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Optimal Differentiator Filter Banks for PMUs and
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Francisco Messina, Leonardo Rey Vega, Pablo Marchi, Cecilia G. Galarza

Abstract—In this paper, we present a very general design
approach for optimal linear-phase phasor filter bank algorithms
for PMUs based on convex semi-infinite optimization. A detailed
presentation of the formulation of both the cost functions and
constraints is included for the positive-sequence estimation prob-
lem. The design method is extremely powerful and flexible as it
allows to control precisely the behavior of the system in terms
of the total vector error (TVE), frequency error (FE), and rate
of change of frequency error (RFE) metrics for several different
scenarios. This feature is extremely useful for tailored designs
of these filters for different applications. We also determine
numerically the uniform feasibility limits of the system as a
function of the filter lengths and, in particular, study the required
filter lengths for compliance with the IEEE Standards C37.118.1-
2011 and C37.118.1a-2014. It is found that all requirements can
be achieved with a significant margin with the exception of the
M class FE constraint for interharmonic components, an issue
which is also reported in other works and briefly discussed here.
Finally, an interesting comparison with the Taylor-Fourier filters
is made to illustrate the advantages of our approach.

I. INTRODUCTION

A. Review and Motivation

Phasor Measurement Units (PMUs) are at the core of wide-
area measurement systems (WAMS), which provide timely
situational awareness to modern power systems. These devices
produce fast and accurate measurements of phasor, frequency
and rate of change of frequency (ROCOF) of voltage and
current power signals. This is possible because PMUs are
synchronized with the UTC global time standard, usually by
means of a GPS receiver. The IEEE Std. C37.118.1-2011
[1] on synchrophasors and its recent amendment C37.118.1a-
2014 [2] establish precise and strict requirements on these
measurements. They are classified as stationary and dynamic
requirements but can alternatively be divided into time and
frequency domain constraints.

A considerable amount of research was conducted in
synchrophasor estimation algorithms, particularly in the last
decade. Originally, phasor estimation was performed with a
DFT, which is both efficient and provides perfect rejection
of harmonics at nominal frequency [3]. Several improvements
of the algorithm were proposed to improve the behavior in
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off-nominal conditions where leakage effects appear [4], [5].
However, the method is inherently limited in dynamic condi-
tions because it is based on a stationary model. An important
contribution was the recognition of the importance of the
dynamic phasor concept in power systems [6], showing the
limitations of the steady-state phasor model for synchrophasor
estimations. This led to the Taylor-Fourier (TF) filters, which
are given by the LS [6] or WLS [7] solutions to the Taylor
approximation of the dynamic phasor as well as several other
methods such as the IpD2FT [8]. A detailed comparison of
some of the previous algorithms can be found in [9], [10]. The
dynamic model is much more accurate than a stationary one,
but it has at least two important limitations. First, interference
components such as harmonics and interharmonics are not
explicitly taken into account. In fact, they are treated as
noise without a precise mathematical structure. Thus, poor
performance is obtained when these disturbances are present
[11]. Although it is possible to extend the model to include
the estimation of these components to improve the one of
the fundamental phasor [12], this requires prior knowledge
of the interharmonic frequency components and considerably
increases the computational cost of the algorithm. Secondly,
it is limited by the assumed parametric polynomial model
which, for example, is not convenient for discontinuities in
the dynamic phasor such as the ones that are present when
a sudden change in amplitude or phase occurs. On the other
hand, filter design criteria for synchrophasor estimation were
studied lately based on frequency domain constraints [13],
[14], which yielded spectral masks for magnitude response
requirements. However, the main limitation of these criteria
is that they do not take into account, in precise terms, the
relevant time domain constraints, which means that not all of
the IEEE Std. requirements are incorporated into the design
and therefore the problem formulation is incomplete.

Most of the aforementioned methods have a common fea-
ture: they generally need some degree of parameter tuning to
work properly for a particular set of requirements. Moreover,
it is not always well-known how to control the performance of
the method for a given signal waveform, nor if it is feasible to
achieve a set of requirements before an exhaustive set of tests
is performed. This is clearly a disadvantage for the designer,
since it leads to a time-consuming trial and error process.

B. Contribution and Challenges

The contribution of this work is to present thoroughly a
general and flexible approach for designing optimal filter bank
systems for dynamic phasor estimation. It is based on convex
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semi-infinite programming (CSIP), a powerful tool for optimal
digital filter design [15], [16], [17]. Basically, it extends the
idea of the work [18] to a filter bank (FB) which provides not
only a phasor estimate but also phasor derivative estimates. As
it will be shown, this approach provides total control of the FB
performance at the design stage in both time and frequency
domains.

There are several challenges that were encountered to
complete this work. The major one is recognizing the fact
that the synchrophasor estimation problem can be posed as
three convex semi-infinite optimization programs. This is not
a trivial observation. In fact, as can be seen in Section II,
it requires a very careful formulation of the whole problem.
To the best of our knowledge, this is the first time that
the synchrophasor estimation problem is posed explicitly and
completely (with all time and frequency domain constraints)
as an optimization problem. As minor challenges, but still
important to obtain useful numerical results, we can mention
the following:

1) The simplification of the constraints to obtain a problem
that is computationally simpler and suitable for the
available solvers.

2) Performing the feasibility analysis of the problem.

C. Organization

The rest of the paper is organized as follows. In Section II,
the FB is introduced and then the filter optimization problem
for the design of this system is formulated as a convex semi-
infinite program. The limits of this structure are then analyzed
with computer simulations in Section III, and case studies for
both P and M class PMUs are presented to show the features
of the filters obtained with this approach. Finally, conclusions
and comments about future research directions are given in
Section IV.

