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� Use of 2D-LDA for extraction of clas-
sification features from three-way
chemical data.

� Case studies involving simulated data
and real-life data sets: Parma ham
and edible vegetable oils.

� Use of surface autofluorescence and
total synchronous fluorescence
spectrometries.

� Better results compared with the use
of spectral data with no feature
extraction.

� Better results compared with PLS
Discriminant Analysis applied to the
unfolded data, as well as PARAFAC-
LDA and TUCKER3-LDA.
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The two-dimensional linear discriminant analysis (2D-LDA) algorithm was originally proposed in the
context of face image processing for the extraction of features with maximal discriminant power.
However, despite its promising performance in image processing tasks, the 2D-LDA algorithm has not yet
been used in applications involving chemical data. The present paper bridges this gap by investigating
the use of 2D-LDA in classification problems involving three-way spectral data. The investigation was
concerned with simulated data, as well as real-life data sets involving the classification of dry-cured
Parma ham according to ageing by surface autofluorescence spectrometry and the classification of
edible vegetable oils according to feedstock using total synchronous fluorescence spectrometry. The
results were compared with those obtained by using the spectral data with no feature extraction, U-PLS-
DA (Partial Least Squares Discriminant Analysis applied to the unfolded data), and LDA employing
TUCKER-3 or PARAFAC scores. In the simulated data set, all methods yielded a correct classification rate
of 100%. However, in the Parma ham and vegetable oil data sets, better classification rates were obtained
jo).
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by using 2D-LDA (86% and 100%), compared with no feature extraction (76% and 77%), U-PLS-DA (81%
and 92%), PARAFAC-LDA (76% and 86%) and TUCKER3-LDA (86% and 93%).

Published by Elsevier B.V.
1. Introduction

The use of analytical techniques that record a data matrix for
each sample has become increasingly more common, as the result
of advances in analytical instrumentation and methods. Examples
include EEM (Excitation - Emission Matrix fluorescence spectros-
copy), as well as hyphenated techniques such as HPLC-DAD (High
Performance Liquid Chromatography - Diode Array Detector), GC-
MS (Gas Chromatography e Mass Spectrometry), and LC-MS
(Liquid Chromatography e Mass Spectrometry), among others
[1e3]. Such techniques are able to provide adequate sensitivity to
the analytes even in the presence of interferents, owing to the large
amount of acquired information. However, the complexity of the
data structure may pose difficulties for its interpretation. In this
context, several chemometric tools have been employed in the
literature for identification or quantification of chemical species
[4e7], as well as classification of samples [8e12].

A usual approach for the classification of data matrices is based
on the use of algorithms for data decomposition or unfolding, in
order to obtain features that can be used with standard techniques
for multivariate classification. For instance, PARAFAC (Parallel Fac-
tor analysis) [8] scores have been employed for classification of
Sherry vinegar samples according to ageing using PLS-DA (Partial
Least Squares - Discriminant Analysis) and SVM (Support Vector
Machines) [9], characterization and classification of honey samples
using PLS-DA [10], and discrimination of bacteria using LDA (Linear
Discriminant Analysis) [5]. Another example consists of the use of
NMF (Non-negative Matrix Factorization) [11] for compression of
EEM data in order to authenticate olive oil samples employing LDA
models [12].

It may be argued that the handling of two-dimensional analyt-
ical data could benefit from the use of image processing algorithms,
which are also concerned with 2-D data structures. An interesting
approach for image classification is the two-dimensional linear
discriminant analysis (2D-LDA) algorithm, which was originally
proposed by Li et al. [13] in the context of face image processing.
This algorithm is based on the extraction of feature vectors from the
data matrices by using projection vectors optimized with respect to
the Fisher criterion [14e16]. Similarities between different images
can then be evaluated in terms of the distance between the cor-
responding feature vectors. Similar strategies were also proposed
by Liang et al. [17] and Cho et al. [18]. One of themain advantages of
2D-LDA consists of the reduction in the dimension of the data
matrices while preserving relevant information for classification
purposes.

