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A small series of N-glycosylsulfonamides incorporating the phenol moiety has been prepared by Ferrier
sulfonamidoglycosylation of D-glycals. N-Glycosides were tested for the inhibition of four isoforms of car-
bonic anhydrase. In this study, all compounds showed good inhibitory activity against hCA I and II, with
selectivity against the cytosolic hCA II versus the tumor associated isozymes. These results confirm that
attaching carbohydrate moieties to CA phenol pharmacophore improves and enhances its inhibitory
activity.

� 2016 Elsevier Ltd. All rights reserved.
Carbonic anhydrases (CAs, EC 4.2.1.1) are the most studied
members of a great family of metalloenzymes. CAs catalyze the
reversible hydration of carbon dioxide and they are found in mul-
tiple organisms such as vertebrates, bacteria, algae.1 Five geneti-
cally distinct CA families are known to date, the a-, b-, c-, d- and
f-CAs. a-CAs are involved in several physiological processes and
have been exploited for the treatment or prevention of various
pathologies such as glaucoma, neurological disorders, osteoporosis,
obesity and cancer.2–7 During the last years, the interest in the
therapeutic use of carbonic anhydrase inhibitors (CAIs), has
improved remarkably due to the validation of several CA isozymes
as drug targets.

Phenols inhibit CAs by anchoring to the Zn(II)-bound solvent
molecule, that is, a water or hydroxide ion, as initially reported
by Christianson’s group.8 Although phenol-based natural and syn-
thetic compounds are largely known to exhibit biological activity
(mainly as antioxidants), they have been only recently studied as
carbonic anhydrase inhibitors.9,10

The use of glycomimetics in the design of CAIs has proven to be
a successful approach and now constitutes one of the most attrac-
tive ways to develop new generations of effective and selective
inhibitors.11,12 In many cases, use of carbohydrates as drugs has
an important drawback: they are sensitive to the presence of
enzymes and acidic or basic media. Thus, design of mimetics that
bind to enzymes but are not processed to product in the usual
way is an active area of research.13 Usual enzyme-resistant
replacement for the glycosidic linkage are the thio, methylene or
sulfonamidoglycosides. Recently our group has applied the ‘sugar
approach’ to the preparation of C-cinnamoyl phenols, where the
carbohydrate moiety is tethered to a phenol CA pharmacophore
through a carbon chain.14 These compounds have been tested as
inhibitors of the Mycobacterium tuberculosis b-CAs and have shown
better inhibitory activity against mtCAs than phenol. Also the anti-
tubercular activity of the C-glycosyl phenols was investigated,
allowing us to identify the first mtCAs inhibitor with antimycobac-
terial activity.15 These glycosides also showed to be very good inhi-
bitors of Brucella suis CAs.16

In 2007 our group described the Ferrier sulfonamidoglycosyla-
tion of peracetylated D-glycals in the presence boron trifluoride
etherate.17 The D-hex-2-enopyranosylsulfonamides were obtained
in high yield with very good a-stereoselectivity. Then this method-
ology was applied to the synthesis of N-glycosyl sulfamides, which
showed to be potent carbonic anhydrase inhibitors.18 Recently
Winum’s group reported on the synthesis and biological activities
of carbonic anhydrase glycoinhibitors developed by Ferrier sulfon-
amidoglycosylation of peracetylated glycals by reaction with
hydroxysulfamide19 or aminoxysulfamide20 using nitrosyl tetraflu-
oroborate as catalyst.

Thus, in the search of non-sulfonamide CAIs belonging to differ-
ent classes of compounds, we report here the synthesis of a series
of new N-glycosylsulfonamides incorporating phenol moiety
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Figure 1. Peracetylated N-glycosylsulfonamides (3a–3c) and fully deprotected derivatives (4a–4c).
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(Fig. 1) vía Ferrier sulfonamidoglycosylation of D-glycals and their
inhibitory activity against the cytosolic hCA I and II, and tumor-
associated hCA IX and XII.