II. FILTER BANK DESIGN

A. Motivation

The filter bank estimation system is presented in Fig. 1,
where X [n] is the signal phasor, I[n] is a nuisance phasor,
Y[n] is the input phasor to the system, X̂ [n] is the phasor es-
timate, X̂ ′[n] is the first derivative phasor estimate, and X̂ ′′[n]
is the second derivative phasor estimate. The sampling period
is denoted by T and all phasors are assumed to be baseband
signals. Note that I[n] may represent an actual interference
signal, unbalances for a three-phase signal, a double-frequency
image component for a single-phase signal, or simply random
noise. Each case can be treated by an appropriate constraint,
illustrating the generality of this approach. The blocks Ai(ν),
i = 0, 1, 2, represent zero-phase finite impulse response (FIR)
filters, that is, systems which produce no delay. In practice,
they arise from linear-phase filters Hi(ν) and the required
system latency to compensate for the delay that they cause.
This is equivalent to centering the filter window around each
report time, a popular strategy in synchrophasor estimation
algorithms. In [18], the filter A0 is presented as a general
dynamic phasor estimator and motivated for both single-

+ A0(ν)

jA1(ν)

A2(ν)

X [n]

I[n]

Y[n] X̂ [n]

X̂ ′[n]

X̂ ′′[n]

Fig. 1. General zero-phase filter bank system.

and three-phase synchrophasor estimation systems. This is a
natural extension for the case where the first- and second-
order phasor derivatives are also required. Given the estimates
X̂ [n], X̂ ′[n], and X̂ ′′[n], it is a simple matter to obtain ω̂[n],
and α̂[n], that is, the angular frequency and angular rate of
change of frequency (ROCOF) estimates, with the following
relations:

ω̂[n] = Im

{
X̂ ′[n]

X̂ [n]

}
,

α̂[n] = Im

{
X̂ ′′[n]

X̂ [n]

}
− 2 Re

{
X̂ ′[n]

X̂ [n]

}
Im

{
X̂ ′[n]

X̂ [n]

}
. (1)

These expressions are similar to those that appear in [8] and
were introduced, in a slightly different manner, in [6]. They
will be used extensively in what follows to obtain the design
constraints for the filter bank design problem.

In this section, it will be shown that the filter bank design
problem can be posed in the framework of convex semi-infinite
programming, whose solution can then be found by any of the
several available solvers [19], [20]. Due to space constraints,
only the problem of estimating the positive-sequence phasor
and its derivatives will be treated but, as mentioned above, it
should be clear that the approach is not limited to this problem.
We will focus mainly on the IEEE Std. requirements but will
also show how to include other constraints for tailored designs.

B. Definitions

The first filter A0(ν), which estimates the signal phasor, is
chosen as a type I FIR filter as in [18] to produce an even
amplitude response filter with integer group delay. Similarly,
the second filter jA1(ν), which is a first-order differentiator
filter, is chosen as a type III filter to produce an odd amplitude
response filter with integer group delay. Finally, the third filter
A2(ν), which is a second-order differentiator filter, is again a
type I filter. The filter orders are considered to be equal without
loss of generality and are denoted by N . Then, the expressions
for the amplitude responses are as follows:

Ai(ν) = gTi (ν)ai, i = 0, 1, 2,

where g0(ν) = [1, cos(ν), . . . , cos(Rν)]T , g1(ν) =
[sin(ν), . . . , sin(Rν)]T , g2(ν) = g0(ν), and R = N/2.
The vectors ai represent the linear-phase representation filter
coefficients.
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C. Cost Functions

The choice of the cost functions for the optimization prob-
lems is by no means unique and may depend on the particular
application of the synchrophasor measurements. Here, we
propose to define the cost functions on the basis of a uniform
bound of the squared error criterion as in [18] but generalized
to account also for interference perturbations:

fi(ai) = λi
∥∥Ai −Aid

i

∥∥2

2,Ω1
+ (1− λi) ‖Ai‖22,Ω2

, (2)

with i = 0, 1, 2, and where Ω1 is the union of the passband
and transition band of the filters, while Ω2 is the stopband.
They are defined according to the IEEE Std. specifications.
Functions Aid

i are the ideal responses of each filter in the
passband: Aid

0 (ν) = 1, Aid
1 (ν) = ν

T , and Aid
2 (ν) = − ν2

T 2 .
Also, λi ∈ [0, 1] are defined according to the desired trade-
off between phasor signal distortion and interference power
reduction. Note that the objective functions fi are quadratic
functions of ai and can be written as fi(ai) = aTi P iai +
qTi ai + ri, where P i,qi and ri are readily found from (2).
Since P i are positive semi-definite matrices, it follows that fi
are convex functions.

D. Optimization problem

For each of the desired filters (i = 0, 1, 2), the optimization
problem Pi can be cast as:

Pi : min
ai

fi(ai)

s.t. hik(ai, νik, θik) ≤ cik,

where (νik, θik) ∈ Ωik × Θik, k = 1, . . . ,Mi, hik are
appropriate convex functions in ai that summarize the several
time and frequency domain constraints to be achieved by
the i-th filter, and cik are desired performance levels. Note
that some of these functions1 can depend on a frequency
variable νik and other continuous parameter θik particular
to that specific requirement. As Ωik and Θik can be infinite
sets (such as closed intervals), it is said that these constraints
are semi-infinite ones. In this way, the above problem can
be recognized as one of convex semi-infinite programming, a
very well developed field of optimization [16]. The solution
approach we take is as follows. First we solve the problem
P0, which yields the filter A∗0 (determined by a∗0). Then,
the problem P1 is formulated which, as will be shown be-
low, depends on the optimal a∗0 already obtained. Similarly,
for the problem P2, the constraints depend on a∗0 and a∗1.
This induces a sequential procedure for solving the problem.
Clearly, our solution approach for obtaining the desired filters
is suboptimal, but has the important advantage of producing
a sequence of convex subproblems, thus guaranteeing that a
global optimum can be found for each individual optimization
problem. It remains to obtain the corresponding expressions
for the functions hik and the desired levels of performance
cik. This is done in the following subsections.