Despite its promising performance in image processing tasks,
the 2D-LDA algorithm has not yet been employed in applications
involving chemical data. In order to bridge this gap, the present
paper presents an investigation of the use of 2D-LDA in classifica-
tion problems involving three-way spectral data. A brief review of
2D-LDA is initially presented, followed by a description of a
distance-based procedure to classify test data on the basis of 2D-
LDA features. The investigation of 2D-LDA performance in chemical
classification tasks is then carried out by using three data sets,
involving: (1) simulated EEM data, (2) surface autofluorescence
spectra of dry-cured Parma ham samples and (3) synchronous
fluorescence spectra of edible vegetable oils. The results are
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compared with those obtained by the distance-based procedure
without feature extraction, as well as PLS-DA applied to the
unfolded data (U-PLS-DA), and LDA employing either PARAFAC or
TUCKER-3 [19] scores.

2. Background and theory

2.1. Notation

Matrices, vectors and scalars are represented by boldface capi-
tal, boldface lowercase and italic (either capital or lowercase) let-
ters, respectively. The T and �1 superscripts denote the transpose
and the inverse of a matrix. The dimensions of matrices and vectors
are indicated within parentheses. The (i, j) element of a matrix X is
denoted by Xi,j.

The L classes involved in the problem are indicated by C1, C2, …,
CL. It is assumed that a training set of N matrices Xk (k ¼ 1, 2, …, N)
corresponding to samples of known classification are available for
use in the 2D-LDA algorithm. The index set of the Np training
samples belonging to the pth class will be denoted by Ip, with p ¼ 1,
2,…, L. The notation

P
k2Ip

Xk will be employed to indicate the sum of

the matrices corresponding to the samples in the pth class.
The notation trace(M) indicates the trace of a square matrix M,

i.e. the sum of its diagonal elements. By using this notation, the sum
of squares of the elements of a matrix X (m� n) can be expressed as
traceðXTXÞ ¼ Pm

i¼1
Pn

j¼1ðXi;jÞ2.

2.2. Two-dimensional linear discriminant analysis (2D-LDA)

2.2.1. Determination of the projection vectors
LetX be an (m� n) matrix of data recorded for a given sample. In

the case of EEM data, for example, the number of rows (m) and
columns (n) correspond to the number of emission and excitation
wavelengths, respectively. A feature vector y (m � 1) is obtained by
multiplying X by a projection vector b (n � 1), as

y ¼ Xb (1)

The ith component of vector y is given by the scalar product be-
tween the ith row of matrix X and the projection vector b, i.e.

yi ¼
Xn
j¼1

Xi;jbj (2)

In the case of EEM data, for example, the ith row of X corre-
sponds to the excitation spectrum for the ith emission wavelength,
as illustrated in Fig. 1.

An optimal projection vector bopt can be obtained by maxi-
mizing Fisher's linear projection criterion [14e16] as

bopt ¼ argmax
b

bTSBb

bTSWb
(3)

where SB (n � n) and SW (n � n) denote the between-class and
within-class scatter matrices, which are calculated from the set of
training data as
ar discriminant analysis for classification of three-way chemical data,
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Fig. 1. Calculation of each element of a 2D-LDA feature vector from EEM data.
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SB ¼
XL
p¼1

Np
�
Xp � X

�T�
Xp � X

�
(4)

SW ¼
XL
p¼1

X
k2Ip

�
Xk � Xp

�T�
Xk � Xp

�
(5)

where Xp denotes the mean of the X matrices for samples
belonging to class Cp and X denotes the mean over the entire data
set, i.e.

Xp ¼ 1
Np

X
k2Ip

Xk (6)

X ¼ 1
N

XN
k¼1

Xk (7)

If SW is nonsingular, bopt can be obtained as an eigenvector
resulting from a generalized eigenvalue problem, i.e. bopt must
satisfy the following equation:

S�1
W SBbopt ¼ lbopt (8)

where l is the largest eigenvalue of matrix S�1
W SB (n � n). This

procedure can be extended in order to obtain up to M projection
vectors, in decreasing order of relevance for the classification
problem, where M � n is the rank of S�1

W SB. The qth projection
vector bq is obtained as the solution of

S�1
W SBbq ¼ lqbq (9)

where lq is the qth largest eigenvalue of S�1
W SB , with q ¼ 1, 2,…,M.
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Let r � M be the number of projection vectors obtained in this
manner. By arranging b1, b2, …, br as the columns of a projection
matrix B (n � r), a feature matrix Y (m � r) can be calculated from a
given data matrix X as

Y ¼ XB (10)

The columns of Y correspond to r feature vectors in decreasing
order of relevance for the classification problem.

