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Two-Dimensional Geoelectrical Modeling Using a
Rayleigh-Fourier Method

Ana Osella, Patricia Martinelli, and Daniel Cernadas

Abstract—In this paper, we present a new method for DC re-
sistivity modeling as an alternative to finite element and finite dif-
ference techniques, based on a Rayleigh-Fourier approach. This is
especially adequate to model 2-D layered structures with smooth
irregular boundaries.

The validity of the method is verified by comparing its results
with FE solutions for two synthetic models, representing a horst
and a graben. The ability to model actual data has also been tested
by applying it to interpret data from tectonic basin in the Sierras
Pampeanas region in Argentina. During the modeling process, the
method showed good convergence and proved friendly to use. Sev-
eral layers could be identified as being part of an aquifer complex,
and the most remarkable fact regarding the reliability of the results
is that the description of these layers is in good agreement with in-
formation from wells.

Index Terms—DC resistivity method, geoelectrical prospecting.

I. INTRODUCTION

DC RESISTIVITY methods are especially adequate to ob-
tain an electrical imaging of the shallow layers. The depth

of penetration depends on the geometrical configuration of the
electrodes, but usually it can reach down to several hundred me-
ters. The interpretation of the data requires the application of
numerical methods to model the geoelectrical structures. A first
insight may be achieved assuming a stratified earth, but the com-
plexity of the actual structure makes it necessary to consider 2-D
or even 3-D models.

Different methods have been developed to solve these kinds
of problems, based on three principal numerical techniques:
integral equation approaches [1], [2], finite element methods
[3]–[5], and finite diference methods [6]–[10]. Each technique
has its own advantage and is suitable for particular electrode
configurations and geometries and features of the surveyed
area.

In previous papers, we developed an algorithm to model
the magnetotelluric response of two-dimensional (2-D) and
three-dimensional (3-D) structures composed of homoge-
neous layers with smooth irregular boundaries, using a
Rayleigh-Fourier (RF) technique. Results obtained with these
methods were in agreement with the ones obtained by finite
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Fig. 1. N -layered structure.x andx indicate the positions of the current
injection electrodes.

elements and finite differences and have proved to be easier to
apply when large scale variations are involved [11], [12]. In
the present paper, we modify this method in order to model the
resistivity response of 2-D structures. We apply it to solve horst
and graben structures and compare the results with the ones
obtained using a finite element technique [13] and also with the
curves assuming a one-dimensional (1-D) behavior.

II. THEORETICAL MODEL

In the formulation, 2-D -layered structures with irregular
boundaries are considered. Such boundaries are described by
functions for . Each medium is
linear, homogeneous, and isotropic, and has a conductivity.
The current injection electrodesand are located along the

profile, at positions and , while the measurement
electrodes are positioned at arbitrary positions and , re-
spectively (see Fig. 1).

Inside each layer and excluding the injection points, the
potential function satisfies

(1)

and the current density is obtained from

(2)

Here, the problem is solved by developing each potential
as a Rayleigh-Fourier series. As some multiple reflections are
not included in Rayleigh’s scattering theory, the solution actu-
ally constitutes an approximation. Validity limits of this approx-
imation have been extensively tested for the magnetotelluric 2-D
and 3-D RF methods [11], [12]. In those cases, boundary slopes
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up to 50 or 60 (depending on layer resistivities) have been ac-
curately modeled.

To simplify the treatment and without losing generality, it can
be assumed that are even and periodic functions of. The lo-
cation of the injection electrodes is also made symmetric and pe-
riodic in , and in addition, it is made periodic in. The period-
icity in the and coordinates is named(Fig. 2). The studied
area, located along the line, corresponds to values of
such that when
the interfaces are 1-D. The effect of these imposed conditions
over the zone of interest is negligible whenis much greater
than .

In the upper layer, the general solution to (1) can be written
as

(3)

where is a source term given by

(4)

and

(5)

where is the current injected to the soil ,
, and .

Considering (2), is given by

(6)

with

(7)

and

Fig. 2. Extended model used to estimate the geoelectrical response of the
structure using the RF approach.

(8)

where , , and are unitary vectors pointing out, respectively,
in the directions , , and .

In the other layers, the solutions are

(9)

and

(10)
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Fig. 3. (a) Horst model used to apply RF method and FE technique form [13].x andx indicate the positions of two synthetic Schlumberger soundings. (b) and
(c) Geoelectrical responses atx andx , respectively, calculated with RF and FE codes assuming 2-D and 1-D layered structures.