1The formulation also allows to incorporate ordinary convex constraints by
letting some of the functions hik to be constant with respect to the semi-
infinite parameters.

E. Off-Nominal Signal Frequency Constraints

In this case, the input phasor is Y[n] = X [n] =
ase

j(νsn+φs), where νs is the phasor angular frequency with
respect to the nominal frequency, which belongs to a given set
Ωs. If we force the steady-state TVE to be below some upper
bound TVESTA, we obtain the following convex semi-infinite
constraint:

TVE = |A0(νs)− 1| ≤ TVESTA, νs ∈ Ωs.

Similarly, evaluating FE with the expressions in (1), and using
an upper limit FESTA, we obtain:

FE =
1

2π

∣∣∣∣A1(νs)

A∗0(νs)
− νs
T

∣∣∣∣ ≤ FESTA, νs ∈ Ωs.

It is easy to see from (1) that for the signal model assumed
RFE is exactly zero due to the fact that the filters Ai are real.
This implies that there is not a constraint associated with A2.

F. Interference Rejection Constraints

When an interference is present, the input phasor is Y[n] =
X [n] + I[n] = ase

j(νsn+φs) + aie
j(νin+φi), where νi is the

interference phasor angular frequency which belongs to a
given set Ωi. Forcing the worst-case steady-state TVE to be
below an upper bound TVEINT, we get:

|A0(νs)− 1|+ |A0(νi)|η ≤ TVEINT, (νs, νi) ∈ Ωs × Ωi,

where η = ai/as. To find the constraint that ensures that
FE is smaller than a desired limit FEINT, we first express the
frequency estimation in (3), at the bottom of the next page,
where θ = (νi− νs)n+ (φi−φs). Thus, the FE constraint is∣∣∣ω̂(νs, νi, θ)−

νs
T

∣∣∣ ≤ 2πFEINT, (νs, νi, θ) ∈ Ωs×Ωi×[−π, π].

However, for computational purposes, it is desirable to sim-
plify this three-parameter semi-infinite constraint into one or
more two-parameter semi-infinite constraints. Since maximum
and minimum values for the estimated frequency occur2 when
θ = 0 or θ = π, the FE constraint may be expressed as two
semi-infinite constraints in two semi-infinite parameters:∣∣∣ω̂(νs, νi, 0)− νs

T

∣∣∣ ≤ 2πFEINT, (νs, νi) ∈ Ωs × Ωi,∣∣∣ω̂(νs, νi, π)− νs
T

∣∣∣ ≤ 2πFEINT, (νs, νi) ∈ Ωs × Ωi.

Finally, the RFE constraint is formally as follows:

|α̂(νs, νi, θ)| ≤ 2πRFEINT, (νs, νi, θ) ∈ Ωs×Ωi×[−π, π],
(4)

where the expression of α̂(νs, νi, θ) is given in (5), again
at the bottom of the next page. Unfortunately, there is not
a simple equivalent two-parameter constraint for this case,
so we will seek for an approximation. In order to do so,
note from (5) that if we neglect the second term for one
moment3, and note that 2A∗0(νi)η � A∗0(νs), we obtain an

2A function of the form f(θ) = (x+y cos θ)/(w+z cos θ) which is well
defined for all θ ∈ [−π, π] has stationary points at θ = ±π, and θ = 0.
Thus, its maximum and minimum values are either f(0) or f(π).

3This is justified since the stopband ripples of A0 and A1 are generally
much smaller than those of A2.
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approximation of α̂(νs, νi, θ) that is sinusoidal in θ. Under
this approximation, |α̂(νs, νi, θ)| is maximum for θ = ±π/2.
Therefore, we propose the following relaxation of (4):

|α̂(νs, νi,−π/2)| ≤ 2πRFEINT, (νs, νi) ∈ Ωs × Ωi,

|α̂(νs, νi,+π/2)| ≤ 2πRFEINT, (νs, νi) ∈ Ωs × Ωi.

G. Amplitude and Phase Modulation Constraints

The signal phasor for an amplitude modulated signal is
X [n] = as[1 + ka cos(νmn+ φm)]ejφs . Evaluating the TVE
and forcing the condition TVE[n] ≤ TVEAM for all n ∈ Z,
we obtain the following constraints:

|(A0(0)− 1) + (A0(νm)− 1)ka|
|1 + ka|

≤ TVEAM, νm ∈ Ωm,

|(A0(0)− 1)− (A0(νm)− 1)ka|
|1− ka|

≤ TVEAM, νm ∈ Ωm,

where Ωm is the set of possible modulation frequencies.
Generally, these constraints are implied by the TVE off-
nominal frequency constraint. Nevertheless, for the sake of
generality, we shall keep the constraint in the formulation. On
the other hand, since A1(0) = 0 for all a1, both FE and RFE
are exactly zero, so that no additional constraints are required.

