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We obtain an estimate on the average cardinality of the value
set of any family of monic polynomials of Fq[T ] of degree d
for which s consecutive coefficients ad−1, . . . , ad−s are fixed.
Our estimate holds without restrictions on the characteristic
of Fq and asserts that V(d, s,a) = μdq+O(1), where V(d, s,a)
is such an average cardinality, μd :=

∑d
r=1 (−1)r−1/r! and

a := (ad−1, . . . , ad−s). We provide an explicit upper bound
for the constant underlying the O-notation in terms of d and s
with “good” behavior. Our approach reduces the question
to estimate the number of Fq-rational points with pairwise-
distinct coordinates of a certain family of complete intersec-
tions defined over Fq. We show that the polynomials defining
such complete intersections are invariant under the action of
the symmetric group of permutations of the coordinates. This
allows us to obtain critical information concerning the sin-
gular locus of the varieties under consideration, from which
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a suitable estimate on the number of Fq-rational points is
established.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let Fq be the finite field of q elements, let T be an indeterminate over Fq and let
f ∈ Fq[T ]. We define the value set V(f) of f as V(f) := |{f(c): c ∈ Fq}| (cf. [20]). Birch
and Swinnerton-Dyer established the following significant result [2]: for fixed d � 1, if
f is a generic polynomial of degree d, then

V(f) = μdq + O
(
q1/2),

where μd :=
∑d

r=1 (−1)r−1/r! and the constant underlying the O-notation depends only
on d.

Results on the average value V(d, 0) of V(f) when f ranges over all monic polynomials
in Fq[T ] of degree d with f(0) = 0 were obtained by Uchiyama [24] and improved by
Cohen [9]. More precisely, in [9, §2] it is shown that

V(d, 0) =
d∑

r=1
(−1)r−1

(
q

r

)
q1−r = μdq + O(1).

However, if some of the coefficients of f are fixed, the results on the average value of
V(f) are less precise. In fact, Uchiyama [25] and Cohen [8] obtained the following result.
Given s with 1 � s � d−2 and a := (ad−1, . . . , ad−s) ∈ Fs

q, for every b := (bd−s−1, . . . , b1)
we denote

fb := fa
b := T d +

s∑
i=1

ad−iT
d−i +

d−1∑
i=s+1

bd−iT
d−i.

Then for p := char(Fq) > d,

V(d, s,a) := 1
qd−s−1

∑
b∈Fd−s−1

q

V(fb) = μdq + O
(
q1/2), (1.1)

where the constant underlying the O-notation depends only on d and s.
This paper is devoted to obtain a strengthened explicit version of (1.1), which holds

without any restriction on p. More precisely, we shall show the following result (see
Theorem 4.4 below).

Theorem 1.1. With notations as above, for q > d and 1 � s � d
2 − 1 we have∣∣∣∣V(d, s,a) − μdq −

1
2e

∣∣∣∣ � (d− 2)5e2
√
d

2d−2 + 7
q
.
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This result strengthens (1.1) in several aspects. The first one is that it holds without
any restriction on the characteristic p of Fq, while (1.1) holds for p > d. The second aspect
is that we show that V(d, s,a) = μdq + O(1), while (1.1) only asserts that V(d, s,a) =
μdq + O(q1/2). Finally, we obtain an explicit expression for the constant underlying the
O-notation with a good behavior, in the sense that we prove that V(d, s,a) = μdq+ 1

2e +
O(ρ−d) + O(q−1) for any ρ with 1

2 < ρ < 1.
On the other hand, it must be said that our result holds for s � d/2 − 1, while (1.1)

holds for s varying in a larger range of values. This aspect shall be addressed in the second
paper, where we obtain an explicit estimate showing that V(d, s,a) = μdq + O(q1/2)
which is valid for 1 � s � d− 4 and p > 2. We shall also exhibit estimates on the second
moment of the value set of the families of polynomials under consideration.

In order to obtain our estimate, we express the quantity V(d, s,a) in terms of the
number χa

r of certain “interpolating sets” with d − s + 1 � r � d (see Theorem 2.1
below). More precisely, for fa := T d + ad−1T

d−1 + · · · + ad−sT
d−s, we define χa

r as the
number of r-element subsets of Fq at which fa can be interpolated by a polynomial of
degree at most d− s− 1.

Then we express χa
r in terms of the number of q-rational solutions with pairwise-

distinct coordinates of a polynomial system {Ra
d−s = 0, . . . , Ra

r−1 = 0}, where
Ra

d−s, . . . , R
a
r−1 are certain polynomials in Fq[X1, . . . , Xr]. A critical point for our ap-

proach is that Ra
d−s, . . . , R

a
r−1 are symmetric polynomials, namely invariant under any

permutation of the variables X1, . . . , Xr. More precisely, we prove that each Ra
j can be ex-

pressed as a polynomial in the first s elementary symmetric polynomials of Fq[X1, . . . , Xr]
(Proposition 2.4). This allows us to establish a number of facts concerning the geometry
of the set V a

r of solutions of such a polynomial system (see, e.g., Corollary 3.4 and The-
orems 3.6 and 3.7). Combining these results with estimates on the number of Fq-rational
points of singular complete intersections of [5], we obtain our main result.

We finish this introduction by stressing on the methodological aspects. As mentioned
before, a key point is the invariance of the family of sets V a

r under the action of the
symmetric group of r elements. In fact, our results on the geometry of V a

r and the
estimates on the number of Fq-rational points can be extended mutatis mutandis to any
symmetric complete intersection whose projection on the set of primary invariants (using
the terminology of invariant theory) defines a nonsingular complete intersection. This
might be seen as a further source of interest of our approach, since symmetric polynomials
arise frequently in combinatorics, coding theory and cryptography (for example, in the
study of deep holes in Reed–Solomon codes, almost perfect nonlinear polynomials or
differentially uniform mappings; see, e.g., [1,4,22]).

2. Value sets in terms of interpolating sets

Let notations and assumptions be as in the previous section. In this section we fix s

with 1 � s � d− 2, an s-tuple a := (ad−1, . . . , ad−s) ∈ Fs
q and denote
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fa := T d + ad−1T
d−1 + · · · + ad−sT

d−s.

For every b := (bd−s−1, . . . , b1) ∈ Fd−s−1
q , we denote by fb := fa

b ∈ Fq[T ] the following
polynomial

fb := fa + bd−s−1T
d−s−1 + · · · + b1T.

For a given b ∈ Fd−s−1
q , the value set V(fb) of fb equals the number of elements

b0 ∈ Fq for which the polynomial fb + b0 has at least one root in Fq. Let Fq[T ]d denote
the set of polynomials of Fq[T ] of degree at most d, let N : Fq[T ]d → Z�0 be the
counting function of the number of roots in Fq and let 1{N>0} : Fq[T ]d → {0, 1} be the
characteristic function of the set of elements of Fq[T ]d having at least one root in Fq.
From our previous assertion we deduce the following identity:∑

b∈Fd−s−1
q

V(fb) =
∑
b0∈Fq

∑
b∈Fd−s−1

q

1{N>0}(fb + b0)

=
∣∣{g ∈ Fq[T ]d−s−1: N

(
fa + g

)
> 0

}∣∣.
For a set X ⊂ Fq, we define Sa

X ⊂ Fq[T ]d−s−1 as the set of polynomials of Fq[T ] of
degree at most d− s− 1 which interpolate −fa at all the points of X , namely

Sa
X :=

{
g ∈ Fq[T ]d−s−1:

(
fa + g

)
(x) = 0 for any x ∈ X

}
.

Finally, for r ∈ N we shall use the symbol Xr to denote a subset of Fq of r elements.

Theorem 2.1. For given s, d ∈ N with d < q and 1 � s � d− 2, we have

V(d, s,a) =
d−s∑
r=1

(−1)r−1
(
q

r

)
q1−r + 1

qd−s−1

d∑
r=d−s+1

(−1)r−1χa
r , (2.1)

where V(d, s,a) is defined as in (1.1) and χa
r is the number of subsets Xr of Fq of

r elements such that there exists g ∈ Fq[T ]d−s−1 with (fa + g)|Xr
≡ 0.

