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a b s t r a c t

Basic chordal graphs arose when comparing clique trees of chordal graphs and compatible
trees of dually chordal graphs. They were defined as those chordal graphs whose clique
trees are exactly the compatible trees of its clique graph.

In this work, we consider some subclasses of basic chordal graphs. One of them is
the class of hereditary basic chordal graphs, which will turn out to have many possible
characterizations. Those characterizations will show that the class was already studied,
but under different names and in different contexts.

We also study the connection between basic chordal graphs and some subclasses of
chordal graphs with special clique trees, like DV graphs and RDV graphs. As a result, it will
be possible to define the classes of basic DV graphs and basic RDV graphs.

Additionally, we study the behavior of the clique operator over all the considered
subclasses.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Definitions

For a graph G, we denote the set of its vertices by V (G) and the set of its edges by E(G). The subgraph induced by a subset A
of V (G), denoted byG[A], has A as vertex set, and two vertices are adjacent inG[A] if and only if they are adjacent inG. We say
that A is a complete set of G if G[A] is a complete graph, i.e., all its vertices are pairwise adjacent. A clique is a maximal subset
of pairwise adjacent vertices, that is, a maximal complete set. The family of cliques of G is denoted by C(G). For v ∈ V (G),
the family of cliques containing v is denoted by Cv . The reader must be aware of the fact that many papers use the term
clique to refer to complete (not necessarily maximal) sets. Thus, a clique in this paper is equivalent to a maximal clique in
those other papers.

For a vertex v ∈ V (G), the open neighborhood of v, denoted by N(v) or NG(v), is the set of all the vertices adjacent to v in
G. The degree deg(v) of v is the number |N(v)|. The closed neighborhood of v, denoted by N[v] or NG[v], is the set N(v) ∪ {v}.
Vertex v is said to be simplicial if N[v] is complete. This is equivalent to N[v] being a clique. Any clique that is the closed
neighborhood of some vertex is called simplicial clique.

Given two nonadjacent vertices u and v in the same connected component ofG, a uv-separator is a set S contained in V (G)
such that u and v are in different connected components of G − S, where G − S denotes the induced subgraph G[V (G) \ S].
This separator S is minimal if no proper subset of S is also a uv-separator. We will just say minimal vertex separator to refer
to a set S that is a uv-minimal separator for some pair of nonadjacent vertices u and v in G. The family of all minimal vertex
separators of Gwill be denoted by S(G).
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Let T be a tree. For v, w ∈ V (T ), the notation T [v, w] is used to denote either the path in T from v to w or the vertices of
that path, depending on the context. The set of inner vertices of this path is denoted by T (v, w).

Let F be a family of nonempty sets of vertices of G. If F ∈ F , then F is called amember of F . If v ∈


F∈F F , then we say
that v is a vertex ofF . The familyF is Helly if the intersection of all themembers of every subfamily of pairwise intersecting
sets is not empty. If C(G) is a Helly family, then we say that G is a clique-Helly graph. We say that F is separating if, for every
ordered pair (v, w) of vertices of F , there exists F ∈ F such that v ∈ F and w ∉ F . The intersection graph of F , denoted
L(F ), has themembers ofF as vertices, two of them being adjacent if and only if they are not disjoint. The clique graph K(G)
of G is the intersection graph of C(G). The two-section graph S(F ) of F is another graph whose vertices are the vertices of
F , in such a way that two vertices v and w are adjacent in S(F ) if and only if there exists F ∈ F such that {v, w} ⊆ F .

For every vertex v of F , let Dv = {F ∈ F : v ∈ F}. The dual family DF of F consists of all the sets Dv . When F = C(G),
we have that Dv = Cv . An even more general notation will also be used: given a set A of vertices, CA is defined to be equal
to {C ∈ C(G) : A ⊆ C}.

All graphs considered will be assumed to be connected, unless stated otherwise.

1.2. Chordal graphs, basic chordal graphs and goals

Chordal graphs were originally defined as those graphs for which every cycle of length greater than or equal to four has
a chord, i.e., an edge connecting two nonconsecutive vertices of the cycle. It was later found that they can be characterized
in many other ways. One of them involves the clique tree. A clique tree of a graph G is a tree T whose vertex set is C(G) and
such that, for every v ∈ V (G), the set Cv induces a subtree of T . Alternatively, it can be defined as a tree T whose vertices
are the cliques of G and such that, for all C1, C2 ∈ C(G) and C3 in T [C1, C2], we have C1 ∩ C2 ⊆ C3. Chordal graphs can be
characterized using clique trees as follows,

Theorem 1.1 ([9]). A graph is chordal if and only if it has a clique tree.