For the phase modulation signal, the input phasor is [21]:
X [n] = ase

jφsejkφ cos(νmn+φm) = ase
jφs (XR[n] + jXI [n]) ,

where XR[n] = J0(kφ) + 2
∑∞
k=1(−1)kJ2k(kφ) cos(2kθm),

XI [n] = 2
∑∞
k=0(−1)kJ2k+1(kφ) cos[(2k + 1)θm], θm =

νmn + φm, and Jk is the k-th order Bessel function of
the first kind. Note that Jk(kφ) rapidly decays to zero4 as
k → ∞ for typical values of the modulation factor kφ.
Therefore, a few terms are often sufficient to approximate the
input phasor. The filter bank outputs are given by: X̂ [n] =

ase
jφs(X̂R[n] + jX̂I [n]), X̂ ′[n] = ase

jφs(X̂ ′R[n] + jX̂ ′I [n]),
X̂ ′′[n] = ase

jφs(X̂ ′′R[n] + jX̂ ′′I [n]), where X̂R[n], X̂I [n],
X̂ ′R[n], X̂ ′I [n], X̂ ′′R[n], and X̂ ′′I [n] are defined in (6) at the
bottom of the next page. For simplicity, we work with the
squared TVE, which is a convex quadratic function of a0 and
depends on the semi-infinite parameters νm and θm. Therefore,
we obtain the following convex semi-infinite constraint:

TVE2(νm, θm) ≤ TVE2
PM, (νm, θm) ∈ Ωm × [−π, π],

The FE constraint is as follows:∣∣∣∣ω̂(νm, θm) +
kφνm
T

sin(θm)

∣∣∣∣ ≤ 2πFEPM,

for all (νm, θm) ∈ Ωm × [−π, π], where ω̂(νm, θm) is the
frequency estimate, which is a real linear function of a1.
Similarly, the RFE constraint is.∣∣∣∣α̂(νm, θm) +

kφν
2
m

T 2
cos(θm)

∣∣∣∣ ≤ 2πRFEPM,

for all (νm, θm) ∈ Ωm × [−π, π], where α̂(νm, θm) is a real
affine function of a2.

4Formally, we have the following asymptotic result [21]:

Jα(x) =
1

Γ(α+ 1)

(x
2

)α [
1 +O(x2)

]
, x→ 0.

H. Frequency Ramp Constraints

For a frequency ramp signal starting at nominal frequency,
the input phasor within the frequency ramp time interval is
X [n] = ase

jφsejγn
2

, n = 0, . . . , Nf − 1, where γ = πRfT
2,

being Rf the ramp rate, and Nf the sample length of the
frequency ramp. We are interested in the estimations only
within the exclusion interval limits, as defined on the IEEE
Std., that is, for n = n1, . . . , n2, where n1 is the first
sample index after the initial exclusion interval and n2 is
the last sample index before the final exclusion interval. In
this range, the filter bank outputs are as follows: X̂ [n] =

ase
jφsejγn

2

bH0 [n]a0, X̂ ′[n] = ase
jφsejγn

2

bH1 [n]a1, X̂ ′′[n] =
ase

jφsejγn
2

bH2 [n]a2,where (bH0 [n])k0
= cos(2γnk0)ejγk

2
0 ,

(bH1 [n])k1 = j sin(2γnk1)ejγk
2
1 , and (bH2 [n])k2 =

cos(2γnk2)ejγk
2
2 , with k0, k2 = 0, . . . , R and k1 = 1, . . . , R.

Therefore, using the squared TVE, we obtain the following
constraint:

aT0 P 00[n]a0 + qT0 [n]a0 + 1 ≤ TVE2
FR, n = n1, . . . , n2,

where P 00[n] = b0[n]bH0 [n] and q0[n] = −2 Re{b0[n]}. In
[18], the following semi-infinite approximation was proposed:

aT0 P 00(θ0)a0+qT0 (θ0)a0+1−TVE2
FR ≤ 0, θ0 ∈ [θmin, θmax],

where θmin = γn1, θmax = γn2, and P 00(θ0), q0(θ0) are
obtained, respectively, from P 00[n] and q0[n] by replacing
γn by θ0. Using the same approximation as for the TVE, we
obtain the following FE and RFE constraints:∣∣∣∣∣a∗T0 P I

01(θ1)a1

a∗T0 P 00(θ1)a∗0
− 2θ1

T

∣∣∣∣∣ ≤ 2πFEFR, θ1 ∈ [θmin, θmax],∣∣∣∣∣a∗T0 P I
02(θ2)a2

a∗T0 P 00(θ2)a∗0
− 2

a∗T0 PR
01(θ2)}a∗1

a∗T0 P 00(θ2)a∗0

a∗T0 P I
01(θ2)a∗1

a∗T0 P 00(θ2)a∗0

−2πRf | ≤ 2πRFEFR, θ2 ∈ [θmin, θmax],

where P kl(θp) is obtained by replacing γn by θp in P kl[n] =
bk[n]bHl [n], PR

kl(θp) = Re{P kl(θp)}, and P I
kl(θp) =

Im{P kl(θp)}.

I. Amplitude and Phase Steps Constraints

The signal phasor for an amplitude step can be written as
X [n] = as(1+∆au[n])ejφs , where u[n] is the unit step signal
and ∆a is the amplitude step size. For the sake of simplicity,
we present only the constraints for the case ∆a > 0, but
the case ∆a < 0 is treated similarly. Note that amplitude
overshoot (AO) can then be characterized as follows:

AO = max
n=0,...,R

|X̂ [n]| − |X [n]|
|X [n]|

= max
n=0,...,R

(A0(0) + ∆as0[n])− (1 + ∆a)

1 + ∆a
,

where A0(0) = gT0 (0)a0 and s0[n] = uT0 [n]a0, with
(u0[n])k0 = u[n+k0]+u[n−k0]

2 for k0 = 0, . . . , R. Thus, the
constraint AO ≤ AOmax can be readily expressed as R + 1
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linear ordinary constraints on a0. Now, we obtain the response
time constraints explicitly. Consider first the TVE:

TVE[n] =
|(A0(0) + ∆as0[n])− (1 + ∆au[n])|

|1 + ∆au[n]|
.

