 +38
CHO-K1"* + P4 501 256 + 28 205 +22
CHO-K15312 4 pg” 41+2 410+45 365 +47
CHO-K1"t
CHO-K151al-12* 218+ 11 45415 236+ 15

After 90 min of incubation at 37 °C, the radioactivity of >H-sialic acid incorporated into the lipid fraction was determined as indicated under the Section 2 section. The
incorporation into endogenous glycolipids in samples run in parallel in the absence of added LacCer (a), but in otherwise identical conditions was discounted from that in
samples with added LacCer (b) to calculate the incorporation into exogenous LacCer (b-a).

" Homogenates from cells cultured 4 days in the presence of P4 in the culture medium.

* Incubates contained half volume of each CHO-K1** and CHO-K15"™? cell homogenates.
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Fig. 1. Sial-T1 mRNA level in CHO-K1%9"2 cells is comparable to that in CHO-K1**
cells. (A) Fragments of the sequence of Sial-T1 were amplified by PCR using specific
primers as indicated under Section 2. Housekeeping actin gene was used as a DNA
loading control. (B) The amplified fragments in (A) were quantified by densitometry
using Image] software. Results are mean + SD, for three independent experiments.

activation. This result also minimizes the possibility that we are
dealing with a particular cell clone having intrinsically elevated
activity of Sial-T1.

3.5. Sial-T1 activity products in CHO-K1%92 cells

Considering that Gal-T1, Sial-T1 and Sial-T2 participate of a
multi protein complex, the possibility that we were measuring
the activities of both, Sial-T1 and Sial-T2 in the same reaction assay
was examined by analyzing the reaction products. The main prod-
uct of sialylation of endogenous acceptors was exclusively GM3 in
CHO-K1™* cells but GM3 and GD3 in about the same proportion,
and trace amounts of GT3, in CHO-K15-2 cells (Fig. 3). In the pres-
ence of added LacCer, GM3 was the only radioactive product in
CHO-K1"t cells while in CHO-K15"2 cells 56% of radioactivity
was in GM3, 38% in GD3 and 6% in GT3 (Fig. 3). From the distribu-
tion of radioactivity in Fig. 3, the incorporation values of sialic acid
given in Table 1 and taking into account 1, 2 and 3 mol of sialic acid
per mol of LacCer in respectively GM3, GD3 and GT3, it was esti-
mated that the amount of LacCer converted into gangliosides in
CHO-K15T2 cells almost doubled that converted in CHO-K1%“t
cells (Table 2). These results indicate that Sial-T2 in CHO-K151-T2
cells can efficiently use the product of Sial-T1 (GM3) for further
sialylation reactions, passing through GD3 and ending in GT3.
However, the most noticeable observation emerging from this
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Fig. 2. The N-terminal domain of Sial-T2 fails to promote the increase of Sial-T1
activity. Sial-T1 activity was determined in CHO-K1%¢, CHO-K1%2"™? and in cells
expressing the N-terminal domain of Sial-T2 (CHO-K15™N cells) as described in
Section 2. Results are shown as mean + SD pmol of sialic acid/mg. prot h~!, for three
independent experiments.

result is that Sial-T1 was able to convert twice as much LacCer into
GM3 when working with co-expressed Sial-T2.

3.6. GM3 substrate of Sial-T2 may not be released to the reaction
medium

An interesting question emerging from the above results is how
GM3 formed by Sial-T1 is used by Sial-T2. Among different possi-
bilities, GM3 once synthesized may be released to the reaction
medium and Sial-T2 may use it to synthesize GD3/GT3 as if it were
provided exogenously to the reaction mixture. Alternatively, taking
into consideration the multi-protein organization of Gal-T1/Sial-
T1/Sial-T2 it may occur that de novo synthesized GM3 is kept
bound to the complex and in this way be channeled to the synthe-
sis of GD3 and GT3 by Sial-T2. To discern between these possibili-
ties, Sial-T2 activity was measured in CHO-K15%2 cell
homogenates but in a reaction system containing the amount of
GM3 at the concentration it reaches when formed from LacCer
by the activity of Sial-T1 (0.34 uM). It is clear from the results in
Table 3 that adding the amount of GM3 formed from LacCer
(10.2 pmol) to the reaction mixture as GM3 source results in no
detectable formation of GD3/GT3. The simplest interpretation of
this experiment is that GM3 formed from LacCer in the assay has
been kept bound to the multienzyme complex and in this location
is taken by Sial-T2 (that is interacting with Sial-T1) to synthesize
GD3/GT3.

4. Discussion

The hypothesis of “cooperative sequential specificity” in multi-
glycosyltransferase systems [14] was experimentally demon-
strated for the first time in mammalian cells and in the
glycolipid pathway for GalNAc-T and Gal-T2 [2], and for Gal-T1,
Sial-T1 and Sial-T2 [10]. For the case of the GalNAc-T and
GalT2N-terminal domains, Gal-T2 but not GalNAc-T form homo
complexes, and in the GalNAc-T/Gal-T2 heterocomplex the molar
ratio of the two enzymes is 1:2 [15].