Remark: The decomposition procedure described above could be
alternatively applied to the transpose matrix XT, in order to extract
features from the columns of X, rather than the rows. In the case of
EEM data, for example, the transposition of X amounts to switching
the roles of the excitation and emission modes in the decomposi-
tion procedure. It is worth noting that SW will have dimensions
(n� n) if the decomposition is applied toX and dimensions (m�m)
if the decomposition is applied toXT. Therefore, a possible guideline
consists of choosing the option that results in the smallest di-
mensions for SW, in order to avoid ill-conditioning problems in the
calculation of S�1

W . This is the criterion that will be adopted in the
present work.
2.2.2. Classification procedure
A test sample Xtest can be classified on the basis of the similarity

of its feature matrix Ytest ¼ XtestB with respect to the feature
matrices Yk ¼ XkB, k ¼ 1, 2, …, N, of the samples in the training set.
In the present work, the similarity is evaluated in terms of an
Euclidian distance d(Ytest, Yk) calculated as

dðYtest ;YkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace

h
ðYtest � YkÞT ðYtest � YkÞ

ir
(11)

for k¼ 1, 2,…, N. The average distance between the test sample and
the Np training samples belonging to class Cp is then obtained as
ar discriminant analysis for classification of three-way chemical data,
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Fig. 2. Factors employed in the generation of the simulated EEM data set. (a) Excitation profiles, (b) emission profiles, (c) A1 factor, (d) A2 factor, (e) A3 factor, (f) A4 factor.
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d
�
Ytest ;Cp

� ¼ 1
Np

X
k2Ip

dðYtest;YkÞ (12)

Finally, the test sample is assigned to the class p* corresponding
to the smallest average distance, i.e.

d
�
Ytest ;Cp*

� ¼ min
p¼1;2;:::;L

d
�
Ytest ;Cp

�
(13)
Fig. 3. Examples of simulated EEM data for (a) Class 1, (b) Class 2 and (c) Class 3.
3. Experimental

3.1. Simulated EEM data set

The simulated EEM data set was generated according to the
following procedure:

a) The wavelengths were varied from 300 to 398 nm for exci-
tation (Fig. 2a) and from 410 to 508 nm for emission (Fig. 2b),
with a 2 nm interval, which resulted in an EEM data matrix
with m ¼ 50 rows and n ¼ 50 columns for each sample.

b) The sample matrices were generated as the linear combi-
nation of up to four simulated factors (A1, A2, A3, A4, which
are depicted in Fig. 2cef, respectively);

c) Three classes were defined by varying the factors employed
in the generation of the samples: Class 1 (factors A1, A2, A3),
Class 2 (factors A2, A3, A4) and Class 3 (factors A1, A2, A3,
A4). Examples of samples in each of these classes are pre-
sented in Fig. 3.

d) Within-class variability was simulated by randomly varying
the linear combination coefficients in the generation of the
samples. For this purpose, the coefficient values were drawn
from Gaussian distributions with the means and standard
deviations indicated in Table 1.
Please cite this article in press as: A.C.d. Silva, et al., Two-dimensional line
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e) Gaussian noise was added to resulting EEMmatrices, with an
intensity of 0.5% of the maximum peak value in each sample.

f) A total of 90 samples were generated (60 for training and 30
for test) as indicated in Table 2.
3.2. Dry-cured Parma ham data set

Parma ham is a traditional product from the city of Parma (Italy),
with protected designation of origin, which develops a distinctive
ar discriminant analysis for classification of three-way chemical data,
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Table 1
Mean and standard deviation (Std) values employed in the random generation of the
coefficients for the construction of the simulated data sets.