Considering that for , only has a
physical meaning, then

(11)

When Rayleigh’s approximation is valid, the series (5),
(8)–(10) are convergent, so subscriptsand can be truncated
at a finite number . Then and are determined by

constant coefficients and , which are
calculated applying the adequate boundary conditions. On the
air–earth interface , the vertical component of must be
null at any point other than the injection points. In addition, on
every interface with , and the
normal component of are continuous. In the last term, since
the potential must not diverge whenincreases, must
be equal to zero if or differ from zero. It is worthwhile
to point out that the equations arising from the application of
these boundary conditions can be solved separately for every

between 0 and . The procedure employed to calculate
the coefficients and for each is described in the
appendix.

This method has been applied to a great variety of synthetic
models in order to obtain a self-consistency criterion for the de-
termination of the validity of Rayleigh’s approach in each par-
ticular case. As Rayleigh solutions are an approximation, there
are residual discontinuities of and the normal component of

at layer interfaces. When the approximation is valid, the root

mean square (RMS) value of these residuals can be reduced to
a level below a few points per cent by increasing the number
of scattering orders considered. This is because the series
are convergent. On the contrary, when the approximation is no
longer valid, the residual discontinuities remain large. In these
cases, either the series exhibit an oscillatory behavior or they
are convergent for small values of, and then become diver-
gent as increases. This consistency criterion is similar to the
one found valid for the magnetotelluric 2-D and 3-D RF mod-
eling methods [11], [12].

III. COMPARISON WITH THEFINITE ELEMENT TECHNIQUE

To test the formulation, we calculate the geoelectric response
of two different structures, a horst and a graben, and compare
the results with the curves obtained using the finite element (FE)
technique developed by Pouset al. [13]. The proposed models
are shown in Figs. 3(a) and 4(a), respectively. In both cases, the
lower interface is given by the following analytical function:

where 150 m, 60 m, and and are, respectively,
250 m and 190 m for the horst and 60 m and 190 m for the
graben. Two values were considered for the resistivity of the
second layer: = 0.1 m and = 5 m. These choices pro-
duce two different models, one with alternated values of the re-
sistivity of the layers and the other with increasing.
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Fig. 4. (a) Graben model used to apply RF method and FE technique from [13].x andx indicate the positions of two synthetic Schlumberger soundings. (b)
and (c) Geoelectrical responses atx andx , respectively, calculated with the RF and FE codes assuming 1-D and 2-D layered structures.

To apply the FE method, each one of these smooth models is
approximated by assigning the adequate value of resistivity to
every element of a rectangular mesh.

The calculations were performed at two sites,at the center
of the structure and where the structure tends to recover the
1-D features. For these examples, the Schlumberger configura-
tion was assumed for the two synthetic surveys. The curves of
apparent resisitivity versus obtained by each method,
for each model, at the two sites, are compared in Fig. 3(b) and
(c) and in Fig. 4(b) and (c), respectively. The results obtained as-
suming 1-D layered structures below each site are also plotted
in these figures. For both the 2-D and 1-D models, FE and RF
results are in very good agreement.

For the examples analyzed here, the RF method achieved
good convergence, and values of(scattering order) lower than
15 were required in all cases. Calculation times employed to run
RF and FE codes in an Digital Alpha 225 under a Unix environ-
ment were about 50 and 70 s, respectively.

We also investigated the sensitivity of the response to changes
in the width of the horst and the graben by varying the value of
the parameter . Fig. 5 shows the response of each model at
the site (just over the center of the anomalies), calculated for

60, 120, and 300 m. For both models, the sensitivity to the
value of obtained when 0.1 m is much greater than the
one obtained when 5 m. In the first case, a splitting of
the curves is clearly seen for values of greater than 50 m.
For other sites, the splitting diminishes as long as the distance

to increases, becoming negligible for distances greater than
900 m, approximately.

IV. DISCUSSION

An adequate imaging of subsurface structures usually
requires the application of 2-D and 3-D methods to inter-
pret geoelectrical data. Different techniques have been used,
depending on the features of the structure, the geometrical con-
figuration of the electrodes, and the extension of the surveyed
area.