It is interesting to note that every clique tree of a chordal graph G is a spanning tree of K(G). To prove it, suppose to the
contrary that T has an edge CC ′ that is not an edge of K(G), that is, C and C ′ are such that C ∩ C ′

= ∅. Let T1 and T2 be the
two connected components of T − CC ′, with C ∈ V (T1) and C ′

∈ V (T2). Since no v ∈ V (G) is such that {C, C ′
} ⊆ Cv , we can

partition V (G) into two sets A and B, where A = {v ∈ V (G) : Cv ⊆ V (T1)} and B = {v ∈ V (G) : Cv ⊆ V (T2)}. Both sets
are not empty because C is contained in A and C ′ is contained in B. Thus, no vertex of A is adjacent to a vertex of B because
there is no clique in G containing vertices of both A and B. As a consequence, Gwould be disconnected, contrary to our initial
assumption that we would work with connected graphs only.

Another classical characterization of chordal graphs states that a graph is chordal if and only if every minimal separator
of two nonadjacent vertices is a complete set [7]. However, nominimal vertex separator of a chordal graph is a clique. There
is an important connection between minimal vertex separators and clique trees that will be reflected in the next three
theorems, which are stated here due to their ulterior usefulness.

Given a graph G, two cliques C1 and C2 are a separating pair if C1 ∩ C2 is a separator of every pair v, w of vertices such
that v ∈ C1 \ C2 and w ∈ C2 \ C1.

Theorem 1.2 ([13]). Let G be a chordal graph and S ∈ S(G). Then, there exists a separating pair C1, C2 such that S = C1 ∩ C2.

Theorem 1.3 ([13]). Let C1 and C2 be two distinct cliques of a chordal graph G. Then, there exists a clique tree T of G such that
C1C2 ∈ E(T ) if and only if C1 and C2 form a separating pair.

Finally, it is interesting to note that, when just one clique tree of a graph is known, it is possible to determine what the
edges of the other clique trees (if any) can be:

Theorem 1.4 ([13]). Let G be a chordal graph, T be a clique tree of G and C1, C2 ∈ C(G), with C1 ≠ C2. Then, there exists a
clique tree of G having C1C2 as an edge if and only if there exist two cliques C3 and C4 that are adjacent in T [C1, C2] and with
C3 ∩ C4 = C1 ∩ C2. In that case. T − C3C4 + C1C2 is also a clique tree of G.

The clique graphs of chordal graphs form an also well known class: dually chordal graphs. Dually chordal graphs also have
a representative tree structure. A compatible tree of a graph G is a spanning tree T of G such that every clique of G induces
a subtree in T . The compatible tree can also be defined using the condition that every closed neighborhood of G induces a
subtree of T . A graph is dually chordal if and only if it has a compatible tree [2].

In case that we use the definition of compatible tree involving closed neighborhoods, it can be proved that the clique
graph of a chordal graph G is dually chordal by showing that any clique tree of G is a compatible tree of K(G).

Proposition 1.5 ([6]). Let G be a chordal graph. Then, every clique tree of G is compatible with K(G).

However, it is not necessarily true that every compatible tree of K(G) is a clique tree of G. Consider for example the graph
of Fig. 1, which has cliques A = {1, 2, 3}, B = {2, 3, 5}, C = {2, 4, 5} and D = {3, 5, 6}. Thus K(G) is the complete graph
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Fig. 1. A graph G such that not every compatible tree of K(G) is a clique tree of G.

Fig. 2. For the dually chordal graph G, set F = {{1}, {2}, {3}, {4}, {1, 2, 3}, {1, 3, 4}}. The family is separating, every member of F is in SDC(G) and
S(F ) = G. Thus L(F ), shown at right, is a basic chordal graph whose clique graph equals G.

on four vertices. Hence every spanning tree of K(G) is a compatible tree. However, the path ABCD is not a clique tree of G
because C3 = {A, B,D} and it does not induce a subpath.

Basic chordal graphswere defined as those chordal graphswhose clique trees are exactly the compatible trees of its clique
graph [6].

One of the aspects about basic chordal graphs that has been studied is the recognition problem. Let S be aminimal vertex
separator of a graph G. Remember that CS denotes the family of cliques of G containing S. Furthermore, let BS be the family
of cliques of G that intersect every C ∈ C(G) such that C ∩ S ≠ ∅. The following characterization leads to a polynomial-time
recognition algorithm of basic chordal graphs.

