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Surprisingly, there is not a complete and general working theory for the ionic conduction on structurally dis-
ordered inorganic solids at present. In this context, lithium metasilicate glasses appear as paradigmatic and
they have been extensively used for investigation in order to identify the main ingredients for a working the-
ory of ionic conducting glasses. In particular among one of these main ingredients, the interaction among the
mobile cations appears relevant, especially after recent results showing the existence of preferred pathways
for ionic migration. We have performedMolecular Dynamics simulations on lithiummetasilicate to better un-
derstand the ion-ion interactions. We introduce a very useful tool developed by Harrowell and co-workers
(2004) [1] to study propensity to movement and the use of the Pearson's coefficient to characterize the corre-
lation among the different kinds of ion. Our study allows us to support – from an alternative point of view – the
idea of a landscape of energy for lithium ions with high propensity to movement (which eventually belongs to
a high propensity cluster as defined in our previous work) and strongly dependent on the interaction among
them. On the contrary, in the same window of time, these lithium ions do not strongly correlate with their
nearest oxygen ions.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Even taking into account the long story of experimental and theo-
retical work there is not a complete and acceptable theory for ionic
conduction in inorganic oxide glasses. To accomplish this task, it
seems at present that the main work to be done goes in the direction
of increasing the experimental and theoretical evidence, involving
the main potential ingredients to elaborate a working theory of ionic
transport.

Many of the ionic conducting glasses present universal behavior in
their dc and ac conductivity: on the one hand, the Arrhenius temper-
ature dependence of the dc conductivity and on the other hand the
fact that ac conductivity data can be scaled onto a master curve for
different temperatures. This universality strongly encourages the
research to find a universal mechanism for ionic conduction.

In this direction, and at least from a theoretical point of view, three
main lines of exploration appear as pertinent: the percolative transport
given by jumps over the random energy barriers, the (mobile) ion–ion
interaction/correlation and the interaction between the mobile ions
with the glassy matrix.

The percolative transport here refers to the hopping of a non-
interacting charge carrier having only nearest jumps allowed. In this
scenario, the distribution of activation energies represents the disor-
dered structure of glasses. Typicalwork in this directionmainly includes
i).
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the study of the universality of the a.c. conduction in disordered solids
done (among others) by Dyre [2], Svare et al. [3] and Hunt [4].

The second class of models – those mainly based on the ion–ion
interaction – has its extreme expression in the Coulomb gas lattice
model of Maass et al. [5]. This model shows that the Coulombic inter-
actions provide a mechanism for understanding the non-Debye relax-
ation mainly via the backward correlations among the subsequent
hop of the ions. These authors also show that the local structure disor-
der reinforces these backward correlations. A later extension of the
model is included in the work by P. Maass, M. Meyer and A. Bunde
[6] and confirms that the Coulomb interactions and structural disorder
are needed to find the typical dispersion behavior observed in
experiments.

The third class of models includes the interaction of the glassy
matrix and the traveling ions. The paradigmatic ones here are the Cou-
plingModel (CM) by Ngai [7] and the Jump RelaxationModel (JRM) in-
troduced by K. Funke [8]. The intrinsic nature of the Coupling Model
implies an interaction between ions and the glassy matrix: the moving
ion and the potential energy of the hosting site, but no microscopic
mechanical detail is included. The JRM is mainly based on the reorgani-
zation of the local environment of themoving ions and includes amath-
ematical description of the involved processes at the microscopic
scale. This model includes a mechanism for the Mixed Alkali effect
and yields a logarithmic dependence of the activation energy and the
charge carrier concentration, but this model is essentially limited to
the dc transport. The JRM has been the starting point for later modifica-
tions [9–11].
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In addition – and from a classical computational experiment of
Molecular Dymanics (MD) – the crudest evidence supporting the cou-
pling between ion and network dynamics is given perhaps by the
recent computational experiment of Sunyer et al. [12] in Na2O–4SiO2

and in (Li2O)x(SiO2)1 − x by Heuer et al. [13].
Moreover, using MD simulations it was shown for Li2SiO3 [14,15]

that the number density of sites is slightly greater than the number den-
sity of mobile ions. For these authors these results strongly suggest that
the macroscopic transport requires the existence of some cooperative
mechanism even including mobile vacancies [15]. More recently, Rao
et al. [16] and Montani et al. [17] have respectively shown in two
different ways the existence of preferred transport pathways.

