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ABSTRACT
The velocity distribution of stars in the solar neighbourhood can be globally characterized
by the presence of two stellar streams (I and II). Stream I contains kinematic substructures,
named moving groups of stars, such us the Pleiades and Hyades groups. While Stream II is
essentially associated with the Sirius group. The origin and nature of these two stellar streams
are still not completely clear. We propose that Streams I and II were gravitationally linked to
an old gas supercloud that was disintegrated in parts that formed new subsystems, viz., the
Orion arm and Gould’s belt. On the basis of this idea, we constructed a dynamical model of the
supercloud in order to explain the kinematic and structural characteristics of the local system
of gas and stars. For the study of the relative orbits of the two stellar streams with respect to
the supercloud’s centre and of the Galactic orbit of the supercloud, we developed appropriate
epicyclic motion equations. The results of the model indicate the possibility that about 75–
100 Myr ago the supercloud crossed the Perseus arm and as a consequence was strongly
braked. Besides, around 60 Myr ago, the position of the supercloud coincided approximately
with that of the Big Dent, a huge depression of the Galactic disc. We suggest that the cause that
originated the Big Dent could be the same that perturbed the supercloud starting the formation
of the Orion arm and Gould’s belt. In this context, we derived the theoretical distributions of
positions and velocities for the stars of Streams I and II.

Key words: stars: kinematics and dynamics – ISM: clouds – Galaxy: kinematics and dynam-
ics – local interstellar matter – open clusters and associations: individual: Gould’s belt; Orion
arm; Sirius, Pleiades and Hyades moving groups – solar neighbourhood.

1 IN T RO D U C T I O N

The solar neighbourhood within 1 kpc contains structures, such
as the local (Orion) arm, Gould’s belt and moving stellar groups,
which would not been independent of each other. The thesis of
this study is that this local system of gas and stars would be the
result of an old supercloud in advanced state of disintegration, and
interestingly the Sun itself could have been connected for a long
time with this supercloud. The understanding of the relationships
among these different subsystems can help us to reconstruct globally
the evolutionary history of the supercloud, which, in turn, might be
linked to the occurrence of certain geological and biological events
along the terrestrial history (e.g. Clube & Napier 1982, 1986; de
la Fuente Marcos & de la Fuente Marcos 2004). We can think of
the progenitor supercloud of the local system as having a diameter
of ∼600 pc and a mass of ∼2 × 107 M� (Olano 2015), which is
within the characteristics of the superclouds found in our Galaxy
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and in external galaxies (Elmegreen & Elmegreen 1983; Efremov
2010).

The Orion arm and Gould’s belt are relatively young (<100 Myr
old), and probably products of a strong interaction of the supercloud
with the interstellar medium during the last 100 Myr. Comprehen-
sive reviews on this topic are given by Pöppel (1997) and Bobylev
(2014). On the other hand, the ages of moving stellar groups are
much greater, where the more conspicuous ones have approx. 400–
600 Myr and probably are related with the origin of the supercloud
(Olano 2001). For instance, the ages of the Sirius group and of
the Hyades group are 350–413 Myr and 488–679 Myr, respectively
(Bovy & Hogg 2010). The age heterogeneity observed in certain
moving groups (De Simone, Wu & Tremaine 2004; Famaey et al.
2005; Famaey, Siebert & Jorissen 2008) could imply that an impor-
tant stellar component of the supercloud contains field stars captured
by the supercloud in its origin (Olano 2015). There are some moving
groups that are very old, with mean stellar ages greater than 3 Gyr
(Bobylev, Bajkova & Mylläri 2010), and their kinematic association
with the main groups could also be explained by a capture mech-
anism. The exception would be the Arcturus group, whose very
high velocity (≈100 km s−1) could imply that this group forms part
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of the solar neighbourhood extension of the thick disc population
(Navarro, Helmi & Freeman 2004). The nearby moving groups have
been historically characterized as belonging to two stellar streams,
viz., Stream I and Stream II (Kapteyn 1905)

On the idea that the stellar Streams I and II are the remnants
of an originally giant complex of gas and stars, we will attempt
to reconstruct broadly the events that led, on the one hand, to the
disintegration of the old supercloud, and on the other hand, to the
formation of new subsystems, viz., the Orion arm and Gould’s belt.
The paper is organized in the following way. In Section 2, we
give a detailed deduction of the epicyclical equations of motion for
clouds and stars of the Galaxy, considering that the Galaxy has a
flat rotation curve and that the gas clouds can be also subjected to
non-gravitational forces. First, we develop the epicyclic equations
describing the motion of an interstellar gas cloud, not necessarily
in quasi-circular orbit, with respect to a reference system in circu-
lar Galactic orbit (Section 2.1). Secondly, we develop the epicyclic
equations describing the motions of the stars, bounded gravitation-
ally to the gas cloud, relative to its gravitational centre (Section 2.2).
In Section 3, we postulate the evolutive and physical conditions of
the local supercloud; and apply the epicyclical equations to deter-
mine the orbits of the supercloud and of Stream II (Section 3.1),
and the orbits of the supercloud’s nucleus and of Stream I (Section
3.2). In Section 4, from the supercloud’s model, we derive different
spatial and velocity distributions of Streams I and II, which can
be compared with the observational distributions. In Section 5, we
discuss the effects of certain variations of the supercloud’s model
on the results. Finally, in Section 6, we give the conclusions.

2 EP I C Y C L I C E QUAT I O N S O F MOTI O N
TO C A L C U L ATE R E L AT I V E O R B I T S
I N T H E G A L A X Y

The epicyclic formulation has been very useful for the study of
dynamics of different Galactic systems (Bok 1934; Mineur 1939;
Lindblad 1941; Chandrasekhar 1942). The classical epicyclic equa-
tions of motion are obtained under the assumption that we are
dealing with quasi-circular orbits. Hence, our first aim is to obtain
exact epicyclic equations for general orbits, and then to evaluate the
simplification of these equations under specific conditions.

2.1 Supercloud’s orbit relative to a local reference system in
Galactic rotation

We will use two Cartesian coordinate systems on the Galac-
tic plane. The first one is defined by a stationary frame (x, y)
with origin at the Galactic centre (Gc). The second one is de-
fined by a rotating frame (η, ξ ) whose coordinate origin lies at
a distance R0 from Gc and describes a circular orbit about Gc
with a constant angular velocity ω0. The positive η-axis points in
the rotation direction and the positive ξ -axis points in the anti-
centre direction (see Fig. 1). We will study the orbit of a mass
point C, moving on the Galactic plane under the central gravitational
force K(Rc) of the Galaxy, which is a function of the Galactocentric
distance of the point C, here denoted by Rc. The mass point C can
represent for instance the gravitational centre of a gas-star complex
(in our case, the local supercloud, see Fig. 1). Besides, we assume
that the mass point C is under the action of an arbitrary additional
force F (per unit mass) that is not gravitational and acts on the gas
component of the supercloud. In our case, F will represent an hydro-
dynamic force due to the friction between the gas supercloud and
the surrounding interstellar medium or due to the pass of a shock

Figure 1. Illustration of the stationary coordinate system (x, y) centred at
the Galactic centre and the rotating coordinate system (η, ξ ) of origin O
moving on a circular orbit of radius R0. The figure plane represents the
Galactic plane and the rotation sense is clockwise. The angle θ , between the
y-axis and ξ -axis, increases in the sense of the Galactic rotation.

wave that affects the gas supercloud. Then, the motion equations in
the reference system (x, y) are given by

ẍc = −K(Rc)
xc

Rc

+ Fx

ÿc = −K(Rc)
yc

Rc

+ Fy, (1)

where Fx and Fy are the components of F and subscript c refers to
the coordinates of the point C. Because the force K(Rc) is equal to
the centripetal force at Rc, we will write K(Rc) = Rc ω(Rc)2, where
ω(Rc) refers to the Galactic angular velocity at Rc and for short will
be written as ωc. Since we are interested in referring the motions
to the rotating system, we should convert equations (1) into ones
depending on (η, ξ ). The formulae that govern this transformation
are

xc = (R0 + ξc) sin θ + ηc cos θ

yc = (R0 + ξc) cos θ − ηc sin θ, (2)

which are obtained from simple geometrical considerations of
Fig. 1. Besides, we should have into account that Fx =
Fξ sin θ + Fη cos θ and Fy = Fξ cos θ − Fη sin θ , and that θ is
a function of time t given by θ = θ0 + ω0 t. We adopt θ0 = 0, i.e.
the y-axis and ξ -axis agree at t = 0. Differentiating twice equations
(2) with respect to the time t, we obtain