Proof. Given a subset Xr := {x1, . . . , xr} ⊂ Fq, we consider the corresponding set Sa
Xr

⊂
Fq[T ]d−s−1 defined as above. It is easy to see that Sa

Xr
=
⋂r

i=1 Sa
{xi} and

{
g ∈ Fq[T ]d−s−1: N

(
fa + g

)
> 0

}
=
⋃

x∈Fq

Sa
{x}.

Therefore, by the inclusion–exclusion principle we obtain

V(d, s,a) = 1
qd−s−1

∣∣∣∣ ⋃
x∈Fq

Sa
{x}

∣∣∣∣ = 1
qd−s−1

q∑
r=1

(−1)r−1
∑

Xr⊂Fq

∣∣Sa
Xr

∣∣. (2.2)
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Now we estimate |Sa
Xr

| for a given set Xr := {x1, . . . , xr} ⊂ Fq. Let g :=
bd−s−1T

d−s−1 + · · · + b1T + b0 be an arbitrary element of Sa
Xr

. Then we have fa(xi) +
g(xi) = 0 for 1 � i � r. These identities can be expressed in matrix form as follows:

M(Xr) · b0 + fa(Xr) = 0

where M(Xr) := (mi,j) ∈ Fr×(d−s)
q is the Vandermonde matrix defined by mi,j := xd−s−j

i

for 1 � i � r and 1 � j � d − s, b0 := (bd−s−1, . . . , b0) ∈ Fd−s
q and fa(Xr) :=

(fa(x1), . . . , fa(xr)) ∈ Fr
q.

Since xi �= xj for i �= j, it follows that

rank
(
M(Xr)

)
= min{r, d− s}. (2.3)

We conclude that Sa
Xr

is an Fq-linear variety and either Sa
Xr

= ∅ or

rank
(
M(Xr)

)
+ dimSa

Xr
= d− s. (2.4)

Suppose first that r � d− s. Then (2.3) implies rank(M(Xr)) = r, and hence, Sa
Xr

is
not empty. From (2.4) we infer that dimSa

Xr
= d− s− r, and thus∣∣Sa

Xr

∣∣ = qd−s−r. (2.5)

Next we suppose that r � d − s + 1. On one hand, if Sa
Xr

is nonempty, then (2.4)
implies dimSa

Xr
= 0, and hence |Sa

Xr
| = 1. On the other hand, if Sa

Xr
is empty, then

|Sa
Xr

| = 0.
For r > d we have that, if g ∈ Sa

Xr
, then g ∈ Fq[T ]d−s−1 and fa(xi) + g(xi) = 0

holds for 1 � i � r. As a consequence, the (nonzero) polynomial fa + g has degree d

and r different roots, which contradicts the hypothesis r > d. We conclude that Sa
Xr

is
empty, and thus, ∣∣Sa

Xr

∣∣ = 0. (2.6)

Finally, for d− s + 1 � r � d any of the cases |Sa
Xr

| = 0 or |Sa
Xr

| = 1 can arise.
Now we are able to obtain the expression for V(d, s,a) of the statement of the theorem.

Indeed, combining (2.2), (2.5) and (2.6) we obtain

qd−s−1V(d, s,a) =
d−s∑
r=1

(−1)r−1
(
q

r

)
qd−s−r +

d∑
r=d−s+1

(−1)r−1
∑

Xr⊂Fq

∣∣Sa
Xr

∣∣.
From this identity we immediately deduce the statement of the theorem. �

By definition we have 0 � χa
r �

(
q
r

)
. We shall show that χa

r = 1
r!q

d−s + O(qd−s−1),
with an explicit upper bound for the constant underlying the O-notation in terms of d,
s and r (see Theorem 4.1 below).
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2.1. An algebraic approach to estimate the number of interpolating sets

According to Theorem 2.1, the asymptotic behavior of V(d, s,a) is determined by that
of χa

r for d − s + 1 � r � d. In order to determine the latter, we follow an approach
inspired in [7], and further developed in [4], which we now describe.

Fix a set Xr := {x1, . . . , xr} ⊂ Fq of r elements and g ∈ Fq[T ]d−s−1. Then g belongs to
Sa
Xr

if and only if (T −x1) · · · (T −xr) divides fa+g in Fq[T ]. Since deg g � d−s−1 < r,
we have that the latter is equivalent to the condition that −g is the remainder of the
division of fa by (T − x1) · · · (T − xr). In other words, the set Sa

Xr
is not empty if and

only if the remainder of the division of fa by (T − x1) · · · (T − xr) has degree at most
d− s− 1.

Let X1, . . . , Xr be indeterminates over Fq, let X := (X1, . . . , Xr) and let Q ∈ Fq[X][T ]
be the polynomial

Q = (T −X1) · · · (T −Xr).

Observe that there exists Ra ∈ Fq[X][T ] with degRa � r − 1 such that the following
congruence relation holds:

fa ≡ Ra mod Q. (2.7)

Let Ra := Ra
r−1(X)T r−1+· · ·+Ra

0 (X). Then Ra(x1, . . . , xr, T ) ∈ Fq[T ] is the remainder
of the division of fa by (T −x1) · · · (T −xr). As a consequence, the set Sa

Xr
is not empty

if and only if the following identities hold:

Ra
j (x1, . . . , xr) = 0 (d− s � j � r − 1). (2.8)

On the other hand, suppose that there exists x := (x1, . . . , xr) ∈ Fr
q with pairwise-dis-

tinct coordinates such that (2.8) holds and set Xr := {x1, . . . , xr}. Then the remainder of
the division of fa by Q(x, T ) = (T − x1) · · · (T − xr) is a polynomial Ra(x, T ) of degree
at most d− s− 1. This shows that Sa

Xr
is not empty. We summarize the conclusions of

the argumentation above in the following result.

Lemma 2.2. For s, d ∈ N with 1 � s � d−2, let Ra
j (d−s � j � r−1) be the polynomials

of (2.8) and let Xr := {x1, . . . , xr} ⊂ Fq be a set with r elements. Then Sa
Xr

is not empty
if and only if (2.8) holds.

It follows that the number χa
r of sets Xr ⊂ Fq of r elements such that Sa

Xr
is not empty

equals the number of points x := (x1, . . . , xr) ∈ Fr
q with pairwise-distinct coordinates

satisfying (2.8), up to permutations of coordinates, namely equals 1/r! times the number
of solutions x ∈ Fr

q of the following system of equalities and non-equalities:

Ra
j (X1, . . . , Xr) = 0 (d− s � j � r − 1),

∏
1�i<j�r

(Xi −Xj) �= 0. (2.9)
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2.2. Ra in terms of the elementary symmetric polynomials

Fix r with d−s+1 � r � d. Assume that 2(s+1) � d holds and consider the elementary
symmetric polynomials Π1, . . . , Πr of Fq[X1, . . . , Xr]. For convenience of notation, we
shall denote Π0 := 1. In Section 2.1 we obtain polynomials Ra

j ∈ Fq[X1, . . . , Xr] (d−s �
j � r − 1) with the following property: for a given set Xr := {x1, . . . , xr} ⊂ Fq of
r elements, the set Sa

Xr
is not empty if and only if (x1, . . . , xr) is a common zero of

Ra
d−s, . . . , R

a
r−1.

The main purpose of this section is to show how the polynomials Ra
j can be expressed

in terms of Π1, . . . , Πs. In order to do this, we first obtain a recursive expression for the
remainder of the division of T j by Q := (T −X1) · · · (T −Xr) for r � j � d.

Lemma 2.3. For r � j � d, the following congruence relation holds:

T j ≡ Hr−1,jT
r−1 + Hr−2,jT

r−2 + · · · + H0,j mod Q, (2.10)

where each Hi,j is equal to zero or a homogeneous element of Fq[X1, . . . , Xr] of de-
gree j − i. Furthermore, for j − i � r, the polynomial Hi,j is a monic element of
Fq[Π1, . . . , Πj−i−1][Πj−i], up to a nonzero constant of Fq, of degree 1 in Πj−i.