In the present work we report our results on the ion–ion interaction
studied by using an alternative tool developed by Harrowell and
co-workers: the IC ensemble method [1]. The output from the IC meth-
od give us the adequate quantity to be studied (by using Pearson's coef-
ficient), that is: the ion displacement calculated at the time inwhich the
dynamics of the lithium ions becomes highly heterogeneous (t*). Our
procedure gives an alternative characterization of the ion dynamics
with respect to the existing previous ones in the literature, and, the
emerging results allow to reinforce the idea that a mechanism for
ionic conduction involving a cooperative movement among the lithium
ions should be highly probable.

2. The Molecular Dynamics simulations and calculations

Molecular Dynamics calculations were performed on a system
of 3456 particles (1152 Li, 570 Si and 1728 O) in the same way as in
our previous studies [17]. Briefly, the containing box ensures that the
density corresponds to the experimental density of the glass [18]. The
system Li2O–SiO2 we employed consists of a three-dimensional ensem-
ble of particles interacting by the pair potential of Gilbert–Ida type [19]
including the r−6 term:

Uij rð Þ ¼ qiqje
2

4πε0r
−
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The first term in Eq. (1) is the Coulomb interaction with the effec-
tive charge numbers qi. The second term is a dispersive interaction
and is present for interactions involving only oxygen ions. The last
term is a Born–Meyer type potential and takes into account the repul-
sive short-range interactions. The parameters of the potentials used
were derived on the basis of ab-initio molecular orbital calculations
by Habasaki [18].

The system was prepared by putting the atoms on a cubic box and
assigning to each atom velocities drawn from a Maxwell–Boltzmann
distribution corresponding to a temperature of 3000 K. The Verlet
Algorithmwith a time step of 1 fs was used to integrate the equations
of motion. Simulations were performed on a cubic box with periodic
boundary conditions using the LAMMPS package [20].

The system was then firstly equilibrated at 3000 K in a 2 ns run
using the NVE ensemble. Then, to reach the working temperature, it
was cooled down from 3000 K to its final temperature 700 K in 2 suc-
cessive cooling steps. Each cooling step (from 3000 K to 2000 K, and
from 2000 K to 700 K respectively) consists of a 2 ns run using a ther-
mostat to decrease the temperature linearly in the NPT ensemble.
Two intermediate periods of equilibration consisting of a 2 ns run in
the NPT ensemble were included at 2000 K and at 700 K to verify
no pressure and temperature drifts. After cooling the system, alternate
runs of 100 ps each in the NVE and NVT ensemble were successively
repeated to complete 2 ns. After that, the system was equilibrated in a
2 ns run using the NVE ensemble. Finally, after this carefully equilibra-
tion procedure, trajectories of 2 ns length were generated in the NVE
ensemble for analysis [17].
The calculated mean square displacement br2(t)> is defined as:
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where r
→

j tð Þ is the position vector of particle j at instant t and N is the
number of the j-particles. The non-Gaussian parameter α2(t) was
introduced by Rahman and it characterizes the deviation of the
dynamics from the Gaussian behavior and it is defined as:

α2 tð Þ ¼ 3
5

r4 tð Þ
D E
r2 tð Þ� �2 −1: ð3Þ

The time when α2(t) reaches its maximum value t* defines a time
interval [0,t*] in which the behavior of the system is dynamically het-
erogeneous [21,22]. This quantity is located roughly at the crossover
from the caging to the diffusive regime.