ẍc = a1 cos θ + a2 sin θ

ÿc = −a1 sin θ + a2 cos θ, (3)

where a1 = η̈c + 2ω0 ξ̇c − ω2
0 ηc and a2 = ξ̈c − 2ω0 η̇c − ω2

0 (R0 +
ξc). From the second members of equations (1), with the corre-
sponding replacements, we get that

ẍc = c1 cos θ + c2 sin θ

ÿc = −c1 sin θ + c2 cos θ, (4)
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where c1 = −ηc ω2
c + Fη and c2 = −(R0 + ξc) ω2

c + Fξ . By equat-
ing equations (3) to the corresponding equations (4), we have

a1 cos θ + a2 sin θ = c1 cos θ + c2 sin θ

−a1 sin θ + a2 cos θ = −c1 sin θ + c2 cos θ. (5)

The system of equations (5) is equivalent to the system a1 = c1 and
a2 = c2. Thus, the exact epicyclic equations of motion for the mass
point C are

η̈c + 2ω0 ξ̇c + (ω2
c − ω2

0) ηc = Fη

ξ̈c − 2ω0 η̇c + (ω2
c − ω2

0) R0 + (ω2
c − ω2

0) ξc = Fξ . (6)

If we adopt a flat rotation curve for the Galaxy, with a rotation
velocity V0 = 220 km s−1, in approximate agreement with the
measurements in a large range of Galactocentric distances (e.g.
Sofue, Honma & Omodaka 2009; Bovy et al. 2012), ωc = V0

Rc

and ω0 = V0
R0

= const. Since R2
c = (R0 + ξc)2 + η2

c (see Fig. 1),
we have

ωc = V0√
(R0 + ξc)2 + η2

c

. (7)

For the study of the orbit of the local supercloud, the origin of the
system (η, ξ ) should be located in the solar neighbourhood at the
Galactocentric distance of the Sun (i.e. R0 ≈ 8 kpc). Replacing
equation (7) into equations (6), this equation system can be solved
numerically.

The initial conditions needed to solve the differential equation
system (6), i.e. ηc(0), ξ c(0), η̇c(0), ξ̇c(0), will be calculated from
the LSR velocity and position of the supercloud’s gravitational
centre at t = 0. With this purpose, we use the relations (2) to
obtain ηc = xc cos θ − yc sin θ and ξ c = xc sin θ + yc cos θ −
R0. Hence, η̇c = −ω0xc sin θ − ω0yc cos θ + ẋc cos θ − ẏc sin θ

and ξ̇c = ω0xc cos θ − ω0yc sin θ + ẋc sin θ + ẏc cos θ . Since
θ = ω0t = 0 at t = 0, the former formulae give ηc(0) = xc(0),
ξ c(0) = yc(0) − R0 and

η̇c(0) = −ω0ξc(0) + Ẋc(LSR)

ξ̇c(0) = ω0ηc(0) + Ẏc(LSR), (8)

where Ẋc(LSR) = ẋc(0) − ω0R0 and Ẏc(LSR) = ẏ(0), which cor-
respond to the LSR velocity components. The positive axis of
Ẋc(LSR) velocities points in the direction of the Galactic rotation
and the positive axis of Ẏc(LSR) velocities points in the direction
opposite to that of the Galactic centre.

It also is of interest to calculate from the values of ηc(t), ξ c(t),
η̇c(t) and ξ̇c(t) at a certain time t, the corresponding LSR-velocity.
Projecting the velocities components ẋc and ẏc on to the radio
vector Rc and a direction perpendicular to this vector, the LSR
velocity of the supercloud’s centre at the position (ηc(t), ξ c(t)), or
at Rc(=

√
(R0 + ξc(t))2 + ηc(t)2 ), is given by

Ẋc(LSR) = ẋc cos A − ẏc sin A − V0

Ẏc(LSR) = ẋc sin A + ẏc cos A, (9)

where A is the angle between the y-axis and the radio vector Rc,
and hence A = θ + α, where α = arctan ηc(t)

R0+ξc(t) (Fig. 1). The
expressions of ẋc and ẏc used in (9) are functions of ηc(t), ξ c(t),
η̇c(t) and ξ̇c(t), obtained by means of equations (2). Note that if α

is small as compared to θ , equations (9) become

Ẋc(LSR) � η̇c(t) + ω0 ξc(t)

Ẏc(LSR) � ξ̇c(t) − ω0 ηc(t), (10)

and equations (8) are a particular case of equations (10).

2.2 Orbits of the supercloud’s stars relative
to the gravitational centre of the supercloud

The aim of this section is to determine the orbit of a star S with
respect to the gravitational centre C of a gas-star complex in the ro-
tating system (η, ξ ) (see Fig. 1). We assume that the star S is subject
to the general Galactic gravitational force, K(Rs) = Rs ω(Rs)2, and to
a central gravitational force due to the supercloud, J(r), where Rs is
the Galactocentric distance of the star S, r is the distance of the star
S from C, and the subscript S refers to the star S. The components
of the force J(r) are therefore Jη = J (r) ηs−ηc

r
and Jξ = J (r) ξs−ξc

r
,

where r =
√

(ηs − ηc)2 + (ξs − ξc)2. By analogy with the system
of equations (6), the motion equations for the star S are

η̈s + 2ω0 ξ̇s + (ω2
s − ω2

0) ηs = Jη

ξ̈s − 2ω0 η̇s + (ω2
s − ω2

0) R0 + (ω2
s − ω2

0) ξs = Jξ . (11)

The solution of the system of coupled differential equations (11)
requires that we first or simultaneously solve the system of coupled
differential equations (6) for ηc and ξ c. Then, the relative orbit
of S with respect to C is simply given by η�(t) = ηs(t) − ηc(t)
and ξ�(t) = ξ s(t) − ξ c(t), where the symbol � for the superscript
of the coordinates refers to the relative orbit with respect to the
supercloud’s centre.

The epicyclical equations of motion given by equations (6)
and (11) are greatly simplified by means of the approxima-
tion Rc ≈ R0 + ξ c and Rs ≈ R0 + ξ s, which is valid
if the coordinates η and ξ of the C and S are small
with respect to R0. This simplification leads to the classi-
cal epicyclical equations. In effect, (ω2

c − ω2
0) = ( V0

Rc
)2 − ( V0

R0
)2 =

−ω2
0

(R0+Rc)(Rc−R0)
R2

c
≈ −ω2

0
(2R0+ξc)ξc

(R0+ξc)2 ≈ −2ω2
0

ξc

R0
, with which equa-

tions (6) become

η̈c + 2ω0 ξ̇c + εc = Fη (12)

ξ̈c − 2ω0 η̇c − 2ω2
0 ξc + δc = Fξ , (13)

where εc = − 2ω2
0ξcηc

R0
and δc = − 2ω2

0ξ2
c

R0
, which can be neglected in

this approximation. Similarly, (ω2
s − ω2

0) ≈ −2ω2
0

ξs

R0
, with which

equations (11) become

η̈s + 2ω0 ξ̇s + εs = Jη (14)

ξ̈s − 2ω0 η̇s − 2ω2
0 ξs + δs = Jξ , (15)

where εs = − 2ω2
0ξsηs

R0
and δs = − 2ω2

0ξ2
s

R0
.

From former equations, we can derive a system of motion equa-
tions to calculate conveniently the relative orbit of S about C. Sub-
tracting term by term equation (12) from equation (14) and equation
(13) from equation (15), and remembering that η� = ηs − ηc and
ξ� = ξ s − ξ c, we obtain the following equation system:

η̈ � + 2ω0 ξ̇ � = Jη − Fη

ξ̈ � − 2ω0 η̇ � − 2ω2
0 ξ� = Jξ − Fξ , (16)

where the higher order terms, ε and δ, were neglected. This system of
motion equations has the advantage that will permit us to calculate,
although approximately, the relative orbits of the supercloud’s stars
without calculating previously the orbit of gravitational centre C of
the supercloud. Note that the forces Fη and Fξ are reflected with the
reverse signs in the system (16) that governs the relative motions of
the stars.
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In order to obtain the initial conditions for equation (16), we need
to find the relationships between the initial velocity and position in
the rotating system with the corresponding ones in the LSR system.
Subtracting term by term equations (8) from similar equations for
S, we get

η̇�(0) = −ω0 ξ�(0) + Ẋ�(LSR)

ξ̇ �(0) = ω0 η�(0) + Ẏ �(LSR), (17)

where Ẋ�(LSR) = Ẋs(LSR) − Ẋc(LSR) and Ẏ �(LSR) =
Ẏs(LSR) − Ẏc(LSR). The initial position (η�(0), ξ�(0)) agrees in
both systems, but the initial velocity (η̇�(0), ξ̇ �(0)) contains terms
due to the system’s rotation.