Theorem 1.6 ([6]). A chordal graph G is basic chordal if and only if BS = CS for all S ∈ S(G).

Another important fact about basic chordal graphs is that, despite being a strict subclass of chordal graphs, their clique
graphs also form the class of dually chordal graphs. Following the notation in [6], define for a dually chordal graph G the
family SDC(G) as the one consisting of all the subsets F of V (G) such that, for every compatible tree T of G, the subgraph
T [F ] is a subtree of T . Then we have:

Theorem 1.7 ([6]). The following statements are true:
• The class of clique graphs of basic chordal graphs is equal to the class of dually chordal graphs. In other words,

K(BASIC CHORDAL) = DUALLY CHORDAL.
• Let G be a dually chordal graph and H be a chordal graph. Then H is basic chordal and K(H) = G if and only if H = L(F ), for

some separating family F such that the two section graph of F equals G and every F ∈ F is in SDC(G).

See an example of Theorem 1.7 in Fig. 2.
Note that each F ∈ F is a complete set of S(F ), that is, a complete set of G. Thus, not any member of SDC(G) can be

a member of F . We have instead that the members of F are cliques or subsets of them. Cliques are always in SDC(G) by
definition. However, not every subset of a clique is necessarily in SDC(G).

In this paper, we define and begin the study of some subclasses of basic chordal graphs. In Section 2, we introduce the
class of hereditary basic chordal graphs and find several characterizations for them (see Theorem 2.5). Particularly, we find
the family of minimal forbidden induced subgraphs for the class of hereditary basic chordal graphs, which allows to show
that this class is equivalent to some others that have arisen in significantly different contexts, like strictly chordal graphs
and (4, 6)-leaf powers.

In Section 3, we show that the class of clique graphs of the hereditary basic chordal graphs is equal to the class of block
graphs, among other properties.
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Fig. 3. A dart (left) and a gem (right).

In Section 4, we study the correspondence between special classes of clique trees and compatible trees, namely, the
DV (RDV )-clique tree and the DV (RDV )-compatible tree, thus giving rise to the classes of basic DV and basic RDV graphs,
which can be defined similarly to basic chordal graphs.We also find simple characterizations (see Theorem 4.3) and find the
clique graphs of these classes. Much like the clique graphs of basic chordal graphs are the dually chordal graphs, we prove
that the clique graphs of basic DV (RDV ) graphs are the dually DV (RDV ) graphs (see Theorems 4.4 and 4.5). Finally, we show
that hereditary basic chordal graphs form a subclass of basic RDV graphs and that they can be characterized as a special type
of RDV graphs (see Theorem 4.9).

2. Hereditary basic chordal graphs

We already know that not every chordal graph is basic chordal. However, every chordal graph that is not basic chordal
can be transformed into a basic chordal graph by adding some vertices and edges.

Proposition 2.1 ([6]). Let G be a chordal graph and V ′ be the set of vertices of G that are not simplicial. Let G′ be the graph
constructed from G by adding, for each v ∈ V ′, a vertex v∗ and the edge vv∗. Then, G′ is basic chordal.

In the previous proposition, G is an induced subgraph of G′. Hence, every chordal graph is the induced subgraph of some
basic chordal graph. The most important conclusion from this fact is that the class of basic chordal graphs is not hereditary.

We are consequently motivated to define a graph G to be hereditary basic chordal if G and all its induced subgraphs are
basic chordal. The previous paragraphs imply that hereditary basic chordal graphs form a strict subclass of basic chordal
graphs, which will be the subject of this section.

The given definition automatically makes the class of hereditary basic chordal graphs be hereditary, so it has a family of
minimal forbidden induced subgraphs.

In order to get an idea of what that family could be, suppose that G is a chordal graph that is not basic chordal. Hence,
by Theorem 1.6, we can take S ∈ S(G) such that BS ≠ CS . Let C1, C2 be a separating pair (existing because of Theorem 1.2)
such that C1 ∩ C2 = S and C3 be in BS \ CS . Then, the intersection between C3 and S is necessarily not empty.

In order to prove the latter, suppose to the contrary that C3 ∩ S = ∅. Since C3 ∈ BS , it holds that C1 ∩ C3 ≠ ∅ and
C2 ∩ C3 ≠ ∅. Let w1 ∈ C1 ∩ C3 and w2 ∈ C2 ∩ C3. The fact that both w1 and w2 are in C3 implies that they are adjacent. On
the other hand, w1 and w2 cannot be in S by our assumption and C1, C2 is a separating pair. Thus w1 and w2 are in different
connected components of G − S, which contradicts that the two vertices are adjacent. Therefore, C3 ∩ S ≠ ∅.