Proof. We argue by induction on j � r. Taking into account that

T r ≡ Π1T
r−1 −Π2T

r−2 + · · · + (−1)r−1Πr mod Q, (2.11)

we immediately deduce the statement of the lemma for j = r.
Next assume that (2.10) holds for a given j with r � j. Multiplying both sides of

(2.10) by T and combining with (2.11) we obtain:

T j+1 ≡ Hr−1,jT
r + Hr−2,jT

r−1 + · · · + H0,jT

≡ (Π1Hr−1,j + Hr−2,j)T r−1 + · · · +
(
(−1)r−2Πr−1Hr−1,j + H0,j

)
T

+ (−1)r−1ΠrHr−1,j ,

where all congruences are taken modulo Q.
Define

Hk,j+1 := (−1)r−1−kΠr−kHr−1,j + Hk−1,j for 1 � k � r − 1,

H0,j+1 := (−1)r−1ΠrHr−1,j .

Then we have

T j+1 ≡ Hr−1,j+1T
r−1 + Hr−2,j+1T

r−2 + · · · + H0,j+1 mod Q.

There remains to prove that the polynomials Hk,j+1 have the form asserted.
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Fix k with 1 � k � r − 1. Then Hk,j+1 = (−1)r−1−kΠr−kHr−1,j + Hk−1,j . By the
inductive hypothesis we have that Hr−1,j and Hk−1,j are equal to zero or homogeneous
polynomials of degree j − r + 1 and j − k + 1, respectively. We easily conclude that
Hk,j+1 is equal to zero or homogeneous of degree j − k + 1. Further, for j + 1 − k � r,
since max{r − k, j − r + 1} � j − k < r we see that Πr−kHr−1,j is an element of
the polynomial ring Fq[Π1, . . . , Πj−k]. On the other hand, Hk−1,j is a monic element
of Fq[Π1, . . . , Πj−k][Πj−k+1], up to a nonzero constant of Fq, which implies that so is
Hk,j+1.

Finally, for k = 0 we have H0,j+1 := (−1)r−1ΠrHr−1,j , which shows that H0,j+1 is
equal to zero or a homogeneous polynomial of Fq[X1, . . . , Xr] of degree r+j−r+1 = j+1.
This finishes the proof of the lemma. �

We observe that an explicit expression of the polynomials Hi,j can be obtained follow-
ing the approach of [4, Proposition 2.2]. As we do not need such an explicit expression
we shall not pursue this point any further.

Finally we obtain an expression of the polynomials Ra
j ∈ Fq[X1, . . . , Xr] (d− s � j �

r − 1) in terms of the polynomials Hi,j .

Proposition 2.4. For s, d ∈ N with 1 � s � d−2 and 2(s+1) � d, and for d−s � j � r−1,
the following identity holds:

Ra
j = aj +

d∑
i=r

aiHj,i, (2.12)

where the polynomials Hj,i are defined in Lemma 2.3. In particular, Ra
j is a monic

element of Fq[Π1, . . . , Πd−1−j ][Πd−j ], up to a nonzero constant of Fq, of degree d−j � s

for d− s � j � r − 1, and thus of degree 1 in Πd−j.

Proof. By Lemma 2.3 we have the following relation for r � j � d:

T j ≡ Hr−1,jT
r−1 + Hr−2,jT

r−2 + · · · + H0,j mod Q.

Hence we obtain

d∑
j=d−s

ajT
j =

r−1∑
j=d−s

ajT
j +

d∑
j=r

ajT
j

≡
r−1∑

j=d−s

ajT
j +

d∑
j=r

aj

r−1∑
i=d−s

Hi,jT
i + O

(
T d−s−1) mod Q

≡
r−1∑

j=d−s

(
aj +

d∑
i=r

aiHj,i

)
T j + O

(
T d−s−1) mod Q,



Author's personal copy

E. Cesaratto et al. / J. Combin. Theory Ser. A 124 (2014) 203–227 211

where O(T d−s−1) represents a sum of terms of Fq[X1, . . . , Xr][T ] of degree at most
d − s − 1 in T . This shows that the polynomials Ra

j have the form asserted in the
statement of the proposition. Furthermore, we observe that, for each Hj,i occurring in
(2.12), we have i− j � s � d− s− 2 � r. This implies that each Hj,i is a monic element
of Fq[Π1, . . . , Πi−j−1][Πi−j ] of degree i− j. As a consequence, we see that Ra

j is a monic
element of Fq[Π1, . . . , Πd−1−j ][Πd−j ] of degree d− j for d− s � j � r − 1. This finishes
the proof. �
3. The geometry of the set of zeros of Ra

d−s, . . . , R
a
r−1

For positive integers s, d with q < d, 1 � s � d − 2 and 2(s + 1) � d, we fix as in
the previous section an s-tuple a := (ad−1, . . . , ad−s) ∈ Fs

q and consider the polynomial
fa := T d +ad−1T

d−1 + · · ·+ad−sT
d−s. For fixed r with d− s+1 � r � d, in Section 2.1

we associate to fa polynomials Ra
j ∈ Fq[X1, . . . , Xr] (d − s � j � r − 1), whose sets of

common Fq-rational zeros are relevant for our purposes.
According to Proposition 2.4, we may express each Ra

j as a polynomial in the first s

elementary symmetric polynomials Π1, . . . , Πs of Fq[X1, . . . , Xr]. More precisely, let
Y1, . . . , Ys be new indeterminates over Fq. Then we have that

Ra
j = Sa

j (Π1, . . . , Πd−j) (d− s � j � r − 1),

where each Sa
j ∈ Fq[Y1, . . . , Yd−j ] is a monic element of Fq[Y1, . . . , Yd−1−j ][Yd−j ], up to

a nonzero constant of Fq, of degree 1 in Yd−j .
In this section we obtain critical information on the geometry of the set of common

zeros of the polynomials Ra
j that will allow us to establish estimates on the number of

common Fq-rational zeros of Ra
d−s, . . . , R

a
r−1.

3.1. Notions of algebraic geometry

Since our approach relies on tools of algebraic geometry, we briefly collect the basic
definitions and facts that we need in the sequel. We use standard notions and notations
of algebraic geometry, which can be found in, e.g., [18,23].

We denote by An the affine n-dimensional space Fn
q and by Pn the projective n-dimen-

sional space over Fn+1
q . Both spaces are endowed with their respective Zariski topologies,

for which a closed set is the zero locus of polynomials of Fq[X1, . . . , Xn] or of homoge-
neous polynomials of Fq[X0, . . . , Xn]. For K := Fq or K := Fq, we say that a subset
V ⊂ An is an affine K-variety if it is the set of common zeros in An of polynomials
F1, . . . , Fm ∈ K[X1, . . . , Xn]. Correspondingly, a projective K-variety is the set of com-
mon zeros in Pn of a family of homogeneous polynomials F1, . . . , Fm ∈ K[X0, . . . , Xn].
We shall frequently denote by V (F1, . . . , Fm) the affine or projective K-variety consisting
of the common zeros of polynomials F1, . . . , Fm. The set V (Fq) := V ∩ Fn

q is the set of
Fq-rational (or simply q-rational) points of V .
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A K-variety V is K-irreducible if it cannot be expressed as a finite union of proper
K-subvarieties of V . Further, V is absolutely irreducible if it is Fq-irreducible as an
Fq-variety. Any K-variety V can be expressed as an irredundant union V = C1 ∪ · · · ∪ Cs
of irreducible (absolutely irreducible) K-varieties, unique up to reordering, which are
called the irreducible (absolutely irreducible) K-components of V .

For a K-variety V contained in An or Pn, we denote by I(V ) its defining ideal,
namely the set of polynomials of K[X1, . . . , Xn], or of K[X0, . . . , Xn], vanishing on V .
The coordinate ring K[V ] of V is defined as the quotient ring K[X1, . . . , Xn]/I(V ) or
K[X0, . . . , Xn]/I(V ). The dimension dimV of a K-variety V is the length r of the longest
chain V0 � V1 � · · · � Vr of nonempty irreducible K-varieties contained in V . A K-variety
V is called equidimensional if all the irreducible K-components of V are of the same di-
mension.