3 TH E L O C A L S U P E R C L O U D ’ S MO D E L

The final aim of this section is to explain, on the basis of the su-
percloud model, the particular velocity distribution of the stars in
the solar vicinity. The modern determinations of the kinematics of
the local stars (Dehnen 1998; Bovy, Hogg & Roweis 2009; Bovy
& Hogg 2010; Gontcharov 2012a,b) confirm the existence of the
main kinematic stellar groups. On the whole, there are basically
two main kinematic structures, the stellar Streams I and II, as clas-
sically interpreted (Kapteyn 1905). Stream I includes the Hyades,
the Pleiades, NGC 1991 and Hercules moving groups ; and Stream II
is associated with the Sirius group, also named Sirius supercluster,
which includes the sparse Ursa Major nucleus cluster (Eggen 1998).

We postulate that, during the last 50–100 Myr, the supercloud has
been subject to instabilities that dispersed and braked the gaseous
component of the supercloud, in part as consequence of a strong
interaction with the background interstellar matter. The Orion arm
and the Gould belt were formed from the dispersed gas of the
supercloud. Because of the stars are not almost affected directly
by the interaction with the interstellar medium, the stars associated
with the supercloud, i.e. the moving stellar groups, preserve still
their dynamical memory. Therefore, the study of the orbits of the
moving groups relative to the centre of the hypothetical supercloud
in disintegration can help us to reconstruct the orbit of the gaseous
part of the supercloud and thus to infer its possible origin.

We represent the supercloud by a uniform ellipsoid of density
ρ, semimajor axis a and eccentricity e. We consider that ρ is
almost coincident with the density of the gaseous component of
the supercloud. In other words, the mass of the stellar component
of the supercloud is considered small, compared to that of the
gaseous component, and therefore its gravitational influence on the
gas supercloud is negligible. In order to model the disintegration
process of the supercloud, we assume that the density ρ is a
function of time given by ρ(t) = ρ0(1 + λ t), where ρ0 and λ are
constant. Hence, the force J(r), defined in Section 2.2, is given

by J (r) = −2πGρ(t)
√

1−e2

e2 ( arcsin e
e

− √
1 − e2) r , for r ≤ a. G

is the gravitational constant. Thus, we can write Jη = J (r) η �

r
=

−k2(1 + λ t) η � and Jξ = J (r) ξ�

r
= −k2(1 + λ t) ξ�, where

k2 = 2πGρ0

√
1−e2

e2 ( arcsin e
e

− √
1 − e2). Then, the formulae (16)

result

η̈ � + 2ω0 ξ̇ � + k2(1 + λ t) η � = −Fη

ξ̈ � − 2ω0 η̇ � − 2ω2
0 ξ� + k2(1 + λ t) ξ� = −Fξ . (18)

The force components Fη and Fξ in equations (18) will represent
braking forces acting on the gaseous component of the supercloud
due to the interaction with the interstellar matter. We will assume

that Fη and Fξ are functions of time t that can be expressed in
power-series as

Fη =
∞∑

n=0

f ηnt
n

Fξ =
∞∑

n=0

f ξnt
n, (19)

where fηn and fξ n are the series coefficients.
We will obtain the solution of the differential equation system

(18) by means of a power-series method. Writing the solution in the
form

η � =
∞∑

n=0

ηnt
n

ξ � =
∞∑

n=0

ξnt
n, (20)

the values of series coefficients that satisfy equations (18) are

η2 = 1

2
(−f η 0 − k2η0 − 2ω0ξ1)

ξ2 = 1

2
(−f ξ 0 − k2ξ0 + 2ω0η1 + 2ω2

0ξ0), (21)

and for n ≥ 3

ηn = 1

n(n − 1)
(−f ηn−2 − k2λ ηn−3 − k2ηn−2 − 2(n − 1)ω0ξn−1)

ξn = 1

n(n − 1)

(
− f ξn−2 − k2λ ξn−3 − k2ξn−2 + 2(n − 1)ω0ηn−1

+ 2ω2
0ξn−2

)
, (22)

where η0, ξ 0, η1 and ξ 1 are given by the initial position and velocity.
That is to say η0 = η �(0), ξ 0 = ξ�(0), η1 = η̇ �(0) and ξ1 = ξ̇ �(0).

3.1 Tentative reconstruction of the gaseous supercloud’s orbit
and of the Stream II’s orbit

Our main objective in this section is to trace back in time the
orbit of the supercloud and of Stream II associated with the Sirius
group, between the present time t = 0 and the time td < 0 in
which the disintegration phase of the supercloud started. The main
assumption of the model is that the position and velocity of the
centroid of Stream II coincided with those of the gravity centre of
the supercloud at the beginning of the disintegration process. This
assumption is key to the reconstruction of the supercloud’s orbit.

Then, making use of the series-solution (20), we can write

η�
II (td ) =

∞∑
n=0

ηnt
n
d = 0

ξ�
II (td ) =

∞∑
n=0

ξnt
n
d = 0

η̇�
II (td ) =

∞∑
n=0

nηnt
n−1
d = 0

ξ̇ �
II (td ) =

∞∑
n=1

nξnt
n−1
d = 0, (23)

where subscript II refers to Stream II. Besides, we assume here
that the force components Fη and Fξ do not depend on time
during the braking process. Then, fηn = fξ n = 0 for n ≥ 1.
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Substituting η0 = η�
II (0), ξ0 = ξ�

II (0), η1 = η̇�
II (0) = −ω0ξ

�
II (0) +

Ẋ�
II (LSR) and ξ1 = ξ̇ �

II (0) = ω0η
�
II (0) + Ẏ �

II (LSR) (cf. equations
17) into equations (21) and (22), and substituting these result-
ing coefficients into equations (23), we obtain a linear sys-
tem of four equations with four unknowns, namely: η �

II (0),
ξ�
II (0), fη 0 and fξ 0. The relative LSR velocity of the centroid of

Stream II with respect to the centre C of the supercloud, i.e.
(Ẋ�

II (LSR), Ẏ �
II (LSR)), is in principle an observational data.

Note that our Ẋ(LSR) and Ẏ (LSR) velocity components are co-
herently related with the coordinate system (ξ , η) (equations 9
and 10) in which the epicyclic equations are classically expressed.
However, our reference system is different from the conventional
Galactic coordinate system (X,Y,Z) and the corresponding U, V
and W velocity components, to which the observational data are
usually referred. When necessary, we will do the corresponding
conversions. We consider that because of the braking process, the
present peculiar velocity of the supercloud as a whole is small,
and in consequence we adopt Ẋc(LSR) = 0 and Ẏc(LSR) = 0. Be-
sides, we consider that LSR velocity of the centroid of Stream II
is represented by the centroid of the velocity distribution of the
Sirius group. From the velocity distribution of nearby stars deter-
mined by Bovy et al. (2009), Bovy & Hogg (2010), we obtain that
the X and Y components of the LSR velocity centroid of Stream
II are ≈10 km s−1 and −20 km s−1, respectively, and therefore
Ẋ�

II (LSR) = 10 km s−1, and Ẏ �
II (LSR) = −20 km s−1. This veloc-

ity centroid of Stream II was estimated by eye on fig. 1 of Bovy &
Hogg (2010) and its velocity was measured relative to the velocity
of the LSR, indicated by a triangle in the mentioned figure. In fig.
1 of Bovy & Hogg (2010), the heliocentric velocity components of
the stars are denoted by vx (=U) and vy (=V), where the positive
vx-axis points towards the galactic longitude l = 0◦, and the positive
vy-axis towards l = 90◦. Therefore, the vx-axis coincides with our
Ẏ -axis, but the positive vx-axis points in the opposite direction to
that of the Ẏ -axis. The vy-axis coincides with our Ẋ-axis and both
positive axes point in the same direction. In other words, Ẋ�

II (LSR)
is equal to vy of the centroid minus vy of the LSR, and −Ẏ �

II (LSR)
is equal to vx of the centroid minus vx of the LSR.