Factors Class 1 Class 2 Class 3

Mean Std Mean Std Mean Std

Training set
A1 0.8675 0.0954 e e 0.8674 0.0765
A2 0.8194 0.0948 0.8352 0.0975 0.8563 0.0893
A3 0.8546 0.0836 0.8664 0.0949 0.8427 0.0889
A4 e e 0.8833 0.0892 0.8501 0.0658
Test set
A1 0.8893 0.0661 e e 0.8744 0.0771
A2 0.9342 0.05396 0.8870 0.0636 0.8782 0.0481
A3 0.9147 0.0650 0.8914 0.0536 0.9001 0.0555
A4 e e 0.9134 0.0446 0.9066 0.0576

Table 2
Division of the samples into training and test sets.

Data set Class Training set Test set Total

Simulated EEM data Class 1 20 10 30
Class 2 20 10 30
Class 3 20 10 30

Total 60 30 90

Dry-cured Parma ham Raw 4 2 6
Salted 9 5 14
Matured 17 7 24
Aged 16 7 23

Total 46 21 67

Edible vegetable oil Soybean 10 3 13
Corn 14 6 20
Sunflower 12 4 16

Total 36 13 49
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flavour and aroma after 12 months of maturation [20,21]. The data
set employed herein, which was made publicly available at www.
models.life.ku.dk/datasets by Moller et al. [22], concerns the use
of surface autofluorescence spectroscopy as an alternative to
traditional methods for the evaluation of ageing-related quality
parameters. This data set was also employed by Durante et al. [8]
for classification of samples according to ageing state using the
N-SIMCA chemometrics tool.

The data set comprises 67 samples, with EEM spectra recorded
at a BioView instrument (Delta Light and Optics, Lyngby, Denmark)
fitted with an optical fibre probe. In the present work, the number
of variables and the division of the samples into classes followed
Fig. 4. Examples of surface autofluorescence spectra of Parma
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the study presented by Durante et al. [8]. Thus, the data matrix for
each sample consisted ofm¼ 13 emissionwavelengths in the range
350e590 nm, and n ¼ 11 excitation wavelengths in the range
270e470 nm. Four classes were defined on the basis of the ageing
period of the Parma ham sample: raw meat, salted (3 months),
matured (11e12 months) and aged (15e18 months). Fig. 4 presents
EEM spectra for representative samples of each class. The division
of the samples into training and test sets is presented in Table 2.
3.3. Edible vegetable oil data set

Edible vegetable oils have nutritional and health properties that
vary according to the feedstock, in addition to other factors such as
processing and storage [23,24]. The identification of feedstock can
be a challenging task, in view of the similarity among some types of
oil. In the present work, total synchronous fluorescence was
employed, as an alternative to other analytical techniques reported
in the literature [25e28].

Total synchronous fluorescence is a highly sensitive technique,
which can be used as an alternative to standard molecular fluo-
rescence to avoid the superposition of excitation and emission
bands [29]. For this purpose, the emission and excitation mono-
chromators are scanned simultaneously, with a constant wave-
length difference (Dl ¼ lemission � lexcitation) [30]. Applications
reported in the literature include the assessment of adulterations in
virgin olive oil [29], the discrimination between edible and lamp-
ante virgin olive oil [30], the classification of edible oils in n-hexane
solutions [31] and the classification of biodiesel samples with
respect to the type of oil feedstock [32].

The data set comprises 49 samples of edible oil from three types
of feedstock: soybean (13 samples), corn (20 samples) and sun-
flower (16 samples). The spectral data were acquired with a
computer-controlled Aminco Bowman Series 2 spectrofluorometer
fitted with a xenon discharge light source (150 W). The measure-
ments were carried out at a scan rate of 5 nm s�1, with precision
and repetitivity of ±0.5 nm and ±0.25 nm, respectively. For each
sample, a volume of 600 mL was employed and eight synchronous
spectra were obtained by moving the emission and excitation
monochromators with constant wavelength differences (Dl) of 10,
15, 20, 25, 30, 35, 40, and 45 nm. The excitation range was the same
for all spectra (280e430 nm), whereas the emission range varied
from 290-440 nm to 325e475 nm, according to the wavelength
difference (Dl) employed. Fig. 5 presents spectra for representative
samples of each class.