The degree deg V of an irreducible K-variety V is the maximum number of points
lying in the intersection of V with a linear space L of codimension dimV , for which
V ∩ L is a finite set. More generally, following [17] (see also [13]), if V = C1 ∪ · · · ∪ Cs is
the decomposition of V into irreducible K-components, we define the degree of V as

deg V :=
s∑

i=1
deg Ci.

With this definition of degree, we have the following Bézout inequality (see [17,13,26]):
if V and W are K-varieties, then

deg(V ∩W ) � deg V · degW. (3.1)

We shall also make use of the following well-known identities relating the degree of
an affine K-variety V ⊂ An, the degree of its projective closure (with respect to the
projective Zariski K-topology) V ⊂ Pn and the degree of the affine cone Ṽ of V (see,
e.g., [6, Proposition 1.11]):

deg V = deg V = deg Ṽ .

Elements F1, . . . , Fn−r in K[X1, . . . , Xn] or in K[X0, . . . , Xn] form a regular se-
quence if F1 is nonzero and each Fi is not a zero divisor in the quotient ring
K[X1, . . . , Xn]/(F1, . . . , Fi−1) or K[X0, . . . , Xn]/(F1, . . . , Fi−1) for 2 � i � n − r. In
such a case, the (affine or projective) K-variety V := V (F1, . . . , Fn−r) they define is
equidimensional of dimension r, and is called a set-theoretic complete intersection. In par-
ticular, if the ideal (F1, . . . , Fn−r) generated by F1, . . . , Fn−r is radical, then V is an
ideal-theoretic complete intersection. If V ⊂ Pn is an ideal-theoretic complete intersection
defined over K, of dimension r and degree δ, and F1, . . . , Fn−r is a system of generators
of I(V ), the degrees d1, . . . , dn−r depend only on V and not on the system of generators.
Arranging the di in such a way that d1 � d2 � · · · � dn−r, we call d := (d1, . . . , dn−r)
the multidegree of V . It follows that δ =

∏n−r
i=1 di holds (see, e.g., [16, Theorem 18.3]).
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Let V ⊂ An be a variety and let I(V ) ⊂ Fq[X1, . . . , Xn] be the defining ideal of V . Let
x be a point of V . The dimension dimx V of V at x is the maximum of the dimensions
of the irreducible components of V that contain x. If I(V ) = (F1, . . . , Fm), the tangent
space TxV to V at x is the kernel of the Jacobian matrix (∂Fi/∂Xj)1�i�m,1�j�n(x) of
the polynomials F1, . . . , Fm with respect to X1, . . . , Xn at x. The point x is regular if
dim TxV = dimx V holds. Otherwise, the point x is called singular. The set of singular
points of V is the singular locus Sing(V ) of V . A variety is called nonsingular if its
singular locus is empty. For a projective variety, the concepts of tangent space, regular
and singular point can be defined by considering an affine neighborhood of the point
under consideration.

Let V and W be irreducible affine K-varieties of the same dimension and let
f : V → W be a regular map for which f(V ) = W holds, where f(V ) denotes the
closure of f(V ) with respect to the Zariski topology of W . Such a map is called dom-
inant. Then f induces a ring extension K[W ] ↪→ K[V ] by composition with f . We say
that the dominant map f is a finite morphism if this extension is integral, namely if
each element η ∈ K[V ] satisfies a monic equation with coefficients in K[W ]. A basic
fact is that a dominant finite morphism is necessarily closed. Another fact concerning
dominant finite morphisms we shall use in the sequel is that the preimage f−1(S) of an
irreducible closed subset S ⊂ W is equidimensional of dimension dimS (see, e.g., [10,
§4.2, Proposition]).

3.2. The singular locus of symmetric complete intersections

With the notations and assumptions of the beginning of Section 3, let V a
r ⊂ Ar be

the affine Fq-variety defined by the polynomials Ra
d−s, . . . , R

a
r−1 ∈ Fq[X1, . . . , Xr]. In this

section we shall establish several facts concerning the geometry of V a
r . For this purpose,

we consider the somewhat more general framework that we now introduce. This will
allow us to make more transparent the facts concerning the algebraic structure of the
family of polynomials Ra

d−s, . . . , R
a
r−1 which are important at this point.

Let Y1, . . . , Ys be new indeterminates over Fq and let be given polynomials Sj ∈
Fq[Y1, . . . , Ys] for d− s � j � r − 1. Let (∂S/∂Y ) := (∂Sj/∂Yk)d−s�j�r−1,1�k�s be the
Jacobian matrix of Sd−s, . . . , Sr−1 with respect to Y1, . . . , Ys. Our assumptions on s, d
and r imply r−d+s � s and thus, (∂S/∂Y ) has full rank if and only if rank(∂S/∂Y ) =
r − d + s holds. Assume that Sd−s, . . . , Sr−1 satisfy the following conditions:

(H1) Sd−s, . . . , Sr−1 form a regular sequence of Fq[Y1, . . . , Ys];
(H2) (∂S/∂Y )(y) has full rank r − d + s for every y ∈ As.

From (H1) and (H2) we immediately conclude that the affine variety Wr ⊂ As defined
by Sd−s, . . . , Sr−1 is a nonsingular set-theoretic complete intersection of dimension d−r.
Furthermore, as a consequence of [11, Theorem 18.15] we conclude that Sd−s, . . . , Sr−1
define a radical ideal, and hence Wr is an ideal-theoretic complete intersection.
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Denote by Π1, . . . , Πs the first s elementary symmetric polynomials of Fq[X1, . . . , Xr]
and let Rj := Sj(Π1, . . . , Πs) for d − s � j � r − 1. We denote by Vr ⊂ Ar the
affine variety defined by Rd−s, . . . , Rr−1. In what follows we shall establish several facts
concerning the geometry of Vr.

For this purpose, we consider the following surjective morphism of Fq-varieties:

Πr : Ar → Ar

x 
→
(
Π1(x), . . . , Πr(x)

)
.

It is easy to see that Πr is a dominant finite morphism (see, e.g., [23, §5.3, Exam-
ple 1]). In particular, the preimage (Πr)−1(Z) of an irreducible affine variety Z ⊂ Ar of
dimension m is equidimensional and of dimension m.

We now consider Sd−s, . . . , Sr−1 as elements of Fq[Y1, . . . , Yr]. Since they form a reg-
ular sequence, the affine variety W r

j = V (Sd−s, . . . , Sj) ⊂ Ar is equidimensional of
dimension r − j + d− s− 1. This implies that the affine variety V r

j = (Πr)−1(W r
j ) de-

fined by Rd−s, . . . , Rj is equidimensional of dimension r−j+d−s−1. We conclude that
the polynomials Rd−s, . . . , Rr−1 form a regular sequence of Fq[X1, . . . , Xr] and deduce
the following result.

Lemma 3.1. Let Vr ⊂ Ar be the Fq-variety defined by Rd−s, . . . , Rr−1. Then Vr is a
set-theoretic complete intersection of dimension d− s.

Next we analyze the dimension of the singular locus of Vr. For this purpose, we
consider the following surjective morphism of Fq-varieties:

Π : Vr → Wr

x 
→
(
Π1(x), . . . , Πs(x)

)
.

For x ∈ Vr and y := Π(x), we denote by TxVr and TyWr the tangent spaces to Vr at x

and to Wr at y. We also consider the differential map of Π at x, namely

dxΠ : TxVr → TyWr

v 
→ A(x) · v,

where A(x) stands for the (s× r)-matrix

A(x) :=
(
∂Π

∂X

)
(x) :=

(
∂Πi

∂Xj
(x)
)

1�i�s
1�j�r

. (3.2)

In order to prove our result about the singular locus of Vr, we first make a few remarks
concerning the Jacobian matrix of the elementary symmetric polynomials that will be
useful in the sequel.
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It is well known that the first partial derivatives of the elementary symmetric poly-
nomials Πi satisfy the following equalities (see, e.g., [19]) for 1 � i, j � r:

∂Πi

∂Xj
= Πi−1 −XjΠi−2 + X2

jΠi−3 + · · · + (−1)i−1Xi−1
j . (3.3)

As a consequence, denoting by Ar the (r × r)-Vandermonde matrix

Ar :=
(
Xi−1

j

)
1�i,j�r

, (3.4)

we deduce that the Jacobian matrix (∂Πr/∂X) of Πr := (Π1, . . . , Πr) with respect to
X1, . . . , Xr can be factored as follows:

(
∂Πr

∂X

)
:= Br ·Ar :=

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
Π1 −1 0
Π2 −Π1 1 . . . ...
...