We tentatively fix td = −100 Myr. We define λ = ρd−ρ0
ρ0

1
td

,
where ρ0 and ρd are the supercloud’s density at t = 0 and at
t = td, respectively (see the general presentation of the model
in Section 3). We adopt ρ0 = 1 at cm−3, ρd = 14 at cm−3 and
e = 0.86 (Olano 2015). With the adopted parameters, the solution
of the linear equation system stated by the boundary condition (23)
gives the following values for its unknowns: η �

II (0) = 569.3 pc,
ξ�
II (0) = −218.1 pc, Fη = fη0 = −0.51 km s−1 Myr−1 and

Fξ = fξ 0 = 0.34 km s−1 Myr−1. Replacing these values into
equations (21) and (22), we obtain the values for ηn and ξ n with
which equations (20) give us the relative orbit of Stream II as
a whole, by varying t between t = 0 and t = td (see Figs 2
and 3).

The condition (23) has allowed us to estimate the effective forces
that acted on the supercloud, that is, Fη and Fξ . Therefore, we are
now in condition to obtain also the orbit of the centre C of the
supercloud during the last 100 Myr. Assuming that the supercloud’s
centre C is located in the solar neighbourhood, we can place the
origin of the coordinate system (η, ξ ) at C, and in consequence
the initial conditions of C are ηc(0) = 0, ξ c(0) = 0, η̇c(0) = 0
and ξ̇c(0) = 0. With these initial conditions and the values of Fη

and Fξ , we can solve numerically the exact motion equations (6)
with ωc given by equation (7). We can use also the approximate
motion equations (12) and (13), which can be solved analytically.
The results are shown in Fig. 4.

Figure 2. Relative orbit of Stream II as a whole, in the rotating reference
system (η, ξ ). The cross indicates the present position of the Stream II’s
centroid with respect to the hypothetical centre of the supercloud. The points
show positions at the indicated times

Figure 3. The velocity components along the relative orbit of Stream II as
a whole, in the rotating reference system (η, ξ ). The points show velocities
at the indicated times

Figure 4. The past orbit of the supercloud’s centre, in the rotating reference
system (η, ξ ). The coordinate origin is placed at the present position of the
supercloud’s centre, indicated by a cross. Certain positions of the orbit,
represented with points, and the corresponding times are noted.
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Figure 5. Orbit of the supercloud’s centre relative to the nearly spiral arms
of the Galaxy. The Galactocentric system (x̃, ỹ) is fixed to the Galactic
spiral pattern. The positive x̃-axis points in the direction of the Galactic
rotation, and the positive ỹ-axis towards the Galactic anticentre. The points
on the orbit show the supercloud’s positions at the noted times. The cross
indicates the present position of the supercloud’s centre, which is located in
the solar neighbourhood. The picture of the spiral arms was adapted from
Vallée (2014).

In order to investigate whether the cause of the braking and
destabilization of the supercloud is connected to its passage
through a spiral arm, we will determine the relative motion between
the supercloud and the spiral structure of the Galaxy. With this
aim, the supercloud’s orbit will be referred to a Galactocentric
system (x̃, ỹ) that rotates with the angular velocity p of the
Galactic spiral pattern. In this reference frame, the spiral pattern
is stationary. To convert the positions (η, ξ ) of the orbit of
the supercloud’s centre to the corresponding positions in the
frame (x̃, ỹ), we use equations (2) with θ = (ω0 − p)t. Thus,
x̃c(t) = (R0 + ξc(t)) sin [(ω0 − p)t] + ηc(t) cos [(ω0 − p)t],
and ỹc(t) = (R0 + ξc(t)) cos [(ω0 − p)t] − ηc(t) sin [(ω0 −
p)t]. Modern determinations of p give values between 20
and 25 km s−1 kpc−1 (e.g. Junqueira et al. 2015, and references
therein). Adopting p = 22 km s−1 kpc−1, and using the positions
and their respective times represented in Fig. 4, we obtain the orbit
of the supercloud relative to the nearby spiral structure (Fig. 5).
This figure shows schematically that the supercloud penetrated into
the Perseus arm around 100 Myr ago, which validates the value
adopted for td ( = −100 Myr).

In Fig. 6, we draw the Xc and Yc velocity components of the
supercloud with respect to the LSR of the region through which the
cloud was passing by, calculated with equations (9). The peculiar
velocities represented in Fig. 6 between point A (t = −200 Myr) and
point B (t = −100 Myr) were calculated by tracing back in time
the supercloud’s orbit with the assumption that friction forces
were null in this time interval. At the moment of the encounter
of the supercloud with the Perseus arm, the peculiar velocity
components of the supercloud were Ẋc(LSR) = −12 km s−1 and
Ẏc(LSR) = −37 km s−1 (point B). After 25 Myr, the supercloud
crossed the arm, reaching the peculiar velocity indicated by the
point C. If the supercloud had not been braked by the spiral arm, the
peculiar velocity would have been that indicated by the letter C’.
This indicates that the supercloud was decelerated in the direction
of the Galactic rotation (i.e. the force Fη is negative).

This deceleration of the supercloud can be explained, in principle,
within the framework of the density wave theory. The interstellar gas
passing through the spiral arm is decelerated by the shock wave as-
sociated with the density wave (Roberts 1969), if the Perseus spiral
arm is located within the corotation radius (Vallée 2014; Monguió

Figure 6. LSR peculiar velocities of the supercloud along its orbit during
the last 200 Myr, according to the model A. Points A, B, C, D, E correspond
to the times −200, −100, −75, −50 and −25 Myr, respectively. Point F
represents the present time. The letters with the prime symbol indicate the
peculiar velocities that supercloud would have had, if it had not have braked.
The arrows show the temporal direction. The positive axis of the Xc velocity
component points in the direction of the Galactic rotation. The positive axis
of the Yc velocity component points towards the Galactic anticentre.

et al. 2015). Congruently, we have chosen p = 22 km s−1 kpc−1,
which corresponds to a corotation radius of 10 kpc (see Fig. 5). Our
analysis is based on the approach of effective braking forces. How-
ever, a detailed analysis should require to study the hydrodynamic
interaction between the supercloud and the shock wave associated
with the spiral arm.

On the other hand, the force Fξ was positive and decelerated
the supercloud in the ξ − direction, reducing the velocity from
−37 km s−1 to zero (see Fig. 6). In the first half of the path through
the interarm region, the supercloud moved against the stream of the
background interstellar gas induced by the spiral density wave, in-
crementing the velocity of the supercloud relative to the background
interstellar gas and consequently the friction or braking force acting
on the supercloud. Indeed, in this region, the phase of the density
wave varies between χ = π and χ = π/2 and consequently the
x̃ and ỹ velocity components of the gas streaming motion of the
density wave are negative and positive, respectively. Another inter-
esting fact that shows Fig. 5 is that the supercloud’s path crosses
over a large region of the Galactic disc in which the stars of ages
younger than 80 Myr lie below the Galactic plane, structure called
Big Dent (Alfaro et al. 1991; Cabrera-Caño et al. 1995). In order
to investigate a possible relation of cause and effect, we trace the
orbit of the supercloud’s centre relative to the centre of the Big Dent
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Figure 7. The supercloud’s orbit relative to the Big Dent, a large depression
of the Galactic disc, whose limit is schematically indicated by a dashed line
(cf. fig. 3 of Alfaro, Cabrera-Caño & Delgado 1991).

(Fig. 7). This was obtained by the same procedure we used to obtain
Fig. 5, but with p = 220

RBD
km s−1 kpc−1, where RBD = 9 kpc is

the Galactocentric distance of the Big Dent’s centre. Fig. 7 shows
that the supercloud’s centre coincided with the Big Dent’s centre
around 60 Myr ago. The present size of the Big Dent is represented
schematically in Fig. 7. However, this size was probably smaller in
the past, since the Big Dent can have been expanding. Therefore,
we wonder whether the crossing of the Galactic disc by the super-
cloud could be the cause of the formation of the Big Dent. Another
explanation may be that the falling of an high velocity cloud (HVC)
transferred momentum and energy in the Z direction to a part of both
gaseous components, of the supercloud and of the Galactic disc, at
about 60 Myr ago. Thus, the stars of the Big Dent were formed in
the shocked gas layer with a velocity component in the Z-direction
(e.g. Comerón & Torra 1992).