Let tr,TVE be the desired value for the TVE response time
and nr,TVE = btr,TVE/2T c. The quantities (tr,FE, nr,FE), and
(tr,RFE, nr,RFE) are defined analogously. Then, the TVE re-
sponse time constraint can be formulated as5 TVE[n] ≤
TVESTD

STA for n = −R, . . . ,−nr,TVE, nr,TVE, . . . , R, which
translates to 4(R−nr,TVE+1) ordinary linear constraints on a0.
Note that both ω̂[n] and α̂[n] are identically zero for amplitude
steps, so that no additional constraints are required.

For a phase step, the signal phasor can be writ-
ten as X [n] = ase

j(φs+∆φu[n]), where ∆φ is the
phase step size. Then, we obtain the following expres-
sions for the FB outputs: X̂ [n] = ase

jφsvH0 [n]a0,
X̂ ′[n] = ase

jφsvH1 [n]a1, X̂ ′′[n] = ase
jφsvH2 [n]a2,

where (vH0 [n])k0
= ej∆φu[n+k]+ej∆φu[n−k]

2 , (vH1 [n])k1
=

ej∆φu[n+k]−ej∆φu[n−k]

2 , (vH2 [n])k2
= ej∆φu[n+k]+ej∆φu[n−k]

2 ,
k0, k2 = 0, . . . , R, k1 = 1, . . . , R. Let us also define
the following matrices: P kl[n] = vk[n]vHl [n], PR

kl[n] =
Re(P kl[n]), and P I

kl[n] = Im(P kl[n]), k, l = 0, 1, 2, which
are required in what follows. Again, we consider only the case
∆φ > 0 for simplicity of presentation. Then, phase overshoot
(PO) can be characterized as:

PO = max
n=0,...,R

∠X̂ [n]− ∠X [n]

∆φ
= max
n=0,...,R

∠vH0 [n]a0 −∆φ

∆φ
.

Unfortunately, the constraint PO ≤ POmax leads to sev-
eral non-convex constraints. However, noting that ∠vH0 [n]a0

should oscillate in a small neighborhood around ∆φ after the
step, we can relax the constraint by

Im{vH0 [n]}a0 ≤ tan[∆φ(1 + POmax)] Re{vH0 [n]}a0,

5We will use the superscript STD to denote the performance limits defined
in the IEEE Std. [1], [2].

for n = 0, . . . , R, which are R+ 1 ordinary linear constraints
on a0. To obtain the response time constraints we proceed as
with the amplitude step test. In this case, the TVE response
time constraint can be written as follows:

TVE2[n] = aT0 P 00[n]a0 + qT0 [n]a0 + 1 ≤ (TVESTD
STA )2,

where qT0 [n] = −2 Re{e−j∆φu[n]vH0 [n]}, for n =
−R, . . . ,−nr,TVE, nr,TVE, . . . , R. Similarly, the FE response
time constraint is:

FE[n] =
1

2π

∣∣∣∣∣a∗T0 P I
01[n]a1

a∗T0 P 00[n]a∗0

∣∣∣∣∣ ≤ FESTD
STA ,

for n = −R, . . . ,−nr,FE, nr,FE, . . . , R. Finally, the ROCOF
estimate is:

α̂[n] =
a∗T0 P I

02[n]a2

a∗T0 P 00[n]a∗0
− 2

a∗T0 PR
01[n]a∗1

a∗T0 P 00[n]a∗0

a∗T0 P I
01[n]a∗1

a∗T0 P 00[n]a∗0
.

Then, the RFE response time constraint can be written as
follows:

RFE[n] =
1

2π
|α̂[n]| ≤ RFESTD

STA ,

for n = −R, . . . ,−nr,RFE, nr,RFE, . . . , R.

J. Other Constraints

In more general terms, let Xθ[n], X ′θ[n], and X ′′θ [n] be
the input phasor and its derivatives associated with a par-
ticular waveform parameterized by θ ∈ Θ. Suppose also
that we are interested in the errors on the index set N ⊆ Z.
Note that X̂ [n] = bHθ,0[n]a0, X̂ ′[n] = bHθ,1[n]a1, and
X̂ ′′[n] = bHθ,2[n]a2 for some bθ,0[n],bθ,2[n] ∈ CR+1 and
bθ,1[n] ∈ CR. Consider the TVE, the FE and the RFE:
TVEθ[n], FEθ[n], and RFEθ[n], where (n,θ) ∈ N × Θ. It
is clear that the constraints TVEθ[n] ≤ εTVE, FEθ[n] ≤ εFE,
and RFEθ[n] ≤ εRFE, for all (n,θ) ∈ N × Θ and for
given parameters εTVE, εFE, εRFE > 0, are convex semi-
infinite constraints. The challenge, of course, is to simplify

ω̂(νs, νi, θ) =
A∗0(νs)A1(νs) + η2A∗0(νi)A1(νi) + η[A∗0(νs)A1(νi) +A∗0(νi)A1(νs)] cos(θ)

A∗20 (νs) + η2A∗20 (νi) + 2ηA∗0(νs)A∗0(νi) cos(θ)
. (3)

α̂(νs, νi, θ) =
[A∗0(νs)A2(νi)−A∗0(νi)A2(νs)]η sin(θ)

A∗20 (νs) +A∗20 (νi)η2 + 2A∗0(νs)A∗0(νi)η cos(θ)
− 2

[A∗0(νi)A
∗
1(νs)−A∗0(νs)A

∗
1(νi)]η sin(θ)

A∗20 (νs) +A∗20 (νi)η2 + 2A∗0(νs)A∗0(νi)η cos(θ)
×

A∗0(νs)A
∗
1(νs) +A∗0(νi)A

∗
1(νi)η

2 +A∗0(νs)A
∗
1(νi)η cos(θ) +A∗0(νi)A

∗
1(νs)η cos(θ)

A∗20 (νs) +A∗20 (νi)η2 + 2A∗0(νs)A∗0(νi)η cos(θ)
. (5)