In order to use the 2D-LDA algorithm, the spectral data for each
sample were arranged in a matrix with m ¼ 150 rows
ham samples: (a) raw, (b) salted, (c) matured, (d) aged.

ar discriminant analysis for classification of three-way chemical data,
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Fig. 5. Examples of total synchronous fluorescence spectra of edible vegetable oil
samples: (a) soybean, (b) corn, (c) sunflower.
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corresponding to the excitation wavelengths (lexcitation), and n ¼ 8
columns corresponding to the wavelength differences (Dl).

The division of the samples into training and test sets is pre-
sented in Table 2.

3.4. Software

The computation of 2D-LDA projection vectors and the calcu-
lation of Euclidian distances described in Section 2.2.1 and 2.2.2
were implemented in Matlab®2010b (Mathworks) by using a lab-
made code. The best number r of projection vectors was deter-
mined on the basis of the correct classification rate (CCR) obtained
by leave-one-out cross-validation in the training set. If the same
CCR was obtained with different values of r, the smallest value was
selected, for parsimony reasons. Finally, the selected projection
vectors were employed in the classification of the test samples.

For comparison, the classification procedure described in Sec-
tion 2.2.2 was also employed by using the original data, instead of
the feature matrices. For this purpose, the calculations in Equations
(11)e(13) were carried out by using Xtest and Xk in place of Ytest and
Yk, respectively.

In addition, the results were compared with those obtained by
using U-PLS-DA, PARAFAC-LDA and TUCKER3-LDA. The unfolding
operation employed in U-PLS-DA consists of concatenating the
rows of each data matrix X (m � n) into a row vector (1 � nm). As a
result, the N training samples are arranged in the form of a single
matrix of dimensions (N � nm) [33], as in the standard PLS-DA
classification algorithm [34]. More details concerning this toolbox
Please cite this article in press as: A.C.d. Silva, et al., Two-dimensional line
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can be found elsewhere [35]. In the PARAFAC-LDA and TUCKER3-
LDA algorithms, the score values obtained from the decomposi-
tion of the three-way data were employed as inputs to a standard
LDA classifier. Non-negativity and orthogonality constraints were
adopted in the PARAFAC and TUCKER-3 decompositions, respec-
tively. The number of latent variables in U-PLS-DA and decompo-
sition factors in PARAFAC-LDA and TUCKER3-LDA were chosen in
order tomaximize the CCR value obtained by cross-validation. If the
maximal CCR value was obtained with different numbers of latent
variables/factors, the smallest number was selected, for parsimony
reasons, as in the 2D-LDA case.

The PLS-DA calculations on the unfolded data were carried out
in Matlab®2010b (Mathworks) by using the Classification Toolbox
3.1 available at http://michem.disat.unimib.it/chm/download/
softwares.htm. The TUCKER-3-LDA and PARAFAC-LDA calculations
were carried out in Matlab®2010b (Mathworks) by using the N-way
toolbox v. 3.30 available at http://www.models.life.ku.dk/
algorithms and a lab-made LDA code.

4. Results and discussion

4.1. Simulated EEM data set

In order to use the 2D-LDA algorithm, the training data set was
initially employed to calculate the SB and SW matrices, as in Equa-
tions (4) and (5). As a result, S�1

W SB was a full-rank matrix of di-
mensions (50 � 50). Equation (9) was then solved with q ¼ 1, 2, …,
50 to obtain the projection vectors b1, b2, …, b50. Fig. 6a presents
the correct classification rate obtained by cross-validation in the
training set, as a function of the number r of projection vectors
included in the projection matrix B. As can be seen, a correct
classification rate of 100% was obtained by using r ¼ 1 up to r ¼ 5
projection vectors. Therefore, in view of the parsimony criterion,
the final classification model included only the first projection
vector.

Fig. 7 presents the feature vectors obtained for the training
samples. As can be seen, there are clear differences among the three
classes. It is worth noting that the feature vectors for the samples in
classes 1, 2 and 3 are similar to the emission factors A1, A2, and A4,
respectively, which are shown in Fig. 2b.

Finally, by using the 2D-LDA projection vector obtained in the
training set, all test samples were correctly classified.