Let v1 be a vertex in C3 ∩ S. Since C3 ∉ CS , we can take a vertex v2 in S \ C3. Furthermore, C1 \ C2 and C2 \ C1 must be
nonempty sets. Let v3 and v4 be in those sets, respectively. As v2 ∉ C3, we can take a vertex v5 ∈ C3 \ N[v2].

Let us studywhat type of subgraph {v1.v2, v3, v4, v5} induces. It is clear that v1v2, v1v3, v1v4, v1v5, v2v3 and v2v4 are edges
in G, whereas v3v4 is not. In case there are not more edges connecting these vertices, {v1.v2, v3, v4, v5} induces the graph
known as dart (see Fig. 3). Note that v3v5 and v4v5 cannot be both edges of G, otherwise v2v4v5v3v2 would be a chordless
cycle of G. In case that v4v5 is in E(G), the set {v1.v2, v3, v4, v5} induces a graph known as gem (see also Fig. 3). The same can
be said in the case that v3v5 ∈ E(G).

Therefore, every hereditary basic chordal graph G has no induced cycle Cn, with n ≥ 4, because G is chordal, and has no
induced dart and no induced gem by the previous reasoning. Actually, it is true that the hereditary basic chordal graphs are
the (dart, gem)-free chordal graphs. Before we prove this characterization of hereditary basic chordal graphs, we look into
some properties of gem-free graphs and dart-free graphs.

Proposition 2.2. Let G be a chordal graph. Then, G is gem-free if and only if every edge of K(G) is in some clique tree of G.

Proof. Suppose that there exists an edge CC ′ of K(G) that is in no clique tree of G. By Theorem 1.3, C, C ′ is not a separating
pair. Let v be a vertex in C ∩ C ′ and P be a path in G − C ∩ C ′ of minimum length among all the paths in G − C ∩ C ′ with
initial vertex in C \ C ′ and final vertex in C ′

\ C .
If the length of P were 1, let v1, v2 be the vertices of P , with v1 ∈ C and v2 ∈ C ′. Let v3 be a vertex of C not adjacent to v2

and v4 be a vertex of C ′ not adjacent to v1. Thus, {v, v1, v2, v3, v4} induces a gem.
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If the length of P were 2, let v1, v2, v3 be the vertices of P , with v1 ∈ C and v3 ∈ C ′. The cycle vv1v2v3v must have a
chord and, by the construction of P , that chord is vv2. The definition of P also implies that v2 ∉ C , so we can take a vertex
v4 ∈ C that is not adjacent to v2. The vertex v4 is not adjacent to v3, otherwise the definition of P would be contradicted.
Thus, {v, v1, v2, v3, v4} induces a gem.

If the length of P were larger than 2, let v1, v2, v3, . . . , vn be the vertices of P , with v1 ∈ C and vn ∈ C ′. By the definition
of P , the chords of the cycle vv1v2v3...vnv must have v as an endpoint, so we can infer that v is adjacent to all the vertices
of P . Thus, {v, v1, v2, v3, v4} induces a gem.

Therefore, G is not gem-free.
Conversely, suppose that G is not gem-free. Let v1, v2, v3, v4, v5 be vertices of G inducing a gem like the one of Fig. 3, C

be a clique of G containing {v1, v2, v3} and C ′ be another clique containing {v1, v4, v5}. Thus, CC ′ is an edge of K(G) because
v1 ∈ C ∩ C ′ but it is not a separating pair because v2 ∈ C \C ′, v4 ∈ C ′

\C and these two vertices are adjacent. Consequently,
by Theorem 1.3, CC ′ is the edge of no clique tree of G. �

Proposition 2.3. Let G be a chordal (dart, gem)-free graph. Then, for every three different cliques C1, C2 and C3 in G such that
C1 ∩ C2 ≠ ∅ and C2 ∩ C3 ≠ ∅, there exists a clique tree of G such that C1C2C3 is a path of that tree.

Proof. Since G is gem-free, there exists by Proposition 2.2 a clique tree T of G such that C1C2 ∈ E(T ). We now consider
several cases:

Case 1: C2 ∈ T [C1, C3]

If C1C2C3 is a path of T , then we are done. Otherwise, C2C3 is the edge of another clique tree of G due to Proposition 2.2.
Therefore, there exists by Theorem 1.4 an edge e in T [C2, C3] such that T + C2C3 − e is a clique tree of G, which has C1C2C3
as a path.