X̂R[n] = A0(0)J0(kφ) + 2
∞∑
k=1

(−1)kA0(2kνm)J2k(kφ) cos(2kθm),

X̂ ′R[n] = −2
∞∑
k=1

(−1)kA1(2kνm)J2k(kφ) sin(2kθm),

X̂ ′′R[n] = A2(0)J0(kφ) + 2

∞∑
k=1

(−1)kJ2k(kφ)A2(2kνm) cos(2kθm),

X̂I [n] = 2
∞∑
k=0

(−1)kA0((2k + 1)νm)J2k+1(kφ) cos[(2k + 1)θm],

X̂ ′I [n] = −2
∞∑
k=0

(−1)kA1((2k + 1)νm)J2k+1(kφ) sin[(2k + 1)θm],

X̂ ′′I [n] = 2

∞∑
k=0

(−1)kJ2k+1(kφ)A2((2k + 1)νm) cos[(2k + 1)θm].

(6)
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the constraints as much as possible by exploiting the structure
of TVEθ[n], FEθ[n], and RFEθ[n]. This general approach was
demonstrated extensively in this section.

III. NUMERICAL RESULTS

In this section, we present several numerical results which
provide very useful information for the synchrophasor estima-
tion problem and also illustrate the advantages of the opti-
mization approach. Firstly, we study the achievable uniform
performance of the linear-phase filter bank structure, which
is a simple and convenient worst-case characterization of this
class of algorithms. Secondly, a P class PMU design example
is presented and an interesting comparison is made with the
TF filters [12]. In all cases, we consider a reporting rate of
Fs = 50 fps, a nominal frequency of f0 = 50 Hz and a
sampling period of T = (20 × f0)−1 = 1 ms. We have used
a relatively low sampling rate for computational efficiency
and since it was observed that achievable performance is
practically independent of T . The constraint parameters were
taken from the current IEEE Std. version.

A. Uniform Feasibility Limits

We let Pi(ρi), for i = 0, 1, 2, be the optimization problem
associated with the design of the i-th filter obtained by setting
the free design parameters to the corresponding IEEE Std.
constraint limits scaled by the common factor6 ρi. We also
define ρ∗i as the infimum of the set of all ρi such that Pi(ρi) is
feasible. Thus, the number ρ∗i represents a uniform feasibility
limit for the i-th filter design problem. It is important to realize
that ρ∗i is determined solely by the most severe constraints and
is independent of the choice of the cost functions. We use this
partial characterization for its ease of presentation. Clearly, ρ∗i
is a function of K, the cycle length of the filter7. Note that
ρ∗i > 1 indicates that a IEEE Std. compliant design is not
feasible for that particular value of K. The range of values
of K considered is such that the maximum value of K gives
a full latency system, that is, a system with delay equal to
the maximum PMU reporting latency. In Tables I and II, we
present the values of ρ∗i for different values of K for P and M
class PMUs, respectively. These results provide the following
important insights:

1) It is observed that a feasible P class filter A0 can be
obtained with a simple one-cycle filter and provide a
uniform performance of ρ∗0 = 0.36, that is, at most 36%
of the IEEE Std. limits. For the M class PMU, instead, a
four-cycle filter is required for feasibility and ρ∗0 = 0.53.
These results show that it is possible to obtain accurate
phasor estimates with low latency. Thus, the M class
specifications are considerably more stringent than the
P class ones. This is primarily due to the more strict
interference rejection requirements.

6For example, P0(ρ0) represents the problem of minimizing f0 subject to
all the constraints on a0 from Sections II-E to II-I, with TVESTA replaced by
ρ0TVESTD

STA , and the other parameters are defined analogously.
7Of course, it is not strictly necessary to design the filters with a length

equal to an integer number of cycles, so K needs not to be an integer.
However, both for convenience of presentation and since it is customary in
the literature, we will consider only integer values for K.

TABLE I
UNIFORM FEASIBILITY LIMITS FOR P CLASS PMU

K ρ∗0 ρ∗1 ρ∗2
1 0.36 18.9 2.46
2 0.36 1.13 1.92
3 0.36 0.57 0.50
4 0.33 0.55 0.50

2) The first differentiator filter A1 requires a three-cycle
filter for the P class PMU which yields ρ∗1 = 0.57, while
no feasible A1 filter was found for the M class PMU
specifications. Previous conjectures claim that most of
the available algorithms use windows that are too short
to be compliant with the interharmonic rejection con-
straint [8], [14], particularly for M class specifications.
The result we have found is very important since it
shows that8, for a linear-phase differentiator filter bank,
there is no filter such that all the M class constraints
are achieved. Concretely, this happens because the FE
constraint for out-of-band interference is too stringent
considering the required bandwidth of the A1 filter.
To address this problem, a more sophisticated scheme
could be used in order to relax the design constraints.
For example, an adaptive interference canceler such as
the one proposed in [11] based on the IpDFT could
be used to eliminate or at least significantly attenuate
the interharmonic components with little influence on
the fundamental signal phasor. This would, in turn, give
much more freedom for the design of the A1 filter so
that other performance aspects may also be enhanced.
Of course, the study of this or other extensions requires
further research.

3) The second differentiator filter A2 also requires a three-
cycle filter for the P class PMU, yielding ρ∗2 = 0.50.
This shows that the RFE constraints of the IEEE Std. are
slightly less stringent than the FE ones. Since the RFE
limits in the presence of harmonics and interharmonics
have been suspended for the M class PMU [2] (the
practical implications of this are discussed, for example,
in [14]), the results of the feasibility analysis for the
A2 filter show that ρ∗2 is very small. This is reasonable
since the elimination of these limits removes the signal
distortion-interference rejection trade-off of the filter
design problem.