In this case, a perfect classification of the test samples was also
achieved by using the PARAFAC-LDA, TUCKER3-LDA and U-PLS-DA
classifiers (with factors/latent variables chosen on the basis of the
cross-validation results in Fig. 6b, c, d), as well the distance-based
method with no feature extraction. It is worth noting that this
simulated example does not pose significant difficulties for classi-
fication and was mainly aimed at illustrating the steps involved in
the 2D-LDA classification procedure. The advantages of 2D-LDAwill
be more apparent in the two next case studies, which involve real-
life data sets of a more complex nature.

4.2. Dry-cured Parma ham data set

In this case, a total of n ¼ 11 projection vectors were obtained in
the 2D-LDA algorithm. Fig. 8 presents the correct classification rate
obtained by cross-validation in the training set, as a function of the
number of projection vectors employed. On the basis of the parsi-
mony criterion, the best choice consisted of using 5 projection
vectors.

Fig. 9 presents the feature vectors obtained for the samples in
the training set. As can be seen in Fig. 9a, the first projection vector
provides a clear discrimination between the raw and salted classes,
which are also separated from the remaining two classes (matured
ar discriminant analysis for classification of three-way chemical data,
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Fig. 6. Simulated EEM data set: Correct classification rate obtained by cross-validation versus number of (a) 2D-LDA projection vectors, (b) PARAFAC factors, (c) TUCKER-3 factors
and (d) latent variables in U-PLS-DA.

Fig. 7. Simulated EEM data set: 2D-LDA features of the training samples.

Fig. 8. Parma ham data set: Correct classification rate obtained by cross-validation versus number of (a) 2D-LDA projection vectors, (b) PARAFAC factors, (c) TUCKER-3 factors and (d)
latent variables in U-PLS-DA.
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and aged). The distinction between the matured and aged classes is
less evident, but some separation can be observed in the features
corresponding to the third (Fig. 9c) and fifth (Fig. 9e) projection
vectors.
Please cite this article in press as: A.C.d. Silva, et al., Two-dimensional line
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The test samples were classified by using the 2D-LDA procedure
with the five projection vectors obtained in the training set. The
results are presented in the form of a confusion matrix in Table 3.
All the raw and salted samples were correctly assigned to their true
classes, which is consistent with the clear class separation observed
in the training set. Some classification errors involving the matured
and aged samples were obtained, which is also consistent with the
training set results. These findings are in agreement with previous
investigations [8] [22], which also revealed an overlapping between
the matured and aged classes in terms of PARAFAC scores. As dis-
cussed in Ref. [22], this overlapping may be ascribed to the fluo-
rescence profile of tertiary lipid oxidation products, which emerge
late in the maturation of dried hams.

For comparison, Table 4 presents the CCR values obtained by
using the PARAFAC-LDA, TUCKER3-LDA and U-PLS-DA classifiers
(with factors/latent variables chosen on the basis of the cross-
validation results in Fig. 8b, c, d), as well the distance-based
method with no feature extraction. As can be seen, 2D-LDA
ar discriminant analysis for classification of three-way chemical data,
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Fig. 9. Parma ham data set: 2D-LDA features of the training samples obtained with (a) first, (b) second, (c) third, (d) fourth, and (e) fifth projection vectors.

Table 3
Parma ham data set: Classification results in the test set.

Actual class Predicted class

Raw Salted Matured Aged

Raw 100% e e e

Salted e 100% e e

Matured e e 86% 14%
Aged e e 29% 71%

Table 4
Comparative results: Correct classification rates obtained in the test sets. The number of
parenthesis.