3.2 Tentative reconstruction of the orbits of the supercloud’s
gaseous nucleus and of the associated Stream (I)

We propose that the stars of Stream I were originally bounded to the
gaseous nucleus of the supercloud, that is to say the most dense part
of the supercloud. We also propose that after crossing the Perseus
arm, the supercloud’s nucleus suffered in particular the action of a
strong force due perhaps to the collision with a dense cloud of pe-
culiar velocity of the Galactic disc. This strong perturbation could
in part be induced by the one that originated the Big Dent (see
the last paragraph of Section 3.1). Besides we think that, as conse-
quence of this strong force acting on the supercloud’s nucleus, the
kinematics of the stars of Stream I was greatly affected. In addi-
tion, the compression on the gaseous material of the supercloud’s
nucleus gave origin to Gould’s belt. The spatial distribution of O-B
stars younger than 100 Myr, projected on the XZ-plane (fig. 3 of
Gontcharov 2012a), shows a prominent profile of both structures:
the Big Dent and Gould’s belt. This notable spatial and temporal
coincidence of both structures speaks strongly in favour that their
origins are linked.

Various methods to estimate the age of Gould’s belt give rather
concordant results that indicate an average age of ≈60 Myr (Bobylev
2014). On the basis of the photometric ages of individual stars in
Gould’s belt, Torra, Fernández & Figueras (2000) estimated that
the belt is younger than 60 Myr. Therefore, we will assume that
this process of gas compression and star formation started about
60 Myr ago (and probably lasted a period of 10–20 Myr). Because

of the relatively high gas density of the supercloud’s nucleus, this
nucleus was not greatly affected by the braking forces acting on
the whole supercloud in the period between −100 and −60 Myr.
Hence, the gaseous nucleus of the supercloud, the stars of Streams
I and II shared the same kinematics, until the strong force started
to act on a region involving the gaseous nucleus about 60 Myr ago.
The components of this additional force will be denoted by Nη and
Nξ . The equations of motion for the supercloud’s nucleus, between
t=0 and t = −60 Myr, can be deduced from considerations similar
to those of Section 2.2 (see also Appendix A). Then, we can write

η̈ �
N + 2ω0 ξ̇ �

N + k2(1 + λ t) η �
N + f η0 − Nη = 0

ξ̈ �
N − 2ω0 η̇ �

N − 2ω2
0 ξ�

N + k2(1 + λ t) ξ�
N + f ξ0 − Nξ = 0, (24)

where subscript N indicates that we are referring to the supercloud’s
nucleus. The values for k, λ, fη0 and fξ 0 are the same we used in the
previous section.

Similarly, we can derived the motion equations of Stream I, as-
sociated with the gas nucleus of the supercloud (see Appendix A).
These equations, in the time interval from 0 to −60 Myr, that govern
the motion of Stream I relative to the nucleus’ centre result

η̈ ��
I + 2ω0 ξ̇ ��

I + k2
N (1 + λN t) η ��

I + Nη = 0

ξ̈ ��
I − 2ω0 η̇ ��

I − 2ω2
0 ξ��

I + k2
N (1 + λN t) ξ��

I + Nξ = 0. (25)

The double star superscript indicates that the orbit of Stream I is
referred to the nucleus’ centre. Hence, by means of η �

I (t) = η ��
I (t) +

η �
N (t) and ξ �

I (t) = ξ ��
I (t) + ξ �

N (t), we obtain the Stream I’s orbit
with respect to the supercloud’s centre. Here, λN = Nρd−Nρ0

Nρ0

1
t

′
d

,

where Nρ0 and Nρd are the nucleus’ density at the present (t = 0)
and at t = t ′

d = −60 Myr, respectively (see Section 3.1). We adopt
Nρ0 = 1 at cm−3, Nρd = 120 at cm−3 and e = 0.86. The constant
kN is the same as k defined in Section 3.1, except that we replace ρ0

by Nρ0. The value adopted for the density of the nucleus Nρd is of
the order of the mean density of the giant molecular clouds. We can
speculate that the density of the original supercloud’s nucleus was
enhanced during the pass through the Perseus arm (see Section 5).
If we assume that, about 60 Myr ago, the ellipsoid representing the
nucleus had a semimajor axis of 70 pc, the nucleus’ mass was ≈2 ×
106 M�, which is compatible with the masses estimated for Gould’s
belt (see table 2 of Bobylev 2014). Therefore, we can neglect the
gravitational influence of the nucleus on the more extended stellar
component of the supercloud (i.e. Stream II).

In order to trace back in time the orbit of the nucleus and of
Stream I, we should solve equations (24) and (25). We do not know
observationally all initial conditions of the hypothetical nucleus and
of Stream I, as well as, the expressions for the force components Nη

and Nξ . Nevertheless, by making use of certain contour conditions,
it will be able to obtain values for these unknowns. We assume
that the LSR velocity of the nucleus and of the supercloud’s centre
are both at the present null, and consequently Ẋ�

N (LSR) = 0 and
Ẏ �

N (LSR) = 0. Thus, the initial relative velocities of the nucleus
depend only on the initial position, namely: η̇�

N (0) = −ω0 ξ�
N (0)

and ξ̇ �
N (0) = ω0 η�

N (0) (cf. equation A3). Therefore, we here have
two unknowns, η�

N (0) and ξ�
N (0).

The spatial distributions of Streams I and II are not well know.
These two stellar streams are surely extended structures. At least,
we can say that, within a relatively small radius around the Sun,
both stellar streams are inter-penetrated. Hence, we will adopt as
an approximation that the centroids of the both spatial distributions
coincide at the present, i.e. at t = 0. Therefore, η �

I (0) = η �
II (0) =

569.3 pc and ξ �
I (0) = ξ �

II (0) = −218.1 pc (see Section 3.1) and the
initial position we need to solve equation (25) is related with the
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initial position of the nucleus, which we do not know, by means of
η ��

I (0) = η �
I (0) − η �

N (0) and ξ ��
I (0) = ξ �

I (0) − ξ �
N (0).

From the velocity distribution of nearby stars determined by
Bovy et al. (2009); Bovy & Hogg (2010), we obtain that the
X and Y components of the LSR velocity centroid of Stream I
are ≈−10 km s−1 and +15 km s−1, respectively, and therefore
Ẋ�

I (LSR) = −10 km s−1, and Ẏ �
I (LSR) = +15 km s−1. This veloc-

ity centroid of Stream I was estimated by eye on fig. 1 of Bovy &
Hogg (2010), as described in Section 3.1 for Stream II. Substituting
the resulting expressions for the initial position of Stream I and
supposing that the nucleus is at rest in the LSR system, we get from
equations (A6) the initial relative velocity of Stream I, which only
depends on two unknowns, namely: the position components of the
nucleus, η�

N (0) and ξ�
N (0).

Here, our premise is that the average position and velocity of
Stream I and of Stream II are coincident with the position and
velocity of the nucleus’s centre at the time t = −60 Myr. This
imposes eight conditions that the solutions of equations (24) and
(25) must satisfy, namely:

η��
I (t ′

d ) = 0

ξ��
I (t ′

d ) = 0

η̇��
I (t ′

d ) = 0

ξ̇ ��
I (t ′

d ) = 0

η�
N (t ′

d ) = η�
II (t ′

d )

ξ�
N (t ′

d ) = ξ�
II (t ′

d )

η̇�
N (t ′

d ) = η̇�
II (t ′

d )

ξ̇ �
N (t ′

d ) = ξ̇ �
II (t ′

d ) (26)

where t ′
d = −60 Myr. This system of equations will allow us to

solve for eight unknowns. On the side of the initial conditions we
have two unknowns, then we have room for assigning to the force
components, Nη and Nξ , three free parameters each. Consequently,
we define Nη = Nη0 + Nη1 t + Nη2 t2 and Nξ = Nξ 0 + Nξ 1 t +
Nξ 2 t2. The solution of equation (24) can be obtained from the
power-series solutions given by equations (20), (21) and (22), re-
placing Fη and Fξ by fη0 − Nη and fξ 0 − Nξ , respectively. Sim-
ilarly, replacing Fη and Fξ by Nη and Nξ , respectively, and the
corresponding fixed parameters (i.e. kN and λN), we obtain the
solution of (25). These solutions are functions of the eight un-
knowns (i.e. η�

N (0), ξ�
N (0), Nη0, Nη1, Nη2, Nξ 0, Nξ 1 and Nξ 2)

and of the time t. Since these solutions must satisfy the condi-
tions (26) at t ′

d = −60 Myr, we have a linear system of eight
equations with eight unknowns, whose solution gives η�

N (0) =
718.5 pc, ξ�

N (0) = −140.3 pc, Nη0 = −0.637 km s−1 Myr−1,
Nη1 = −0.109 km s−1 Myr−2, Nη2 = −0.002 km s−1 Myr−3,
Nξ 0 = −1.146 km s−1 Myr−1, Nξ 1 = −0.192 km s−1 Myr−2 and
Nξ 2 = −0.004 km s−1 Myr−3. Thus, the force components Nη and
Nξ are given by Nη = −0.637 − 0.109 t − 0.002 t2 and Nξ = −1.146
− 0.192 t − 0.004 t2; which are plotted in Fig. 8. The values of these
force components are both negative between −50 and −60 Myr.
Therefore, in this time interval, the direction of Nη is opposite to
the direction of the Galactic rotation and Nξ points to the Galactic
centre. Interestingly, the direction of the resultant force (Nη + Nξ )
is similar to the direction of the Big Dent’s elongation (see Fig. 7).