4) Clearly, ρ∗i are non-increasing functions of K, that is,
longer filters always provide at least the same achiev-
able performance than shorter ones9. However, it is
observed that a saturation phenomenon occurs in all
cases, showing that ρ∗i can not be made arbitrarily small
by increasing K. Thus, there is a “corner” filter length
for each problem, in the sense that longer filters provide
virtually no gain in terms of performance. This is a very
interesting result with important practical implications.

8Of course that this holds up to the numerical accuracy of the solver.
9A strange exception occurs for ρ∗2 in the M class PMU, but this is irrelevant

because of their magnitude. Moreover, ρ∗1 for the M class PMU is not strictly
non-increasing, which is probably due to small numerical errors of the solver.
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TABLE II
UNIFORM FEASIBILITY LIMITS FOR M CLASS PMU

K ρ∗0 ρ∗1 ρ∗2 K ρ∗0 ρ∗1 ρ∗2
1 4.36 166 0.03 8 0.49 1.18 0.11
2 3.03 48.3 0.05 9 0.49 1.18 0.10
3 1.63 20.1 0.09 10 0.49 1.18 0.08
4 0.53 18.2 0.04 11 0.49 1.18 0.10
5 0.50 6.41 0.06 12 0.49 1.18 0.10
6 0.49 2.31 0.09 13 0.48 1.20 0.05
7 0.49 1.27 0.10 14 0.48 1.20 0.05

At this point, it is interesting to compare the performance
limits with results obtained with a much more complex system,
such as the modular system described in [22], which is based
on a demodulation stage, a prefiltering stage, a phase-locked
loop, and a compensation stage. An interesting difference is
that the aforementioned method does not use a fixed window
at each reporting time but it is based on a recursive sample-
by-sample approach. The system is fully compliant with the
IEEE Std. as can be seen from the results reported in [22],
but its uniform performance may be poorer than that of the
filter bank. For example, for the P class PMU, the phase
overshoot is 4.302%, the FE response time is 89 ms and
the RFE response time is 100 ms. This means that for that
system ρ0 ≥ 0.86, ρ1 ≥ 0.99, and ρ2 ≥ 0.83. Thus, the
P class system designed with the approach presented in this
paper can provide not only a better uniform performance but it
does so with a much smaller real-time computational burden.
The point here is that using a more complex method does
not necessarily mean that the obtained performance will be
better. Here, the optimization approach outperforms the more
sophisticated system by using optimally all its degrees of
freedom. This can never be guaranteed with a trial and error
design approach.

B. Design Examples

We consider a P class example and compare the CSIP
filters against the well-known Taylor-Fourier filters [6], [7].
Motivated by the results of Section III-A, we will use four-
cycle length filters. For the objective functions, we set λi = 0,
so that we seek to minimize the stopband energy of the
filters Ai. The constraints are the ones found in the IEEE
Std., so that ρi = 1, and we have also added the linear
constraints A0(0) = 1 and A2(0) = 0, which ensures that the
system operates with no error at nominal frequency. Magnitude
and impulse responses of the CSIP filters10 are presented
in Fig. 3, showing also the TF filters responses, which are
based on a third-order Taylor approximation and use a Kaiser
window (with parameter α = 8) as in [7]. It is interesting
to observe that the TF filters, with this particular window
choice, yield greater stopband attenuation at the expense
of an excessive bandwidth. This is actually detrimental to

10The solver was run on a desktop computer with an Intel Core i7-4790
processor and the time required to obtain the CSIP filters was in the order of
a few seconds. Concretely, for a typical run, the solver time for the filters A0,
A1 and A2, was 4.344 s, 21.061 s, and 30.801 s, respectively. For the filters
initialization, we used traditional equiripple filters with the desired passband
and stopband frequencies.

the PMU interference rejection capability. Of course, as the
optimization problem formulation shows, there are also other
performance differences which are not so readily inferred from
the magnitude/impulse responses. In the following, we perform
several performance tests to analyze the differences between
these systems and validate the proposed CSIP design method.

1) Stationary Tests: Firstly, both systems are tested with a
sinusoidal input signal whose frequency fs is swept in the off-
nominal range defined in the IEEE Std. Results are shown in
Fig. 2 for TVE and FE. The RFE results are not shown since
for both systems RFE = 0 (up to numerical errors) due to the
linear-phase of the filters (see Section II-E). The TF system
shows a better behavior in this case due to its maximal flatness
property [7], but the CSIP system satisfies the IEEE Std.
limits as prescribed. If desired, it is straightforward to improve
a particular performance metric. For example, since the FE
constraint is active, in practice it would reasonable to reduce
the parameter FESTA and redesign the system. Interestingly,
one could also include the maximal flatness condition in
the CSIP design problem, since the constraints of the form
A

(k)
i (0) = cik are linear in the filters coefficients.
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Fig. 2. Maximum TVE and FE for off-nominal frequencies.

Secondly, harmonic interference rejection is evaluated at
a total harmonic distortion (THD) level of 1% for the first
ten harmonics individually. Worst-case TVE, FE, and RFE for
both systems occur with the first harmonic and are given in
Table III. In this case, the CSIP clearly outperforms the TF
system and the latter is not compliant with the FE and RFE
requirements of the IEEE Std. This occurs due to the excessive
bandwidth of the TF filters, as was noticed before.