The Isoconfigurational Ensemble Method developed by Harrowell
and co-workers [1] was used through the present work. Briefly, a
series of equal length MD runs from the same initial configuration
is performed; that is, starting always with the same structure, but
with different initial particle momenta chosen at random from the
Maxwell–Boltzmann distribution at the appropriate temperature. In
this ensemble, the propensity of a particle for motion in the initial
configuration for a fixed time interval t, has been defined as [1]:

Δr2i
D E

IC
¼ r

→
i tð Þ− r

→
i 0ð Þ

��� ���2� �
ð4Þ

where r
→

i tð Þ− r
→

i 0ð Þ
��� ���2 is the squared displacement of particle i (in such

time interval) and b > indicates the average over the ensemble.

3. Results and discussion

As was pointed out in our previous work [17], lithium ion dynamics
reaches its diffusive regime at ca. 400 ps, whereas oxygen and silicon
ions remain localized even in the nanosecond scale. For lithium ions,
40 ps corresponds to the so called t* time, and it defines an interval
[0,t*] where their behavior is dynamically heterogeneous. It can be
seen that in a logarithmic plot of the mean square displacement
(MSD) vs time, t* is roughly located at the crossover from the caging
to the diffusive regime of lithium ions (of course, the “cage” effect
over lithium ions is due to their nearest oxygen ions) [17].

Fig. 1 presents the propensities for oxygen atoms at 4 ps and 40 ps
respectively. Propensity is heterogeneously distributed over the differ-
ent ions, with some of the oxygen ions having values larger than the
mean value. Besides, it is also clear from this figure that propensities
for oxygen ions remain unchanged even at 40 ps, i.e. the time when
the dynamics of lithium ions abandon the caging regime [17].Moreover,
propensities in both time regimes are similarly distributed, or in other
words, the long-time behavior (40 ps) copies the short-time behavior
(4 ps) suggesting that longer time dynamics of these oxygen atoms is
implicit in the short-time dynamics. The mean value for the propensity
at 40 ps is equal to 0.14 Å2.

Next, we consider the high propensity lithium ions (LiHPs) which
are defined as those lithium ions that at time t* have a displacement
greater than one half of the distance of the first maximum of the radi-
al distribution function for Li–Li: ca. 1.4 Å [23]. In our previous paper
[17] we showed the formation of clusters of high propensity (HPC)
which put into evidence the existence of extended topological regions
of the structure with a high ability to promote the faster motion of
lithium ions. Those regions of the sample can be detected at very
low times and will remain even at the diffusional scale (t = 400 ps).

Now, we define three limiting values for the oxygen ion propensity:
“low” for propensity values lower than 0.8 Å2, “medium” for propensity



Fig. 1. Propensity (in Ǻ2) of a collection of 240 oxygen ions chosen at random, at the time interval [0,t*].

Fig. 2. a) Distribution of the nearest bridging oxygen ions (BO) for LiHPs (red bar) and
LiLPs (black bar). Propensity of the oxygen ions is grouped as “low”, “medium” and
“high” respectively. b) Distribution of the nearest non-bridging oxygen ions (NBO)
for LiHPs (red bar) and LiLPs (black bar). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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values between 0.8 Å2 and 0.16 Å2, and “high” for propensity values
larger than 0.16 Å2. Then, we will explore the qualitative behavior of
the oxygen ions surrounding lithium ions. In Fig. 2(a) we show the pro-
pensity of the nearest oxygen ions for “high” propensity and “low” pro-
pensity lithium ions. In this plot we take the LiHPs as defined above
and the same number of lithium having the lowest propensity values
(the LiLPs).

In other words: from a list ranging from the highest to the lowest
propensity for the lithium ions, we take the same number of lithium
ions nLi from the top and from the bottom of the list (of course, the
value of nLi is dictated by the definition of LiHP given above). In
Fig. 2(a) we plot the results for those oxygen ions considered as
Bridging Oxygens (BO) whereas in Fig. 2(b) the same analysis is
performed for the Non Bridging Oxygens (NBO). We learn from
Fig. 2a and b that, in both cases, lithium ions having highest values
of propensity are preferentially surrounded by oxygen atoms of
high propensity, whereas lithium ions, having the lowest values of
propensity, are preferentially surrounded by oxygen ions having
low values of propensity. Again, we remark this important result
here: for the highest (relevant) values of oxygen ion propensity, the
qualitative difference between those oxygen surrounding LiHPs and
those oxygen surrounding LiLPs becomes evident.