From the found parameters, we now are in conditions to calcu-
late the orbit of the nucleus’s centre, as well as the orbit of Stream
I as a whole with respect to its gaseous component (i.e. the su-
percloud’s nucleus) and with respect to the supercloud’s centre.
Figs 9 and 10 display the orbit and orbital velocities of the Stream
I’s barycenter with respect to the centre of the supercloud’s nucleus.

Figure 8. The force components Nη(full line) and Nξ (dashed line), exerted
on the supercloud’s gaseous nucleus, as functions of time.

Figure 9. Orbit of Stream I relative to the centre of the gaseous nucleus of
the supercloud.The points show positions at the indicated times

The Stream I’s orbit referred to the supercloud’s centre is shown
in Fig. 11, together with the orbit of the gaseous nucleus and with
the Stream II’s orbit calculated in the previous section. Assuming
that the present position of the gaseous nucleus’s centre is coin-
cident with the centre of Lindblad’s ring (Lindblad 1967) related
to Gould’belt, we will be able to find the position of the Sun with
respect to the present position of the supercloud’s centre. Given
the distance and the Galactic longitude to the centre of Lindblad’s
ring, dG = 166 pc and LG = 131◦ (see table 1 of Olano 1982), we
can write η�� = η�

N (0) − dG sin LG and ξ�� = ξ�
N (0) + dG cos LG,

resulting η�� = 593 pc and ξ�� = −249 pc (see Fig. 11). In Fig. 12,
we show the orbit of the supercloud nucleus in the Galactocentric
system (x̃, ỹ), that is to say relative to the spiral arms, for which
we have converted the positions (ηc(t) + η�

N (t), ξc(t) + ξ�
N (t)) into

positions (x̃, ỹ) (see Section 3.1). Note that, according to Fig. 12,
the nucleus moved in the time interval of ≈−30 Myr to −20 Myr
within the internal edge of the Sagittarius-Carina arm.
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Figure 10. The velocity components along the orbit of Stream I, as a whole,
relative to the centre of the gaseous nucleus of the supercloud. The points
show velocities at the indicated times.

Figure 11. Orbits relative to the supercloud’s centre of its three subsystems:
Stream I (crosses), Stream II (points) and the supercloud’s nucleus (dashed
line). The shared orbit is indicated by a full line. The symbol X denotes the
present position of the gas nucleus, which is considered to be coincident with
the centre of Lindblad’s ring, associated with Gould’s belt (Olano 1982).
The Sun’s position (Sun symbol) and three Galactic directions are indicated.

4 SPAT I A L A N D V E L O C I T Y D I S T R I BU T I O N S
O F S T R E A M S I A N D I I , A S P R E D I C T E D B Y
T H E MO D E L

On the basis of our model, we have calculated the respective orbits
of Stream I and II as a whole. The aim of this section is to generate
an overall theoretical distribution of the present stellar positions and
velocities for Stream I and for Stream II. With this purpose, we will
assume that the stars of Stream II had a certain spatial and velocity

Figure 12. Orbit of the supercloud’s centre (dashed line) and of its gaseous
nucleus (full line), relative to the nearly spiral arms of the Galaxy. This
figure is the same as Fig. 5, except we have here included the orbit of the
gaseous nucleus and the orbit of the supercloud’s centre is here represented
by a dashed line.

distribution at the moment when the mean position and velocity of
gas and stars agreed (i.e. 100 Myr ago), and similarly for the stars
of Stream I (i.e. 60 Myr ago). Here, it is convenient to calculate
orbits forward in time, and therefore we will use the positions and
velocities that stars of Streams I and II had 60 and 100 Myr ago,
respectively, as the initial conditions (t = 0). Hence, with t = 60 and
t = 100 Myr, we obtain the present positions and velocities of the
Stream I stars and of the Stream II stars, respectively. With respect
to the initial distribution of positions and velocities of the stars, we
will distinguish three cases: (A) the stars rotated clockwise circu-
larly around an axis that passes through the gas cloud’s centre and
is perpendicular to the Galactic plane; (B) the stars rotated counter-
clockwise circularly around the mentioned rotation axis; (C) the
LSR velocities of the stars relative to the gas cloud’s centre were
randomly distributed according to a Gaussian uniform distribution,
with a mean velocity equal to zero and a velocity dispersion σv equal

to that derived from the Virial theorem: namely, σv =
√

GM
2a

, and

therefore σ v =12.4 km s−1 for Stream II and 8.7 km s−1 for Stream
I. In the three cases, the space distribution of the stars (or number
density of stars) is considered uniform over the cloud. The circular
velocity of rotation is given by vc = −k r for case A, vc = k r for case
B, from which we calculate the initial velocity components of the
mass points representing the stars (see Olano 2015). When calculat-
ing vc for Stream I, we use kN instead of k. In our simulation, the ini-
tial positions of the points representing the stars are regularly spaced
on the inner equatorial plane of the gas cloud. Assigning to each
initial position the corresponding velocity components, and using
the motion equations and the values of the parameters of Section 3.1
for Stream II and of Section 3.2 for Stream I, we calculate the orbits
of all those mass points representing the stars. The resulting theo-
retical distributions of the present velocities and positions of both
streams are shown in Figs 13 and 14 for Case A, Figs 15 and 16
for Case B, and Figs 17 and 18 for Case C. The velocities are all
relative to the LSR system and represented in the U-V kinematic
plane (Figs 13, 15 and 17), which is useful to compare with the
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Figure 13. Theoretical velocity distribution for Case A. The velocities U
and V are referred to the LSR system. The crosses and points represent stars
of Stream I and II, respectively.

Figure 14. Theoretical spatial distributions for Case A. The crosses and
points represent stars of Stream I and II, respectively. The Sun symbol
indicates the position of the Sun.

observational velocity distributions (e.g. Bovy et al. 2009;
Gontcharov 2012a,b). The positive U-axis points towards the galac-
tic longitude l = 0◦, and the positive V-axis towards l = 90◦. In or-
der to convert our LSR velocity components into the corresponding
components U and V, we should have into account that our compo-
nents ẊI (LSR) and ẊII (LSR) agree with the respective components
V and that our components ẎI (LSR) and ẎII (LSR) coincide with
the respective components U, but with reversed sign.

Our simulations show that a spherical velocity distribution of
the Stream stars, given at the beginning, is transformed into an

Figure 15. Theoretical velocity distribution for Case B. The velocities U
and V are referred to the LSR system. The crosses and points represent stars
of Stream I and II, respectively.

Figure 16. Theoretical spatial distributions for Case B. The crosses and
points represent stars of Stream I and II, respectively. The Sun symbol
indicates the position of the Sun.

ellipsoidal one. This is particularly clear for Stream II. The longitude
difference �l between the major axis of the velocity ellipse and the
direction to the galactic centre is called the deviation of the vertex.
�l ≈ 47◦ in Case A for Stream II (Fig. 13), which is approximately
coincident with its observed deviation of the vertex (cf. figs 1 and
6 of Bovy & Hogg 2010; Gontcharov 2012b). The distributions
obtained for Case C (Figs 17 and 18) are similar to those for Case A,
but with a minor enhancement of the ellipsoidal characteristic of the
distributions. In contrast, the deviation of the vertex of Stream II in
Case B (Fig. 15) is very differ from the observed one. Therefore, the
conditions of Case B should be discarded. Even though, we have
used an initial uniform spatial distribution of the Stream stars, it is
easy to infer, from the observed velocity distribution of Stream II,
that the stars of Stream II were more concentrated radially towards
the gas cloud’s centre. However, the initial spatial distribution of
the stars of Stream I was not so regular, judging from the present
existence of at least three concentrations of stars in the phase space
(position-velocity).
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Figure 17. Theoretical velocity distribution for Case C. The velocities U
and V are referred to the LSR system. The crosses and points represent stars
of Stream I and II, respectively.