Data set 2D-LDA PARAFAC-LDA

Simulated EEM data 100% (1) 100% (4)
Dry-cured Parma ham 86% (5) 76% (6)
Edible vegetable oils 100% (4) 86% (5)

Fig. 10. Edible vegetable oil data set: Correct classification rate obtained by cross-validatio
factors and (d) latent variables in U-PLS-DA.
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outperformed all the other methods, with the exception of
TUCKER3-LDA, which yielded the same CCR value (86%).
4.3. Edible vegetable oil data set

In this case, a total of n ¼ 8 projection vectors were obtained in
the 2D-LDA algorithm. As shown in Fig. 10, the best cross-validation
result was obtained by using 4 projection vectors, which resulted in
projection vectors, factors or latent variables employed in each model is indicated in

TUCKER3-LDA U-PLS-DA No feature extraction

100% (2) 100% (3) 100%
86% (5) 81% (7) 76%
93% (5) 92% (5) 77%

n versus number of (a) 2D-LDA projection vectors, (b) PARAFAC factors, (c) TUCKER-3

ar discriminant analysis for classification of three-way chemical data,
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Fig. 11. Edible vegetable oil data set: 2D-LDA features of the training samples obtained with (a) first, (b) second, (c) third, and (d) fourth projection vectors.
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a correct classification rate of 94%.
Fig. 11 presents the feature vectors obtained in the training set,

which in this case are associated to excitation wavelengths in the
range 280e430 nm. A separation between soybean and the other
two classes can be observed between 330 and 340 nm (third pro-
jection, Fig. 11c) and also around 390 nm (second and fourth pro-
jections, Fig. 11b and d). The corn samples have a distinctive feature
profile between 305 and 380 nm (first projection, Fig. 11a). In the
case of sunflower, the best discrimination from the other classes is
observed in the third and fourth projections (Fig. 11c and d), be-
tween 305 and 330 nm. These wavelength ranges are similar to
those employed in a previous study [29] concerning the use of
synchronous fluorescence for quantification of olive oil adultera-
tions by soybean (315e365 nm), corn (315e392 nm), sunflower
(315e365 nm) and other oils.

By using the four 2D-LDA projection vectors, all the test samples
were correctly classified. In contrast, the other methods employed
for comparison yielded CCR values ranging from 77% to 92%, as
shown in Table 4. Interestingly, the PARAFAC-LDA, TUCKER3-LDA
and U-PLS-DA classifiers achieved a CCR of 100% in cross-
validation, as can be seen in Fig. 10. Such a finding suggests that
2D-LDA may have better generalization capabilities, i.e. better
ability to classify samples that were not included in the model-
building procedure.

On the overall, the results in Table 4 indicate that the use of
decomposition methods tends to improve the classification accu-
racy, as compared to the simple distance-based criterion applied to
the original data (i.e. with no feature extraction). Within this scope,
the better classification performance of 2D-LDA over the other
decomposition-based methods may be ascribed to the use of fea-
tures specifically related to the discrimination among the classes.
5. Conclusion

This paper presented an investigation of two-dimensional linear
discriminant analysis (2D-LDA) as a feature extraction tool for use
in classification problems involving three-way chemical data. A
brief review of the 2D-LDA algorithm was given and a distance-
based classification method based on Euclidean distances be-
tween the feature matrices was described.

The use of 2D-LDA for classification of three-way chemical data
was illustrated by using simulated EEM data, as well as real-life
Please cite this article in press as: A.C.d. Silva, et al., Two-dimensional line
Analytica Chimica Acta (2016), http://dx.doi.org/10.1016/j.aca.2016.08.00
data sets involving the classification of dry-cured Parma ham ac-
cording to ageing by surface autofluorescence spectrometry and
the classification of edible vegetable oils according to feedstock
using total synchronous fluorescence spectrometry.

The 2D-LDA classification results were compared with those
obtained by using the distance-based procedure with no feature
extraction (i.e. with the original spectral data), as well as by using
U-PLS-DA (Partial Least Squares Discriminant Analysis applied to
the unfolded data), PARAFAC-LDA (LDA employing PARAFAC scores)
and TUCKER3-LDA (LDA employing TUCKER-3 scores). In the
simulated data set, all methods yielded a correct classification rate
of 100%. However, in the Parma ham and vegetable oil data sets,
better classification rates were obtained by using 2D-LDA (86% and
100%), compared with the distance-based procedure with no
feature extraction (76% and 77%), U-PLS-DA (81% and 92%),
PARAFAC-LDA (76% and 86%) and TUCKER3-LDA (86% and 93%).
These findings indicate that 2D-LDA is indeed a promising method
for the classification of samples on the basis of three-way chemical
data.
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