Functional homo- and heteromeric complexes were described
for Golgi glycosyltransferases of the N- and O-glycosylation path-
way, with co-expression of GalT1l and ST6Gal-1 resulting in a
2.4-fold increase of GalT1 activity towards the acceptor ovalbumin
[16].
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Fig. 3. Chromatographic analysis of Sial-T1 assay lipid products. (A) Sial-T1 assays as those described in Table 1 but scaled up 2- to 4-fold were processed for separation by
HPTLC as indicated under Section 2. For each cell homogenate, radioactivity spotted in the chromatogram was 900 cpm and 2500 cpm for, respectively, samples minus (—) or
plus (+) LacCer. The radioactivity in lipid products was detected by autoradiography. (B), Densitometric quantification of radioactive bands in (A) using Image] software.

Table 2

Radioactive ganglioside species synthesized from exogenous LacCer by CHO-K1** and CHO-K1%®"2 cell clone homogenates.

Cell Clone Homogenate

Sial-T1 activity (pmol sialic acid incorporated .

mg of protein . h™!) into” Total LacCer converted””

GM3 GD3 GT3
CHO-K1** 125 ND ND 125
CHO-K157-12 170 116 18 234

" Values were calculated from the incorporation values given in Table 1 and the percentage distribution of radioactive species in the HPTLC shown in Fig. 3B.
" The amount of exogenous lactosylceramide converted was calculated considering a sialic acid:LacCer molar ratio of 1, 2 and 3 for, respectively, GM3, GD3 and GT3. ND: not

detected.

Table 3
Sial-T2 activity in CHO-K1%2"™2 cell clone homogenate at the concentration of GM3
formed from exogenous LacCer in the Sial-T1 assay.

Acceptor added Product formed in the assay

GM3 (Sial-T1 activity) GD3 (Sial-T2 activity)

pmol uM pmol uM
LacCer?® (400 pM)  10.2 034 29 0.1
GM3P (400 uM) - - 963.67 32.12
GM3€ (0.34 uM) - - ND -

ND: not detected.

@ Sial-T1 activity was determined in the conditions described in Section 2, and
the amount of GM3 and GD3 formed in the assay was determined after separation
of the lipid fraction by HPTLC as in Fig. 3.

P Sial-T2 activity was determined in the conditions described in Section 2 and
product formation (not shown) analyzed by HPTLC as in Fig. 3.

¢ Sial-T2 activity was determined in the conditions described in Section 2, except
that the acceptor GM3 was added at the concentration it reached in the Sial-T1
assay (a) (0.34 uM).

Sial-T2 works as a polysialyltransferase that use more effi-
ciently GM3 than GD3 to synthesize GD3 and GT3, respectively
[17]. CHO-K15"T2 cells stably expressing Sial-T2, show a glycolipid
pattern containing only GD3 and GT3, (Fig. 3) because they lack the
GalNACc-T necessary for elongation of the oligosaccharide [18].

Here we show that the activity of Sial-T1 in CHO-K153"12 cells
was about 2.5-fold higher than in CHO-K1"* cells. In a search for
probable causes of the activation it was found that the product of
the Sial-T1 activity was mainly the expected GM3 with CHO-K1"*
homogenate but similar proportions of GM3 and of GD3, and some
GT3, with the CHO-K15T2 homogenate. This suggested that GM3
synthesized by Sial-T1 was used as substrate by Sial-T2 to form
GD3 and some GT3. However, lowering the concentration of added
GM3 in the Sial-T2 assay to a concentration equivalent to the one

that it reached in the Sial-T1 assay resulted in undetectable forma-
tion of GD3 (Table 3). The simplest interpretation of this result is
that the product of Sial-T1 (GM3) do not leave the multienzyme
complex formed by Gal-T1/Sial-T1/Sial-T2, but remain bound to
it and used as substrate by Sial-T2 for a second and third sialylation
steps. Of course, this does not explain the consumption of twice
LacCer molecules in the Sial-T1 assay with CHO-K153T2 cell
homogenate (Table 2). In this respect, it may be hypothesized that
conversion of the GM3 formed by Sial-T1 into GD3/GT3 by Sial-T2
may facilitate the progression of acceptors and products along the
complex, leaving unoccupied the acceptor site in Sial-T1 for occu-
pancy with new acceptor LacCer molecules.

Several reports have described that complex formation between
glycosyltranferases improve the enzymatic activity of one of the
partners [2-5], but possible causes have not been analyzed. This
knowledge is necessary to better understand postrancriptional lev-
els of regulation of glycosyltransferase activities and hence of the
pattern of glycolipids expressed by different cells.
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