...
... . . . 0

Πr−1 −Πr−2 Πr−3 · · · (−1)r−1

⎞⎟⎟⎟⎟⎟⎟⎠ ·Ar. (3.5)

We observe that the left factor Br is a square, lower-triangular matrix whose determinant
is equal to (−1)(r−1)r/2. This implies that the determinant of the matrix (∂Πr/∂X) is
equal, up to a sign, to the determinant of Ar, i.e.,

det
(
∂Πr

∂X

)
= (−1)

(r
2
) ∏
1�i<j�r

(Xi −Xj).

Let (∂R/∂X) := (∂Rj/∂Xk)d−s�j�r−1,1�k�r be the Jacobian matrix of the polyno-
mials Rd−s, . . . , Rr−1 with respect to X1, . . . , Xr.

Theorem 3.2. The set of points x ∈ Ar for which (∂R/∂X)(x) has not full rank, has
dimension at most s − 1. In particular, the singular locus Σr of Vr has dimension at
most s− 1.

Proof. Since R = S ◦Π, by the chain rule we obtain(
∂R

∂X

)
=
(
∂S

∂Y
◦Π

)
·
(
∂Π

∂X

)
.

Fix an arbitrary point x for which (∂R/∂X)(x) has not full rank. Let v ∈ Ar−d+s

be a nonzero vector in the left kernel of (∂R/∂X)(x). Then

0 = v ·
(
∂R

∂X

)
(x) = v ·

(
∂S

∂Y

)(
Π(x)

)
·A(x),
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where A(x) is the matrix defined in (3.2). Since by (H2) the Jacobian matrix
(∂S/∂Y )(Π(x)) has full rank, w := v · (∂S/∂Y )(Π(x)) ∈ As is nonzero and

w ·A(x) = 0.

Hence, all the maximal minors of A(x) must be zero.
The matrix A(x) is the (s × r)-submatrix of (∂Πr/∂X)(x) consisting of the first s

rows of the latter. Therefore, from (3.5) we conclude that

A(x) = Bs,r(x) ·Ar(x),

where Bs,r(x) is the (s× r)-submatrix of Br(x) consisting of the first s rows of Br(x).
Since the last r − s columns of Bs,r(x) are zero, we may rewrite this identity in the
following way:

A(x) = Bs(x) ·
(
xi−1
j

)
1�i�s
1�j�r

, (3.6)

where Bs(x) is the (s × s)-submatrix of Br(x) consisting on the first s rows and the
first s columns of Br(x).

Fix 1 � l1 < · · · < ls � r, set I := (l1, . . . , ls) and consider the (s × s)-submatrix
MI(x) of A(x) consisting of the columns l1, . . . , ls of A(x), namely MI(x) :=
(∂Πi/∂Xlj )1�i,j�s(x). From (3.5) and (3.6) we easily see that MI(x) = Bs(x) ·As,I(x),
where As,I(x) is the Vandermonde matrix As,I(x) := (xi−1

lj
)1�i,j�s. Therefore, we obtain

det
(
MI(x)

)
= (−1)

(s
2
)
detAs,I(x) = (−1)

(s
2
) ∏

1�m<n�s

(xlm − xln) = 0. (3.7)

Since (3.7) holds for every I := (l1, . . . , ls) as above, we conclude that x has
at most s − 1 pairwise-distinct coordinates. In particular, the set of points x with
rank(∂R/∂X)(x) < r − d + s is contained in a finite union of linear varieties of Ar

of dimension s− 1, and thus is an affine variety of dimension at most s− 1.
Now let x be an arbitrary point Σr. By Lemma 3.1 we have dim TxVr > d− s. This

implies that rank(∂R/∂X)(x) < r−d+s, for otherwise we would have dim TxVr � d−s,
contradicting thus the fact that x is a singular point of Vr. This finishes the proof of the
theorem. �

From Lemma 3.1 and Theorem 3.2 we obtain further algebraic and geometric con-
sequences concerning the polynomials Rj and the variety Vr. By Theorem 3.2 we have
that the set of points x ∈ Ar for which the Jacobian matrix (∂R/∂X)(x) has not full
rank, has dimension at most s − 1. Since Rd−s, . . . , Rr−1 form a regular sequence and
s − 1 < d − s holds, from [11, Theorem 18.15] we conclude that Rd−s, . . . , Rr−1 define
a radical ideal of Fq[X1, . . . , Xr]. On the other hand, by the Bézout inequality (3.1) we
have deg Vr �

∏r−1
j=d−s degRj . In other words, we have the following statement.
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Corollary 3.3. The polynomials Rd−s, . . . , Rr−1 define a radical ideal and the variety Vr

has degree deg Vr �
∏r−1

j=d−s degRj.

3.3. The geometry of V a
r

Now we consider the affine Fq-variety V a
r ⊂ Ar defined by the polynomials

Ra
d−s, . . . , R

a
r−1 ∈ Fq[X1, . . . Xr] associated to a := (ad−1, . . . , ad−s) ∈ Fs

q and the poly-
nomial fa := T d + ad−1T

d−1 + · · · + ad−sT
d−s. According to Proposition 2.4, we may

express each Ra
j in the form Ra

j = Sa
j (Π1, . . . , Πd−j), where Sa

j ∈ Fq[Y1, . . . , Yd−j ] is a
monic polynomial in Yd−j , up to a nonzero constant, of degree 1 in Yd−j . In particular,
by a recursive argument it is easy to see that

Fq[Y1, . . . , Ys]/
(
Sa
d−s, . . . , S

a
j

)
� Fq[Y1, . . . , Yd−j−1] (3.8)

for d − s � j � r − 1. We conclude that Sa
d−s, . . . , S

a
r−1 form a regular sequence of

Fq[Y1, . . . , Ys], namely they satisfy (H1). Furthermore, by the isomorphism (3.8), for
j = r − 1 we deduce that Sa

d−s, . . . , S
a
r−1 define a radical ideal of Fq[Y1, . . . , Ys] and the

variety Wa
r ⊂ As defined by Sa

d−s, . . . , S
a
r−1 is nonsingular. As a consequence, we have

that (∂Sa/∂Y )(y) has full rank for every y ∈ As, that is, Sa
d−s, . . . , S

a
r−1 satisfy (H2).

Then the results of Section 3.2 can be applied to V a
r . In particular, we have the following

immediate consequence of Lemma 3.1, Theorem 3.2 and Corollary 3.3.

Corollary 3.4. Let V a
r ⊂ Ar be the Fq-variety defined by Ra

d−s, . . . , R
a
r−1. Then V a

r is an
ideal-theoretic complete intersection of dimension d − s, degree at most s!/(d − r)! and
singular locus Σa

r of dimension at most s− 1.