In particular, in this paper, we present a method that has a
different applicability range from the FE or FD techniques. It is
intended for the modeling of multilayered structures with irreg-
ular boundaries. The formulation is independent from the ge-
ometrical configuration of the measurement electrodes, and it
is especially adequate for extended profiles. This capability was
tested recently when imaging the electrical properties of an allu-
vial aquifer located in a Sierras Pampeanas tectonic valley [14].
In that case, a total of 17 geoelectrical depth soundings were
conducted along a 35 km E-W profile, with maximum half-elec-
trode spacing of 1500 m in the Schlumberger configura-
tion. We first interpreted the data by assuming a horizontally
layered model at each sounding site using a 1-D inversion code
[15]. Then, with these results, we designed a smooth starting
model for the application of the RF code presented here. The
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(a) (b)

Fig. 5. Dependence of the response atx = x with the width of (a) the horst and (b) the graben, which is defined by the value of the parameterG.G = 60 m
corresponds to the models shown in Figs. 3(a) and 4(a).

Fig. 6. (a) Electrical imaging of an alluvial aquifer in a tectonic valley, obtained using the RF code [14]. The location of the water table obtained from drillings
is also indicated. (b) Response of this model compared to data obtained at various sounding sites.

final 2-D resistivity cross section obtained led to the charac-
terization of the aquifer, whose accuracy was proved when its
features were compared with the information available from ten
boreholes located in that zone. The resulting electrical model of
the shallow layers, together with the location of the water table,
are shown in Fig. 6(a). The fittings of the apparent resistivity
curves to the data at several sites are displayed in Fig. 6(b).

One of the advantages of this formulation is the friendly way
to define the interfaces. Each one of them can be defined directly
by an analytical function or by giving the- coordinates of
an adequate number of points belonging to it. In the last case,
the code internally generates a continuous and derivable spline
function, passing through every one of these points.

APPENDIX

Here, the methodology used to calculate the coefficients
and for every value of is described.

On the air-earth interface 0, the vertical component of
must be null at any point other than the injection points. This

condition must be imposed only to the homogeneous term,
because it is automatically satisfied by the source term. Con-
sidering (8) and (11), it implies that

(12)
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At with , and the normal
component of are continuous. It must be noted that the normal
component of is continuous if and only if

(13)

is continuous for every value ofand between and .
and are, respectively, the and components of .

The source terms of and evaluated on boundary can
be expressed as

(14)

(15)

with

(16)

(17)

Taking into account (5), (14), and (12), it can be demonstrated
that the continuity of implies that

(18)

Considering also (8) and (15) and doing some algebra, from
the continuity of it is obtained that, for

(19)

and for every

(20)

For with , the following equation
derives from the continuity of :

(21)

while the continuity of gives, for

(22)

and, for

(23)

As the potential must not diverge whenincreases

(24)
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It can be noted that the equations arising from the applica-
tion of boundary conditions can be solved separately for every

between 0 and . This is an important consequence of the
bidimensionality of the structure that simplifies the resolution
procedure and reduces calculation times.

In order to obtain a unique solution, a system of
linearly independent equations is required for each inteface
with . These systems are built-up evaluating the
equations arising from the application of boundary conditions
at the following equally-spaced points :

for (25)

For the interfaces with , if , then
(21) and (23) are evaluated at the pointsto . On the other
hand, when , then (21) is evaluated at the pointsto ,
(22) is evaluated at to , and the relation (11) is considered.
This leads to the following matrix systems:

(26)

(27)

(27)

where the vectors and are defined for everybetween
0 and as

(28)

and ,

(29)

(30)

If , and take the form ,

(31)

(32)

while if , then ,

(33)

(34)

Taking into account equations (11) and (24), then

(35)

Solving (26) and (27) from the lower interface to the second
one, a relation is obtained between and

(36)

where only depends on the characteristics of the struc-
ture and not on the geometry of the sources.

Finally, at , (18) is evaluated at the points to
. In addition, if 0, (19) is evaluated at to , and the

relation (11) is considered. For the other case , (20)
is evaluated at to . Considering (36), the systems obtained
are

(37)

(38)

with and defined, respectively, by (29) and (30),
and

(39)

(40)

for , .
If 0

(41)

(42)

(43)

(44)

for , .
In the other case, , , and are given by

(33) and (34), and

(45)

(46)

for , .
From (37) and (38), the vector can be calculated for

every value of .
It must be noted that relation (38) gives equations when

, but only equations when 0. This is correct
because of the fact that is implicitly included in
relation (37).
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