This result suggests that fluctuations of the oxygen ions are neces-
sary to enable the lithium ions (LiHPs) pass from its present position
to a next available position, which in terms of the energy landscape,
means that these fluctuations are reflected by fluctuations of the
saddle energy [13].

Next we consider the Mean Square Displacement (MSD) of lithi-
um ions and its relationship with the displacement of the oxygen
ions. To do that we proceed in the same manner as Sunyer et al.
[12]. We generate three trajectories in which the mass of the oxygen
atoms has been artificially changed. Of course, the mass of the ions
affects their displacement in the time unit and consequently, the infi-
nite value for the oxygen mass keeps the oxygen atoms fixed.

In Fig. 3 we show the MSD of lithium ions versus time, for three
different masses of the oxygen atom: 16, 5000 and infinite, respec-
tively. From this figure we learn that the diffusion of lithium ions
involves a necessary oxygen ion dynamics.

Moreover, we have shown in Fig. 6 of our previous work that
LiHPs are responsible for the increase of the global MSD to its final
values, that is for the relevant window of time (from 0 to 400 ps)
the MSD of the LiHPs reaches the diffusive behavior (slope 1 in that
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Fig. 3. The mean square displacement of lithium ions for the three different values of
the oxygen mass.
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figure) well before the 400 ps, whereas the LiLPs do not [17]. It is
also clear from the same figure that even in the case of a kind of
exchange – if any – between these two populations (those LiHPs
belonging to the HPC and the LiLPs respectively), it is irrelevant in
the time window of interest.

Then, in light of these strong evidence, we can conclude that even
when the displacement of oxygen ions is irrelevant compared with
the lithium ion displacement (as is shown in Fig. 1 of our previous
work [17]), it is necessary for the diffusion of lithium ions. When
oxygen mass is infinite – or equivalently the oxygen ions remain
fixed in their positions – the mobility of lithium ions goes dra-
matically to zero.

Now we will analyze the kinetic correlation between lithium ions
with the glassy matrix or equivalently with its coordinated oxygen
ions. To do that we will use the Pearson's correlation coefficient, K
[24,25]. The value of K lies in the [−1,1] interval. It takes the value
of 1 in the case of a “complete positive correlation” and on the con-
trary, it takes the value of−1 for the case of a “complete negative cor-
relation”; a value near zero indicates that the involved variables are
uncorrelated.For our particular case, we consider two particles (i, j)
of the system separated by a distance rij and calculate their mean
Fig. 4. The radial distribution function for lithium–lithium ions, and
displacement in an isoconfigurational (IC) ensemble: bri>IC and
brj>IC respectively, and then compare in each w-trajectory of the
ensemble their displacement with respect to the corresponding
mean value. Of course this analysis is performed at a given time; in
our case, the relevant value is 40 ps. Then, for the two particles i, j
separated at a given distance dij, in the w-ensemble, the analytical
expression of K takes the following form:

Ki−j rij
� �

¼

XNIC

w¼1

rih iIC−ri wð Þ	 

: rj
D E

IC
−rj wð Þ

� �
Si:Sj
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where NIC is the total number of trajectories in the isoconfigurational
ensemble (typically 1000 trajectories) and Si and Sj are the standard
deviation of the displacement in the calculated trajectory of the en-
semble. In the following discussion we will consider the summation
index “i” over lithium ions, whereas the index “j” addresses the lithi-
um ions or oxygen ions depending on the correlation under study,
namely Li–Li correlation or Li–O correlation.