Figure 18. Theoretical spatial distributions for Case C. The crosses and
points represent stars of Stream I and II, respectively. The Sun symbol
indicates the position of the Sun.

Let me mention some of the limitations that difficult the com-
parison between the theoretical and observational distributions. The
observational spatial distributions of Streams I and II are not well
known. Fig. 14 shows that the spatial distribution of Stream II
would be rather widespread, and therefore a representative sample
to obtain observationally the stellar velocity distribution of Stream
II should include stars within a radius of at least 1000 pc from
the Sun. Gontcharov (2012a), based on a sample of 20 514 stars,

obtained the spatial distribution of stars within a radius of 600 pc,
and interestingly his Fig. 3 shows that, although the spatial dis-
tributions of Stream I and II are not discriminated, the stars that
can belong to Stream I and/or Stream II fill the studied volume.
Note that Gontcharov (2012a) used the Galactic coordinate system
(X,Y,Z). Then, the X-axis coincides with our ξ�-axis, but the posi-
tive X-axis is directed towards the Galactic centre. The Y-axis and
our η�-axis coincide and point in the same direction. Besides, the
origin of the system (X,Y,Z) is at the Sun, while the origin of our
system (η�, ξ�) is at the centre of the supercloud (Figs 14, 16 and
18). On the other hand, apart from we have used a highly idealized
gravitational potential for the clouds, we have considered only stars
whose orbits remained within the physical boundaries of the clouds,
and excluded those stars that, even gravitationally bounded to the
clouds, exceeded the bounds of the clouds.

5 D I SCUSSI ON OF THE R ESULTS:
U N C E RTA I N T I E S O F TH E F I T T E D
PA R A M E T E R S O F TH E M O D E L

In the previous section, we have used as a first approximation a
linear relationship for the temporal variation of the mean density
of the supercloud and of its nucleus, which is determined from the
cloud’s characteristic density at the beginning of the disintegration
process and from a relatively low density at the end of this pro-
cess. We can assume that this density variation is essentially due to
the clouds’ pure expansion, ignoring details of the expansion law.
On the other hand, we have found that probably the supercloud
penetrated the Perseus arm and that the nucleus was strongly per-
turbed. Therefore, we should also consider the possibility that these
clouds accreted significant quantities of mass during a period of
≈10–20 Myr. If M(t) and V(t) denote the mass and the volume of
the cloud in question at the time t, by definition the cloud’s mean
density at this time is ρ(t) = M(t)

V (t) . We will represent the temporal
variation of the cloud’s mass as M(t) = M(0)(1 + γ exp (−β(t − td)),
where M(0) is the mass at t = 0, γ = M(td )−M(0)

M(0) , M(td) is the cloud’s
mass at t = td and β characterises the time interval of accretion.
We assume that V (t) = 4

3 πa(t)3
√

1 − e2, the cloud’s volume that
corresponds to that of an ellipsoid of semimajor axis a(t) and that
expands homologously. We will represent the expansion law of the
supercloud by a quadratic function of the form a(t) = a0 (1 + μ1 t +
μ2 t2), where a0 = a(0). The values of the coefficients μ1 and μ2

are derived from the values adopted for a at the present (a0), at
the time tg = −60 Myr (ag) and at td = −100 Myr (ad). Since
M(0) = 4

3 πρ0 a3
0

√
1 − e2,

ρ(t) = ρ0
(1 + γ exp(−β(t − td ))

(1 + μ1 t + μ2 t2)3
, (27)

where ρ0 = ρ(0). In order to solve analytically the motion equations
with the temporal density variation of equation (27), this equation
can be approximated by a polynomial of high degree or an expansion
in power series

ρ(t) = ρ0

(
1 +

∞∑
n=1

ρnt
n

)
, (28)

(see Appendix B). Now, we are in conditions to evaluate the effects
of a non-linear relationship for ρ(t) on the model’s results.

We adopt as an example γ = −0.5, which implies that the original
mass of the supercloud M(td) increased by a factor of 2 as conse-
quence of the accretion. If we adopt M(td) = 2.5 107 M�, which lies
within the range of supercloud’s mass, and for the present average
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Figure 19. The mean density (full lines) and semimajor axis (dashed lines)
of the supercloud as a function of time. The numbers on the curves indicate
the corresponding values of the semimajor axis at t = −60 Myr (i.e. ag).

density of the supercloud ρ0 = 1 at cm−3, a typical ISM density, we
obtain that a0 = 1000 pc. Besides, we assume ad = 350 pc, which lies
within the range of the supercloud’s radius. We will keep fixed the
above parameters, including β = 0.15, but we will vary ag between
450 and 550 pc. The function ρ(t) is shown in Fig. 19. By means of
the method of Section 3.1 and of the solutions given in Appendix B,
and using the adopted set of parameters that determines ρ(t),
namely: ρ0 = 1 at cm−3, γ = −0.5, β = 0.15, a0 = 1000 pc,
ad = 350 pc and ag = 500 ± 50 pc, we obtained
that η �

II (0) = 691−40
+60 pc, ξ�

II (0) = −195−120
+130 pc, Fη = f η0 =

−0.40+0.02
−0.04 km s−1 Myr−1 and Fξ = f ξ0 = 0.38−0.02

+0.04 km s−1 Myr−1.
The new values obtained for the free parameters of the model do not
differ significantly from those obtained in Section 3.1 and therefore
the corresponding orbits of the supercloud and Stream II are similar
to those represented in Figs 2, 4, 5 and 7. We should say that we
have greatly simplified the expansion process of the supercloud in
our model, ignoring among other things that, due to the Galactic
rotation differential, the supercloud was elongated as well. This
elongated structure would have formed the local arm. The respec-
tive gaseous configurations of the Orion arm and of Gould’s belt are
both similar to that of an elongated expanding ring of gas (Lindblad
1967; Olano 1982, 2001).

Using modern determinations of p, we have found that the
supercloud would have crossed the Perseus arm and only passed
tangentially through the internal edge of the Sagittarius-Carina
arm (see Fig. 12). However, if we use the classical values of p

(≈12 km s−1 kpc−1), the encounter of the supercloud in the consid-
ered period is entirely with the Sagittarius-Carina arm. In our model,
we have considered that the stellar spatial distribution of Stream II
(Sirius group) covered the whole supercloud, while that the stars
of Stream I were associated with the supercloud’s nucleus, region
with the highest gas density. However, in principle, we can invert
the roles of Streams I and II, resulting in this case that supercloud
comes from the Sagittarius-Carina arm. The observation of the spa-
tial distributions of Streams I and II would help to decide between
the two possibilities. If Stream II’s distribution is more extended
than Stream I (see Figs 14, 16 and 18), then the roles assigned to
Streams I and II by our model would be correct. On the other hand,
the orbit determined with the assumptions of the model suggests
connections with other interesting facts of the local Milky Way as
the Big Dent (Alfaro et al. 1991), (see Fig. 7), and the huge hole in
the distribution of the local interstellar matter, towards the galactic
longitude of about l = 240◦ (see Fig. 11). Perhaps, this gas hole is
in part a consequence of the event that originated the Big Dent and
Gould’s belt.

6 C O N C L U S I O N S

We have developed epicyclic equations to study the motion of an
interstellar gas cloud in an arbitrary Galactic orbit, and the drift of its
stellar component, when the cloud is subjected to non-gravitational
additional forces. By means of these epicyclical motion equations
and initial and boundary conditions, provided both by observational
data and model’s assumptions, we have traced back in time the
orbits of the local supercloud and of the associated stellar Streams,
I and II.

The results indicate that before 100 Myr ago the supercloud would
have had a relatively high velocity peculiar of 30–40 km s−1, which
favours the possibility that the supercloud contained an important
percentage of captured field stars (Olano 2015). We also have found
that the supercloud could have interacted with the Perseus arm
between 75–100 Myr ago (Fig. 5), explaining in part the strong
braking that the gas component of the supercloud suffered since
then. Since the stars were not greatly affected by the interaction
with the background interstellar medium, the stars of Streams I and
II tended to conserve the kinematics originally shared with the gas
component of the supercloud.