TABLE III
HARMONIC DISTORTION RESULTS

CSIP TF
Metric Result Result Std. limit

max. TVE [%] 0.0020 0.0356 1
max. FE [Hz] 2.9672× 10−5 0.0248 0.0050

max. RFE [Hz/s] 0.0105 1.0710 0.4000

2) Dynamic Tests:
a) Amplitude and Phase Modulation: The maximum

TVE, FE, and RFE for amplitude and phase modulation (AM
and PM, respectively) tests as a function of the modulation
frequency fm are shown in Fig. 4. Note that the worst-case
errors occur for the maximum value of fm. The maximum FE
and RFE results are not shown for the amplitude modulation
test since they are zero (up to numerical errors) as explained
in Section II-G. We observe again that the TF results are better
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Fig. 3. Comparison between TF and CSIP filters (with λi = 0 and ρi = 1)
for P class PMU.

TABLE IV
MODULATION TEST RESULTS

Metric CSIP TF Std. limit

AM
max. TVE [%] 0.0558 2.7× 10−4 3
max. FE [Hz] ∼ 0 ∼ 0 0.06
max. RFE [Hz/s] ∼ 0 ∼ 0 2.3

PM
max. TVE [%] 0.0502 2.5049e-04 3
max. FE [Hz] 8.1× 10−4 4.4× 10−6 0.06
max. RFE [Hz/s] 1.0195 0.0169 2.3

than those of the CSIP due to its flatness property. However,
both systems perform well below the IEEE Std. limits as can
be seen in Table IV.
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Fig. 4. Modulation test results.

b) Frequency Ramp: In Fig. 5 we can see the perfor-
mance for both systems when a frequency ramp between 48
and 52 Hz is performed at a ramp rate of 1 Hz/s starting at
t = 1 s. Note that, once again, the flatness property of the
TF filters translates to very good results. The CSIP system
works as prescribed, in the sense that it is compliant with
the IEEE Std. limits that were imposed in its design. Again,
since the RFE constraint is active, for a practical design one

could reduce the parameter RFEFR in order to obtain a suitable
performance margin.
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Fig. 5. Frequency ramp test.

c) Amplitude and Phase Step Tests: Results for each of
the step tests described in the IEEE Std. are shown in Table
V. Note that the TF system provides fast responses, which
is expected due to its bigger bandwidth. On the other hand,
its overshoot is much greater than that of the CSIP, which is
due to the limitations of its parametric polynomial model, as
mentioned in Section I. To illustrate these results, the phase
step responses of both systems are shown in Fig. 6.

TABLE V
STEP TEST RESULTS

CSIP TF
Metric Amp. Phase Std. limit Amp. Phase Std. limit

Over. [%] 0.2264 0.2252 5 3.9526 3.9302 5
tr,TVE [s] 0.0210 0.0270 0.04 0.016 0.0190 0.04
tr,FE [s] 0 0.0690 0.09 0 0.0670 0.09
tr,RFE [s] 0 0.0730 0.12 0 0.0670 0.12

3) Discussion: In summary, for this design example, the TF
system showed better performance in dynamic and off-nominal
conditions due to both its bigger bandwidth and flatness
property. However, this performance enhancement came at the
expense of a poor harmonic rejection capability. Moreover, it
inevitably leads to a time-consuming trial and error process
if one wants to improve the TF system performance. As
mentioned in Section I, that approach does not guarantee that
a system fully compliant with the IEEE Std. will be found.
Overall, the uniform performance of the CSIP system is better
than that of the TF, since only the former is fully compliant
with the IEEE Std. requirements. In fact, considering the
harmonic distortion test, ρ1 > 1 and ρ2 > 1 for the TF
system, while the step test results show that ρ0 ≥ 0.79.
Interestingly, this is much greater than the feasibility limit of
ρ∗0 = 0.33 presented in Table I, which indicates that the TF
system performance is significantly worst than the ultimate
achievable performance.

IV. CONCLUSIONS

In this paper, we have applied the powerful tool of convex
semi-infinite optimization for the design of a filter bank for
the dynamic phasor estimation problem. This extends the



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 9

t [s]

4.96 4.98 5 5.02 5.04E
s
ti
m

a
te

d
 P

h
a

s
e

 [
ra

d
]

0

0.1

0.2 CSIP

TF

Input step

Fig. 6. Phase step response.

work [18] in a meaningful way by adding two differentiators
which are required to obtain frequency and ROCOF estimates.
We have treated in detail the positive-sequence estimation
problem, but the approach is quite general and suitable for
both three-phase and single-phase signals. It allows to pose the
estimation problem in an explicit form (i.e., each performance
constraint can be included), thus providing a complete control
over the behavior of the system. An important consequence
of this fact is that the method requires no trial and error,
thus simplifying enormously the designer task. The main
problem that is left to the designer is the decision of which
factors should be prioritized, which is highly dependent on the
particular application of the synchrophasor measurements.

We have also presented the uniform feasibility limits for the
problem, a partial characterization of the filter bank which pro-
vides useful information with respect to what can be achieved
with a given filter length. It is important to note that the
results reveal not a limit of the filter design method but rather
an intrinsic limit of the fixed-filtering filter bank structure.
The results obtained here could be useful as guidelines for
designers and, moreover, in future revisions or extensions of
the IEEE Std. One particularly important algorithm which
belongs to the same class as our method is given by the Taylor-
Fourier filters, for which a comparison example has been given
to show the benefits of our approach.

Finally, it is expected that the CSIP approach will be
extremely useful for designing prototype filters to use in more
sophisticated adaptive schemes if the required performance
is beyond the feasibility limits of the rigid fixed-filtering
approach. For example, an adaptation based on instantaneous
frequency-tracking can relax the off-nominal frequency con-
straints, while online spectral analysis could help loosening up
the tight distortion-filtering trade-off which is inescapable for
any fixed-filtering based algorithm. As the feasibility limits
show, these extensions may be required to achieve the FE
interharmonic rejection constraint of the M class PMU. In
any case, if these relaxations are well characterized (as they
should), the approach can incorporate them beforehand to
produce an enhancement in system performance. It should be
mentioned that we are currently working on this interesting
problem.
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