3.3.1. The projective closure of V a
r

In order to obtain estimates on the number of q-rational points of V a
r we also need

information concerning the behavior of V a
r “at infinity”. For this purpose, we consider

the projective closure pcl(V a
r ) ⊂ Pr of V a

r , whose definition we now recall. Consider the
embedding of Ar into the projective space Pr which assigns to any x := (x1, . . . , xr) ∈ Ar

the point (1 : x1 : . . . : xr) ∈ Pr. The closure pcl(V a
r ) ⊂ Pr of the image of V a

r under
this embedding in the Zariski topology of Pr is called the projective closure of V a

r . The
points of pcl(V a

r ) lying in the hyperplane {X0 = 0} are called the points of pcl(V a
r ) at

infinity.
It is well-known that pcl(V a

r ) is the Fq-variety of Pr defined by the homogenization
Fh ∈ Fq[X0, . . . , Xr] of each polynomial F belonging to the ideal (Ra

d−s, . . . , R
a
r−1) ⊂

Fq[X1, . . . , Xr] (see, e.g., [18, §I.5, Exercise 6]). Denote by (Ra
d−s, . . . , R

a
r−1)h the ideal

generated by all the polynomials Fh with F ∈ (Ra
d−s, . . . , R

a
r−1). Since (Ra

d−s, . . . , R
a
r−1)

is radical it turns out that (Ra
d−s, . . . , R

a
r−1)h is also a radical ideal (see, e.g., [18, §I.5,

Exercise 6]). Furthermore, pcl(V a
r ) is an equidimensional variety of dimension d−s (see,

e.g., [18, Propositions I.5.17 and II.4.1]) and degree at most s!/(d − r)! (see, e.g., [6,
Proposition 1.11]).
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Now we discuss the behavior of pcl(V a
r ) at infinity. By Proposition 2.4, for d − s �

j � r − 1 we have

Ra
j = aj +

d∑
i=r

aiHj,i,

where the polynomials Hj,i are homogeneous of degree i− j. Hence, the homogenization
of each Ra

j is the following polynomial of Fq[X0, . . . , Xr]:

Ra,h
j = ajX

d−j
0 +

d∑
i=r

aiHj,iX
d−i
0 . (3.9)

It follows that Ra,h
j (0, X1, . . . , Xr) = Hj,d (d−s � j � r−1), which are the polynomials

associated to the polynomial T d ∈ Fq[T ] in the sense of Lemma 2.2.

Lemma 3.5. pcl(V a
r ) has singular locus at infinity of dimension at most s− 2.

Proof. Let Σa
r,∞ ⊂ Pr denote the singular locus of pcl(V a

r ) at infinity, namely the
set of singular points of pcl(V a

r ) lying in the hyperplane {X0 = 0}, and let x :=
(0 : x1 : . . . : xr) be an arbitrary point of Σa

r,∞. Since the polynomials Ra,h
j vanish

identically in pcl(V a
r ), we have Ra,h

j (x) = Hj,d(x1, . . . , xr) = 0 for d − s � j � r − 1.
Let (∂Hd/∂X) be the Jacobian matrix of {Hj,d: d − s � j � r − 1} with respect to
X1, . . . , Xr. We have

rank
(
∂Hd

∂X

)
(x) < r − d + s, (3.10)

for if not, we would have that dim Tx(pcl(V a
r )) � d − s, which implies that x is a

nonsingular point of pcl(V a
r ), contradicting thus the hypothesis on x.

By Lemma 2.3 the polynomials Hj,d (d − s � j � r − 1) satisfy the hypotheses of
Theorem 3.2. Then Theorem 3.2 shows that the set of points satisfying (3.10) is an affine
equidimensional cone of dimension at most s−1. We conclude that the projective variety
Σa

r,∞ has dimension at most s− 2. �
Now we are able to completely characterize the behavior of pcl(V a

r ) at infinity.

Theorem 3.6. pcl(V a
r ) ∩ {X0 = 0} ⊂ Pr−1 is an absolutely irreducible ideal-theoretic

complete intersection of dimension d − s − 1, degree s!/(d − r)!, and singular locus of
dimension at most s− 2.

Proof. From (3.9) it is easy to see that the polynomials Hj,d vanish identically in
pcl(V a

r )∩{X0 = 0} for d−s � j � r−1. Lemma 2.3 shows that {Hj,d: d−s � j � r−1}
satisfy the conditions (H1) and (H2). Then Corollary 3.4 shows that the variety of Ar
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defined by Hj,d (d− s � j � r− 1) is an affine equidimensional cone of dimension d− s,
degree at most s!/(d−r)! and singular locus of dimension at most s−1. It follows that the
projective variety of Pr−1 defined by these polynomials is equidimensional of dimension
d− s− 1, degree at most s!/(d− r)! and singular locus of dimension at most s− 2.

Observe that V (Hj,d: d − s � j � r − 1) ⊂ Pr−1 is a set-theoretic complete in-
tersection, whose singular locus has codimension at least d − s − 1 − (s − 2) � 3.
Therefore, the Hartshorne connectedness theorem (see, e.g., [18, Theorem 4.2]) shows
that V (Hj,d: d− s � j � r − 1) is absolutely irreducible.

On the other hand, since pcl(V a
r ) is equidimensional of dimension d− s, we have that

each irreducible component of pcl(V a
r ) ∩ {X0 = 0} has dimension at least d − s − 1.

Furthermore, pcl(V a
r ) ∩ {X0 = 0} is contained in the projective variety V (Hj,d: d− s �

j � r − 1), which is absolutely irreducible of dimension d − s − 1. We conclude that
pcl(V a

r ) ∩ {X0 = 0} is also absolutely irreducible of dimension d− s− 1, and hence

pcl
(
V a
r

)
∩ {X0 = 0} = V (Hj,d: d− s � j � r − 1).

Finally, by [11, Theorem 18.15] we deduce that the polynomials Hj,d (d − s � j �
r − 1) define a radical ideal. As a consequence, we see that deg(pcl(V a

r ) ∩ {X0 = 0}) =∏r−1
j=d−s degHj,d = s!/(d− r)!. This finishes the proof of the theorem. �
We conclude this section with a statement that summarizes all the facts we shall need

concerning the projective closure pcl(V a
r ).

Theorem 3.7. The projective variety pcl(V a
r ) ⊂ Pr is an absolutely irreducible ideal-

theoretic complete intersection of dimension d− s, degree s!/(d− r)! and singular locus
of dimension at most s− 1.

Proof. We have already shown that pcl(V a
r ) is an equidimensional variety of dimension

d − s and degree at most s!/(d − r)!. According to Corollary 3.4, the singular locus of
pcl(V a

r ) lying in the open set {X0 �= 0} has dimension at most s− 1, while Lemma 3.5
shows that the singular locus at infinity has dimension at most s − 2. This shows that
the singular locus of pcl(V a

r ) has dimension at most s− 1.
On the other hand, we observe that pcl(V a

r ) is contained in the projective variety
V (Ra,h

j : d− s � j � r − 1). We have the inclusions

V
(
Ra,h

j : d− s � j � r − 1
)
∩ {X0 �= 0} ⊂ V

(
Ra

j : d− s � j � r − 1
)
,

V
(
Ra,h

j : d− s � j � r − 1
)
∩ {X0 = 0} ⊂ V (Hd,j : d− s � j � r − 1).

Both {Ra
j : d−s � j � r−1} and {Hj,d: d−s � j � r−1} satisfy the conditions (H1) and

(H2). Then Corollary 3.4 shows that V (Ra
j : d−s � j � r−1) ⊂ Ar is equidimensional of

dimension d− s and V (Hd,j : d− s � j � r− 1) ⊂ Pr−1 is equidimensional of dimension
d − s − 1. We conclude that V (Ra,h

j : d − s � j � r − 1) ⊂ Pr has dimension at most
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d− s. Taking into account that it is defined by r− d+ s polynomials, we deduce that it
is a set-theoretic complete intersection of dimension r− (r− d+ s) = d− s. This implies
that it is equidimensional of dimension d−s and therefore has no irreducible component
contained in the hyperplane at infinity. In particular, it agrees with the projective closure
of its restriction to Ar (see, e.g., [18, Proposition I.5.17]). As such a restriction is the
affine variety V a

r = V (Ra
j : d− s � j � r − 1), we deduce that

pcl
(
V a
r

)
= V

(
Ra,h

j : d− s � j � r − 1
)
.

Since its singular locus has dimension at most s − 1 and d − s − (s − 1) � 3, the
Hartshorne connectedness theorem (see, e.g., [18, Theorem 4.2]) proves that V (Ra,h

j :
d−s � j � r−1) is absolutely irreducible. Finally, arguing as in the proof of Theorem 3.6,
by [11, Theorem 18.15] we see that the polynomials Ra,h

j (d − s � j � r − 1) define a
radical ideal. This in turn implies that deg pcl(V a

r ) =
∏r−1

j=d−s degRa,h
j = s!/(d− r)! and

finishes the proof of the theorem. �
4. The number of q-rational points of V a

r

As before, we fix integers d and s with d < q, 1 � s � d − 2 and 2(s + 1) � d. For
a given a := (ad−1, . . . , ad−s), set fa := T d + ad−1T

d−1 + · · · + ad−sT
d−s ∈ Fq[T ]. As

asserted before, our objective is to determine the asymptotic behavior of the average
value set V(d, s,a) of (1.1).