Another interesting fact indicated by the supercloud’s orbit is that
about 60 Myr ago the supercloud and the so-called Big Dent (Alfaro
et al. 1991) were located approximately on the same Galactic region
(Fig. 7). Therefore, we can not discard that the supercloud may have
played an active role in the origin the Big Dent. Even though we
did not study the vertical motion of the supercloud, a possibility is
that the crossing of the supercloud throughout the Galactic plane
deformed the Galactic layer forming the big depression named Big
Dent. However, we think that the main role may have been played by
a contingent event, such as the falling of a HVC (Olano 2004, 2008,
and references therein), that affected to both the supercloud and the
surrounding Galactic layer. These two mechanisms for the origin
of the Big Dent could also explain the expansion of the supercloud,
which in turn originated the Orion arm, and the origin of Gould’s
belt, which occurred about 60 Myr ago. In other words, the three
subsystem of gas and stars; namely, the Big Dent, the Orion arm
and Gould’s belt, may have had a common origin.

With the purpose of explaining the spatial and velocity distribu-
tions of Streams I and II, we have assumed that the stars of Stream II
were originally distributed throughout the whole supercloud, while
the stars of Stream I were concentrated within a supercloud’s region
of relatively high gas density, we have denominated the supercloud’s
nucleus. Besides, we have assumed that an event, such as a cloud–
cloud collision, occurred about 60 Myr ago and probably in part
related to the larger scale phenomenon that generated the Big Dent,
perturbed strongly the gas nucleus of the supercloud giving origin
to Gould’s belt and as a consequence affected the kinematics of
Stream I. Simulations based on the supercloud’s model allow us to
obtain the spatial and velocity distributions for Streams I and II,
where two of which (Figs 13, 14 and Figs 17, 18) result in principle
compatible with the observational ones.

The epicyclic formulation developed in this paper can be an ap-
propriate tool to study the problem of capture of field stars when
an interstellar gas cloud gets a peculiar velocity. These epicyclic
motion equations give a better approximation than the supposi-
tion of a linear acceleration or deceleration of the cloud (Olano
2015). The hypothesis of the local supercloud has given us an
insight into the complex processes that may have led to the for-
mation of the local system, and and can guide us through future
observational and theoretical efforts. Further observational stud-
ies, such as the determination of the global spatial distribution of



The hypothesis of the local supercloud 13

Stream I and II, will be useful to contrast the hypothesis of the local
supercloud.

For example, the ample study by Gontcharov (2012a) that is
based on a complete and homogeneous data set including proper
motions and radial velocities could be extended to include stars
of the local disc with different spectral types and with distances
from the Sun greater than 600 pc, which will be of interest for
the purposes of the present investigation program. To represent
separately the spatial distributions of Streams I and II, we should
simply select the spatial positions of those stars lying in the age and
velocity ranges that characterize the stream in study (i.e. Stream
I or II). Bobylev (2014), in the conclusions of his review, pointed
out some problems on the structure, dynamics and evolution of the
local system that we should address and observational projects that
will provide high–precision data and that will help us to solve these
problems.

We have focused our investigation on the motions of the su-
percloud and of the two stellar streams parallel to the Galactic
plane. Then, the next step should be to address the problem of
their motions in the z-direction, perpendicular to the Galactic plane.
Since the z-motions are decoupled from the other motion compo-
nents, in principle, we can try them independently. The study of the
z-motions of the local subsystems could shed light on the processes
that deformed in the z-direction the local Galactic layer (the Big
Dent) and led the origin of Gould’s belt.
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A P P E N D I X A : R E L AT I V E M OT I O N
E QUAT I O N S O F T H E S U P E R C L O U D ’ S
N U C L E U S A N D O F S T R E A M I

(a) The relative motion of the supercloud’s nucleus with respect to
the supercloud’s centre. We suppose that the supercloud contained
a gaseous nucleus of density much greater than the mean density of
the supercloud. Hence, the dynamics of the nucleus is different from
the rest of the supercloud’s gaseous component. Besides, we assume
that, in the evolutionary course of the supercloud, the nucleus was
involved by a very energetic process that affected its orbit. If the nu-
cleus is subject to the gravitational forces of the supercloud, whose
components are denoted by Jη and Jξ , and to a non-gravitational
force of components Nη and Nξ , the motion equations of the nucleus
in the rotating system (η, ξ ) can be written

η̈N + 2ω0 ξ̇N = Jη + Nη

ξ̈N − 2ω0 η̇N − 2ω2
0 ξN = Jξ + Nξ (A1)

(cf. equations 14 and 15). Making use of the relationships η�
N (t) =

ηN (t) − ηc(t), ξ�
N (t) = ξN (t) − ξc(t), equations (A1), (12) and (13),

we can write the equations for the motion of the nucleus about the
supercloud’s centre as follows

η̈�
N + 2ω0 ξ̇ �

N = Jη + Nη − Fη

ξ̈ �
N − 2ω0 η̇�

N − 2ω2
0 ξ�

N = Jξ + Nξ − Fξ . (A2)

Substituting Jη = −k2(1 + λ t) η �
N and Jξ = −k2(1 + λ t) ξ �

N ,
equations (A2) become into equations (24). The initial velocities
we need to solve the system of equations (A2) or (24) are related
with the initial positions and the LSR velocities of the nucleus and
of the supercloud’s centre in the following way

η̇�
N (0) = −ω0 ξ�

N (0) + Ẋ�
N (LSR)

ξ̇ �
N (0) = ω0 η�

N (0) + Ẏ �
N (LSR), (A3)

where Ẋ�
N (LSR) = ẊN (LSR) − Ẋc(LSR) and Ẏ �

N (LSR) =
ẎN (LSR) − Ẏc(LSR).
(b) The relative motion of Stream I with respect to the super-
cloud’s nucleus. We propose that the stars of Stream I have
been gravitationally attached to the gaseous nucleus of the
supercloud. By similarity with equations (14) and (15), we can
write

η̈I + 2ω0 ξ̇I = Jη + NJη

ξ̈I − 2ω0 η̇I − 2ω2
0 ξI = Jξ + NJξ, (A4)

where NJη and NJξ are the components of the force exerted
on Stream I by the supercloud’s nucleus. By resting term by
term the corresponding equations of (A4) and (A1) and defining
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η��
I (t) = ηI (t) − ηN (t) and ξ��

I (t) = ξI (t) − ξN (t), we obtain the
equations for the motion of Stream I around the nucleus:

η̈ ��
I + 2ω0 ξ̇ ��

I = NJη − Nη

ξ̈ ��
I − 2ω0 η̇ ��

I − 2ω2
0 ξ��

I = NJξ − Nξ . (A5)

Note that the force components Jη and Jξ are here cancel-
lated. Adopting a force law similar to that of the super-
cloud as a whole, we can write NJη = −k2

N (1 + λN t) η ��
I and

NJξ = −k2
N (1 + λN t) ξ��

I , with which we get equations (25). The
initial relative velocities of Stream I are given by the following
relationships:

η̇��
I (0) = −ω0 ξ��

I (0) + Ẋ��
I (LSR)

ξ̇ ��
I (0) = ω0 η��

I (0) + Ẏ ��
I (LSR), (A6)

where Ẋ��
I (LSR) = ẊI (LSR) − ẊN (LSR) and Ẏ ��

I (LSR) =
ẎI (LSR) − ẎN (LSR).

A P P E N D I X B: SO L U T I O N O F TH E M OT I O N
E QUAT I O N S FO R A N O N - L I N E A R T E M P O R A L
VA R I ATI O N O F TH E C L O U D ’ S D E N S I T Y

If the temporal variation of the cloud’s density is expressed in power
series by equation (28), the term (1 + λt) of equations (18) should

be substituted by (1 + ∑∞
n=1 ρnt

n). The coefficients of the solution
series of equations (18) for n = 2 are coincident with equations (21)
and for n ≥ 3 are

ηn = 1

n(n − 1)

(
− f ηn−2 − k2

n−2∑
i=1

ρi ηn−2−i − k2ηn−2

− 2(n − 1)ω0ξn−1

)

ξn = 1

n(n − 1)

(
− f ξn−2 − k2

n−2∑
i=1

ρi ξn−2−i − k2ξn−2

+ 2(n − 1)ω0ηn−1 + 2ω2
0ξn−2

)
, (B1)

where η0, ξ 0, η1 and ξ 1 are given by the initial position and velocity.
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