N-Glycosylsulfonamides 3 were synthesized as depicted in
Scheme 1. Starting from peracetylated glycals 2, and using the
same methodology previously reported by us on Ferrier sulfonami-
doglycosylation, we were able to obtain compounds 3 by reacting 2
with p-hydroxybenzenesulfonamide (1) in the presence of 1% mol
of boron trifluoride etherate in dichloromethane (Scheme 1).21

Sulfonamidoglycosides 3 were obtained as a mixture of a and b
anomers with a slight selectivity for the a-anomer (see Table 1).
Similar selectivities were reported in other sulfonamidoglycosyla-
tions. Our group showed that the a-selectivity could be explained
in terms of the endo and exo-anomeric effects, suggesting a ther-
modynamical control of the reaction.22

The a and b anomers of the threo-hex-2-enopyranosyl sulfon-
amide 3b could be easily separated by flash column chromatogra-
phy. Although compounds 3a and 3c were obtained analytically
pure by chromatography, the anomers could not be separated.
Table 1
Synthesis of N-glycosylsulfonamides

Glycal Sulfonamidoglycosylation

Reaction time (h) a:b Yield (%)

2a 1.5 61:39 71
2b 2 65:45 70
2c 5 78:22 72

a Deprotection of the mixture of anomers.
b Anomers of compound 3b could be separated and thus the pure anomers were depr
The anomeric configuration was supported by NOESY experiments
(in CDCl3), for example, the configuration of a-anomer of 3a is
consistent with NOEs between NH and H-5, and between H-4
and H-5.

Final deprotection of acetate groups of glycosides 3 with
methanolic solution of sodium methoxide led to compounds 4 in
very good yields.23

Compounds 1, 3a–3c and 4a–4c as well as clinically used aceta-
zolamide (standard compound) were tested for their inhibitory
activity against the two cytosolic CA isoforms hCA I and II and
the two membrane tumor-associated isoforms hCA IX and XII
using a Stopped-Flow, CO2 Hydration Assay Method.24 Results are
reported in Table 2.

A number of structure–activity relationships (SARs) were iden-
tified in this study and are summarized as follows:

(i) hCA I: erythro sulfonamides 3a and 4a are nanomolar inhibi-
tors of the hCA I; the other N-glycosylsulfonamides are very
poor hCA I inhibitors. It should be noted that the b-anomers
Deprotection

Reaction time (h) a:b Yield (%)

1.5 61:39 80a

2 —b 83a + 85b
2 78:22 82a

otected.



Table 2
Inhibition of four CA isoforms: hCA I, II, IX and XII with the N-glycosylsulfonamides
3a–3c and 4a–4c, determined by a stopped flow, CO2 hydration assay method

Compound KI
a (nM)

hCA I hCA II hCA IX hCA XII

Phenolb 10,200 5500 8800 9200
1 5500 80 235 176
3a 43.1 139 >50,000 >50,000
3ba 6630 695 >50,000 >50,000
3bb 3840 137 >50,000 >50,000
3c 6690 360 >50,000 >50,000
4a 454 142 >50,000 >50,000
4ba 8850 340 >50,000 >50,000
4bb 4025 295 >50,000 >50,000
4c 6250 1680 >50,000 >50,000
AAZ 250 12.1 25.3 5.7

a Errors in the range of ±5–10% of the reported values, from 3 different assays
(data not shown).

b From Ref. 25.
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of the threo sulfonamides 3b and 4b are better inhibitors
than the a-anomers. It is of great interest to compare the
behavior of compounds toward hCA I with the inhibition
profile showed by phenol or compound 1, and it can be con-
cluded that combination of an erythro-hex-2-enopyranosyl
scaffold and the phenol moiety leads to a steep increase in
the inhibitory potency of these compounds against hCA I.

(ii) hCA II: the N-glycosides showed to be very good inhibitors in
the nanomolar range with the exception of deprotected sul-
fonamidoglycoside 4c. It is interesting to compare the inhi-
bitory activity of phenol and the N-glycosides. As can be
seen in our present Letter, attachment of glycosyl moieties
to the phenol scaffold lead to an improvement in the
activity.

(iii) Tumor-associated Isozymes hCA IX and XII were not inhib-
ited by N-glycosylsufonamides 3a–3c and 4a–4c.

In conclusion, a novel series of sulfonamidoglycosides 3a–3c
and 4a–4c containing the phenol scaffold has been synthesized
via sulfonamidoglycosylation of D-glycals and investigated as inhi-
bitors against four isozymes of carbonic anhydrases comprising
cytosolic, ubiquitous isozymes hCA I and II as well as the trans-
membrane, tumor-associated isoforms hCA IX and XII. In this
study, peracetylated and deprotected erythro-hex-2-enopyranosyl
sulfonamides 3a and 4a, respectively, showed to be nanomolar
inhibitors of hCA I. Very good inhibitory activity against hCA II
was shown by almost all the N-glycosides prepared, showing that
attaching carbohydrate moieties to CA phenol pharmacophore
improves and enhances its inhibitory activity.
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