In Fig. 4we show the radial distribution function for lithium–lithium
ions, and KLi–Li, both as a function of the distance from the reference
ion rij. In this figure we have discriminated KLi–Li for both LiHPs and
LiLPs respectively. It becomes clear from this figure that for LiHPs the
higher values of KLi–Li are concentrated under the first peak of the g(r)
and then we can conclude from this figure that for lithium–lithium
interactions, correlation is mainly restricted between the nearest ions.

Then using the Pearson's coefficient we will study the lithium ion
correlation with its nearest lithium and oxygen ions respectively. As
previously, we will define the nearest neighbors as all these ions (lithi-
um or oxygen) standing at a lower distance than the one corresponding
to the first peak in the respective partial pair distribution function (Li–Li
or Li–O). Then, we calculate the mean value of the Pearson's coefficient
for each i-lithium ion: 〈Ki〉Li and 〈Ki〉O respectively, as follows:

Kih ij ¼

XNj−NN

j¼1

Ki−j

Nj−NN
ð6Þ
KLi–Li, both as a function of the distance from the reference ion.



Fig. 5. The calculated Ki − j
⁎ as a function of lithium ion propensity.
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where j is lithium or oxygen, and Nj–NN is the number of the nearest
j neighbors to the i-ion.

Now we can calculate a mean value of correlation to the nearest
ions as follows:

K j ¼

XNLi

i¼1

Kih ij
NLi

ð7Þ

where NLi is the number of lithium ions, and the index j refers to the
chosen nearest species: lithium or oxygen.

Now, using Eqs. (6) and (7) we calculate the particular cases of
interest:

K�
Li−Li ¼

Kih ij
K j

ð8Þ

(where i and j refers to the lithium ions) and,

K�
Li−O ¼ Kih ij

K j

ð9Þ

(where i refers to lithium ions and j to oxygen ions).
In Fig. 5 we show the calculated Ki − j

⁎ as a function of lithium ion
propensity. The vertical dashed line in the figure indicates the thresh-
old value of propensity from which a lithium ion is to be considered a
LiHP. All Ki − j

⁎ values above 1 in Fig. 5 are higher than the average. In the
inset of Fig. 5 we show the relative distribution below and above the
average of Ki − j

⁎'s. Then we learn from this figure that LiHPs (again:
those lithium ions having a propensity value higher than 1.96 Å2 and
responsible for the increase of the global MSD to its final value) have a
marked tendency to be correlated with its nearest lithium ions (black
points on the top right quadrant). On the contrary, the tendency of
the nearest oxygen ions is not relevant.

From Fig. 5, we learn that about 85% of the high mobile LiHP is cor-
related with their first neighbors whereas the remaining 15% does
not. Then, if tacking into account that the number density of sites is
slightly greater than the number density of mobile ions [14,15], our
findings allow us to support in an alternative way that the idea of a
mechanism for ionic conduction involving a cooperative movement
among the lithium ions should be highly probable. In this direction,
a recent paper by Heuer et al. suggest to better look at the vacancy
dynamics rather than that of mobile ions [26].

4. Conclusion

We have studied the correlation among lithium ions using an al-
ternative way of employing the IC ensemble method. The emerging
results from the ICmethod give us the adequate quantity to be studied:
the displacement calculated at t* (the time inwhich the dynamics of the
lithium ions becomes highly heterogeneous).

Our findings allow us to suggest that a mechanism for ionic con-
duction should involve a cooperative movement among the lithium
ions should be highly probable (but perhaps not exclusive).

But, on the contrary, the LiHPs (which eventually can belong to a
HPC as defined in our previous work [17]) does not strongly correlate
with their nearest neighbor oxygen ions. The existence of such a het-
erogeneous dynamics for lithium ions is due to their different dynam-
ical environments which are governed by the oxygen ion fluctuations.
In fact – and as was pointed out previously – fluctuations of the oxy-
gen ions are necessary to enable the lithium ions (LiHPs) pass from its
present position to a next available position, which in terms of the
energy landscape means that these fluctuations are reflected by fluc-
tuations of the saddle energy [13].
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