For this purpose, according to Theorem 2.1, we have to determine, for d−s+1 � r � d,
the number χa

r of subsets Xr ⊂ Fq of r elements such that there exists g ∈ Fq[T ] of degree
at most d− s−1 interpolating −fa at all the elements of Xr. In Section 2.1 we associate
to a certain polynomials Ra

j ∈ Fq[X1, . . . , Xr] (d − s � j � r − 1) with the property
that the number of common q-rational zeros of Ra

d−s, . . . , R
a
r−1 with pairwise-distinct

coordinates equals r!χa
r , namely

χa
r = 1

r!
∣∣{x ∈ Fr

q: Ra
j (x) = 0 (d− s � j � r − 1), xk �= xl (1 � k < l � r)

}∣∣.
The results of Section 3 are fundamental for establishing the asymptotic behavior

of χa
r . Fix r with d − s + 1 � r � d, let V a

r ⊂ Ar be the affine variety defined by
Ra

d−s, . . . , R
a
r−1 ∈ Fq[X1, . . . Xr] and denote by pcl(V a

r ) ⊂ Pr the projective closure
of V a

r . According to Theorems 3.6 and 3.7, both pcl(V a
r ) ∩ {X0 = 0} ⊂ Pr−1 and

pcl(V a
r ) ⊂ Pr are projective, absolutely irreducible, ideal-theoretic complete intersections

defined over Fq, of dimension d− s− 1 and d− s, respectively, both of degree s!/(d− r)!,
having a singular locus of dimension at most s− 2 and s− 1, respectively.

4.1. Estimates on the number of q-rational points of complete intersections

In what follows, we shall use an estimate on the number of q-rational points of a
projective complete intersection defined over Fq due to [5] (see [14,15] for further explicit
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estimates of this type). In [5, Corollary 8.4] the authors prove that, for an absolutely
irreducible ideal-theoretic complete intersection V ⊂ Pm of dimension n := m−r, degree
δ � 2, which is defined over Fq by polynomials of degree d1 � · · · � dr � 2, and having
singular locus of dimension at most s � n − 3, the number |V (Fq)| of q-rational points
of V satisfies the estimate ∣∣∣∣V (Fq)

∣∣− pn
∣∣ � 14D3δ2qn−1, (4.1)

with pn := qn + qn−1 + · · · + q + 1 = |Pn(Fq)| and D :=
∑r

i=1(di − 1).
From (4.1) we obtain the following result.

Theorem 4.1. With notations and assumptions as above, for d− s + 1 � r � d we have∣∣∣∣χa
r − qd−s

r!

∣∣∣∣ �
(
r

2

)
δr
r! q

d−s−1 + 14
r! D

3
rδ

2
r(q + 1)qd−s−2,

where Dr :=
∑s

j=d−r+1(j − 1) and δr :=
∏s

j=d−r+1 j = s!/(d− r)!.

Proof. First we obtain an estimate on the number of q-rational points of V a
r . Let V a

r,∞ :=
pcl(V a

r ) ∩ {X0 = 0}. Combining Theorems 3.6 and 3.7 with (4.1), we obtain∣∣∣∣pcl
(
V a
r

)
(Fq)

∣∣− pd−s

∣∣ � 14D3
rδ

2
rq

d−s−1,∣∣∣∣V a
r,∞(Fq)

∣∣− pd−s−1
∣∣ � 14D3

rδ
2
rq

d−s−2.

As a consequence,∣∣∣∣V a
r (Fq)

∣∣− qd−s
∣∣ =

∣∣∣∣pcl
(
V a
r

)
(Fq)

∣∣− ∣∣V a
r,∞(Fq)

∣∣− pd−s + pd−s−1
∣∣

�
∣∣∣∣pcl

(
V a
r

)
(Fq)

∣∣− pd−s

∣∣+ ∣∣∣∣V a
r,∞(Fq)

∣∣− pd−s−1
∣∣

� 14D3
rδ

2
r(q + 1)qd−s−2. (4.2)

Next we obtain an upper bound on the number of q-rational points of V a
r which are

not useful for our purposes, namely those with at least two distinct coordinates taking
the same value.

Let V a
r,=(Fq) be the subset of V a

r (Fq) consisting of all such points, namely

V a
r,=(Fq) :=

⋃
1�i<j�r

V a
r (Fq) ∩ {Xi = Xj},

and set V a
r, �=(Fq) := V a

r (Fq) \ V a
r,=(Fq). Let x := (x1, . . . , xr) ∈ V a

r,=(Fq). Without loss
of generality we may assume that xr−1 = xr holds. Then x is a q-rational point of
the affine variety Wr−1,r ⊂ {Xr−1 = Xr} defined by the polynomials Sa

d−s(Π∗
1 , . . . ,

Π∗
s ), . . . , Sa

r−1(Π∗
1 , . . . , Π

∗
s ) ∈ Fq[X1, . . . Xr−1], where Π∗

i := Πi(X1, . . . , Xr−1, Xr−1)
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is the polynomial of Fq[X1, . . . , Xr−1] obtained by substituting Xr−1 for Xr in the
ith elementary symmetric polynomial of Fq[X1, . . . , Xr]. Taking into account that
Π∗

1 , . . . , Π
∗
s are algebraically independent elements of Fq[X1, . . . , Xr−1], we conclude that

Sa
d−s(Π∗

1 , . . . , Π
∗
s ), . . . , Sa

r−1(Π∗
1 , . . . , Π

∗
s ) form a regular sequence of Fq[X1, . . . Xr−1].

This implies that Wr−1,r is of dimension d− s− 1, and hence, [14, Proposition 12.1] or
[3, Proposition 3.1] show that∣∣Wr−1,r(Fq)

∣∣ � degWr−1,rq
d−s−1 � deg V a

r qd−s−1.

Therefore, we obtain

∣∣V a
r,=(Fq)

∣∣ �
(
r

2

)
δrq

d−s−1.

Combining (4.2) with this upper bound we have

∣∣∣∣V a
r, �=(Fq)

∣∣− qd−s
∣∣ �

(
r

2

)
δrq

d−s−1 + 14D3
rδ

2
r(q + 1)qd−s−2.

From this inequality we easily deduce the statement of the theorem. �
The estimate of Theorem 4.1 is the essential step in order to determine the behavior

of the average value set V(d, s,a). More precisely, we have the following result.

Corollary 4.2. With assumptions and notations as in Theorem 4.1, we have∣∣∣∣V(d, s,a) − μdq −
1
2e

∣∣∣∣ � s2 + 1
(d− s− 1)! + 21

8
s6(s!)2

d!

s−1∑
k=0

(
d

k

)
1
k! + 7

q
. (4.3)

Proof. According to Theorem 2.1, we have

V(d, s,a) − μdq

=
d−s∑
r=1

(−q)1−r

((
q

r

)
− qr

r!

)
+ 1

qd−s−1

d∑
r=d−s+1

(−1)r−1
(
χa
r − qd−s

r!

)
. (4.4)

First we obtain an upper bound for the absolute value A(d, s) of the first term in the
right-hand side of (4.4). For this purpose, given positive integers k, n with k � n, we
shall denote by

[ n
k

]
the unsigned Stirling number of the first kind, namely the number

of permutations of n elements with k disjoint cycles. The following properties of the
Stirling numbers are well-known (see, e.g., [12, §A.8]):[

r

r

]
= 1,

[
r

r − 1

]
=
(
r

2

)
,

r∑
k=0

[
r

k

]
= r!.

Taking into account the identity
(
q
r

)
=
∑r

k=0
(−1)r−k

r!
[ r
k

]
qk, we obtain
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A(d, s) :=
d−s∑
r=2

(−q)1−r

((
q

r

)
− qr

r!

)

=
d−s∑
r=2

q1−r
r−1∑
k=0

(−1)k+1

r!

[
r

k

]
qk

=
d−s−2∑
r=0

(−1)r
2r! +

d−s∑
r=2

q1−r
r−2∑
k=0

(−1)k+1

r!

[
r

k

]
qk.

In order to bound the second term in the right-hand side of the previous expression, we
have

r−2∑
k=0

1
r!

[
r

k

]
qk �

r−3∑
k=0

1
r!

[
r

k

]
qk + 1

r!

[
r

r − 2

]
qr−2 � qr−3 + 8

r2 q
r−2

�
(

1
d

+ 8
r2

)
qr−2.

As a consequence, we obtain

∣∣∣∣A(d, s) − 1
2e

∣∣∣∣ � 1
2(d− s− 1)! +

d−s∑
r=2

(
1
d

+ 8
r2

)
1
q

� 1
2(d− s− 1)! + 7

q
.

Next we consider the absolute value of the second term in the right-hand side of (4.4).
From Theorem 4.1 we have that

B(d, s) := 1
qd−s−1

d∑
r=d−s+1

∣∣∣∣χa
r − qd−s

r!

∣∣∣∣
�

d∑
r=d−s+1

(
r

2

)
δr
r! +

d∑
r=d−s+1

14
r! D

3
rδ

2
r

(
1 + 1

q

)
.

Concerning the first term in the right-hand side, we see that

d∑
r=d−s+1

(
r

2

)
δr
r! = s!

2(d− 2)!

d∑
r=d−s+1

(
d− 2
r − 2

)

� s · s!
2(d− 2)!

(
d− 2
s− 1

)
= s2

2(d− s− 1)! .

On the other hand,

d∑
r=d−s+1

14
r! D

3
rδ

2
r � 7

4

d∑
r=d−s+1

s3(s− 1)3(s!)2
r!((d− r)!)2 = 7

4

s−1∑
k=0

s6(s!)2
(d− k)!(k!)2 .
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Therefore, we obtain

B(d, s) � s2

2(d− s− 1)! + 21
8
s6(s!)2

d!

s−1∑
k=0

(
d

k

)
1
k! .

Combining the upper bounds for A(d, s) and B(d, s) the statement of the corollary
follows. �
4.2. On the behavior of (4.3)

In this section we analyze the behavior of the right-hand side of (4.3). Such an analysis
consists of elementary calculations, which shall only be sketched.

Fix k with 0 � k � s − 1 and denote h(k) :=
(
d
k

) 1
k! . Analyzing the sign of the

differences h(k + 1) − h(k) for 0 � k � s− 2, we deduce the following remark, which is
stated without proof.

Remark 4.3. Let k0 := −1/2 +
√

5 + 4d/2. Then h is a unimodal function in the integer
interval [0, s− 1] which reaches its maximum at �k0�.

From Remark 4.3 we see that

s6(s!)2
d!

s−1∑
k=0

(
d

k

)
1
k! � s7(s!)2

d!

(
d

�k0�

)
1

�k0�!
= s7(s!)2

(d− �k0�)!(�k0�!)2
. (4.5)

In order to obtain an upper bound for the right-hand side of (4.5) we shall use the
Stirling formula (see, e.g., [12, p. 747]): for m ∈ N, there exists θ with 0 � θ < 1 such
that m! = (m/e)m

√
2πmeθ/12m holds.

Applying the Stirling formula, and taking into account that 2(s+ 1) � d, we see that
there exist θi (i = 1, 2, 3) with 0 � θi < 1 such that

C(d, s) := s7(s!)2
(d− �k0�)!(�k0�!)2

�
(d2 − 1)8(d2 − 1)d−2e2+�k0	+ θ1

3d−6−
θ2

12(d−�k0�)−
θ3

6�k0�

(d− �k0�)d−�k0	
√

2π(d− �k0�)�k0�2�k0	+1
.

By elementary calculations we obtain

(
d− �k0�

)−d+�k0	 � d−d+�k0	e�k0	(d−�k0	)/d,

d�k0	

�k0�2�k0	
� e(d−�k0	2)/�k0	,

(
d

2 − 1
)d−2

�
(
d

2

)d−2
e4/d−2.
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It follows that

C(d, s) �
(
d

2 − 1
)8

e�k0	+ 1
3d−6+ 4

d+ �k0�
d (d−�k0	)+ 1

�k0� (d−�k0	2)

d22d−2
√

2π(d− �k0�)�k0�
.

By the definition of �k0�, it is easy to see that

�k0� + �k0�
d

(
d− �k0�

)
� 2�k0� −

1
5 ,

1
�k0�

(
d− �k0�2

)
� 4,

(d2 − 1)3

d2�k0�
√
d− �k0�

� 3
20 .

Therefore, taking into account that d � 2, we conclude that

C(d, s) �
3(d2 − 1)5e 1

3d−6+ 4
d− 1

5+3+
√

5+4d

5
√

2π2d
. (4.6)

Combining this bound with Corollary 4.2 we obtain the main result of this section,
namely Theorem 1.1 of the introduction, which is restated here for the sake of readability.

Theorem 4.4. For q > d and 1 � s � d
2 − 1, we have∣∣∣∣V(d, s,a) − μdq −

1
2e

∣∣∣∣ � (d− 2)5e2
√
d

2d−2 + 7
q
. (4.7)

Proof. From (4.6) and the fact that
√

5 + 4d � 4/5 + 2
√
d holds for d � 2, we conclude

that

21
8
s6(s!)2

d!

s−1∑
k=0

(
d

k

)
1
k! � 3(d− 2)5e2

√
d

2d .

On the other hand, it is not difficult to see that

s2 + 1
2(d− s− 1)! � (d− 2)5e2

√
d

2d .

From these inequalities the statement of the theorem easily follows. �
We make several remarks concerning the upper bound of (4.7).

Remark 4.5. Let f : Z�4 → R, f(d) := e2
√
d(d− 2)52−d. Then f is a unimodal function

which reaches its maximum value at d0 := 14, namely f(d0) ≈ 1.08 · 105. Furthermore,
it is easy to see that limd→+∞ f(d) = 0, and indeed for d � 51, we have f(d) < 1.
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An obvious upper bound for the left-hand side of (4.7) is |V(d, s,a)−μdq− (2e)−1| �
(1 − μd)q. Direct computations show that the upper bound of Theorem 4.4 is not inter-
esting for small values of q if d � 44.

On the other hand, with a slight further restriction for the range of values admissible
for s, namely for 1 � s � d

2 − 3, it is possible to obtain significant improvements of the
upper bound of Theorem 4.4. More precisely, arguing as in the proof of Theorem 4.4 we
obtain the upper bound∣∣∣∣V(d, s,a) − μdq −

1
2e

∣∣∣∣ � 9(d− 6)e2
√
d

2d−2 + 7
q
. (4.8)

Let g := Z�7 → R, g(d) := 9(d − 6)e2
√
d2−d+2. Then g is a unimodal function reach-

ing at d1 := 9 its maximum value, namely g(d1) := 85. Furthermore, we have that
limd→+∞ g(d) = 0 and g(d) < 1 for d � 24. In particular, (4.8) is nontrivial for d � 19.

Remark 4.6. It may be worthwhile to discuss the asymptotic behavior of the right-hand
side of (4.3). Let

H(d, s) := s6(s!)2
d!

s−1∑
k=0

(
d

k

)
1
k! .

Let ad(k) :=
(
d
k

) 1
k! for 0 � k � d. In [21] it is shown that ad is a unimodal function in the

integer interval [0, d] reaching its maximum at �k0�, where k0 is defined as in Remark 4.3.
Furthermore, for ε > 1/4 it is proved that

d∑
k=0

ad(k) ∼
∑

k∈(k0−dε,k0+dε)

ad(k) ∼ 1
2
√
πe

d−1/4e2
√
d,

where the symbol ∼ denotes equal asymptotic behavior. Assume that s > �k0�+dε with
ε > 1/4. Then by the Stirling formula we obtain

H(d, s) ∼ 1√
2e

(
e

d

)d(
s

e

)2s
s7e2(s−

√
d)d−3/4.

We finally observe that, if s � �k0� + dε with ε > 1/4, then the right-hand side of this
expression is an upper bound for H(d, s) for d sufficiently large. This shows that H(d, s)
converges to 0 with a double exponential rate d−(1−2λ)d for s � λd with λ ∈ [0, 1/2[.
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