Case 2: C1 ∈ T [C2, C3]

Case 2.a: C1 ∩ C2 ≠ C2 ∩ C3.
Since C2 ∩ C3 ≠ ∅, the edge C2C3 is by Proposition 2.2 in some clique tree of G. Hence there exists by Theorem 1.4 an

edge e in T [C2, C3] such that T + C2C3 − e is a clique tree of G, call it T ′. As C1 ∩ C2 ≠ C2 ∩ C3, edge e cannot be equal to
C1C2. Therefore, T ′ is a clique tree of G having C1C2C3 as a path.

Case 2.b: C1 ∩ C2 = C2 ∩ C3 and C1 ∩ C3 = C2 ∩ C3.
Since C1 ∩ C3 ≠ ∅, the edge C1C3 is by Proposition 2.2 in some clique tree of G. Hence there exists by Theorem 1.4 an

edge e in T [C1, C3] such that T + C1C3 − e is a clique tree of G. As C1 ∩ C3 = C2 ∩ C3, it follows that T + C2C3 − e is also a
clique tree of G. Furthermore, it has C1C2C3 as a path.

Case 2.c: C1 ∩ C2 = C2 ∩ C3 and C1 ∩ C3 ≠ C2 ∩ C3.
Since T is a clique tree and C1 ∈ T [C2, C3], we have that C2 ∩ C3 ⊆ C1 ∩ C3, this inclusion being strict by the assumption

in this case.
Let v1 be a vertex in C1 \ C3, v2 be a vertex in C3 \ C1, v3 be a vertex in C2 \ (C1 ∩ C3), v4 be a vertex in C1 ∩ C2 ∩ C3

and v5 be a vertex in (C1 ∩ C3) \ C2. It is clear that v1v4, v1v5, v2v4, v2v5, v3v4 and v4v5 are edges of G. Furthermore, by
Proposition 2.2, we have that C1, C2 and C1, C3 and C2, C3 are separating pairs. Thus, v1v2, v1v3, v2v3 and v3v5 are not edges
of G. Therefore, {v1, v2, v3, v4.v5} induces a dart, which is a contradiction.

It follows that case 2.c is not possible. We could find a clique tree having C1C2C3 as a path in every other case, so the proof
is complete. �

Proposition 2.4. Let G be a chordal dart-free graph. Then, no minimal vertex separator of G contains another.

Proof. Suppose to the contrary that there are two distinct minimal vertex separators S and S ′ such that S ⊆ S ′. Let v1 ∈ S,
v2 ∈ S ′

\ S, C1, C2 and C3, C4 be separating pairs such that C1 ∩ C2 = S and C3 ∩ C4 = S ′, v3 ∈ C3 \ S ′ and v4 ∈ C4 \ S ′. The
vertices v2, v3 and v4 are contained in the same connected component ofG−S.We can assumewithout loss of generality that
C1\S is contained in a connected component ofG−S different from that of {v2, v3, v4}. Let v5 ∈ C1\S. Thus, {v1, v2, v3, v4, v5}

induces a dart, which is a contradiction.
Therefore, no minimal vertex separator of G contains another. �

Now we proceed to give several characterizations for hereditary basic chordal graphs. Since the previous propositions
and theorems involve darts, gems, clique trees, minimal vertex separators and intersections of cliques, the characterizations
will be in terms of them.

Theorem 2.5. Let G be a chordal graph. Then, the following conditions are equivalent:

(i) G is hereditary basic chordal.
(ii) G is a (dart, gem)-free graph.
(iii) for every three different cliques C1, C2 and C3 in G such that C1 ∩ C2 ≠ ∅ and C2 ∩ C3 ≠ ∅, there exists a clique tree of G

such that C1C2C3 is a path of that tree.
(iv) Every edge of K(G) is in some clique tree of G and no minimal vertex separator of G contains another.
(v) For every triple C1, C2, C3 of pairwise intersecting cliques of G, it holds that C1 ∩ C2 = C1 ∩ C3 = C2 ∩ C3.
(vi) For all C ∈ C(G) and S ∈ S(G), we have that S ∩ C ≠ ∅ implies S ⊆ C.
(vii) The minimal vertex separators of G are pairwise disjoint.
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Proof. (i) → (ii) It suffices to prove that the dart and the gem are not basic chordal graphs. Let G′ be any of the two graphs
of Fig. 3, C1 = {v1, v2, v3}, C2 = {v1, v2, v4} and C3 be the clique containing {v1, v5}. Thus, the path C1C3C2 is a compatible
tree of K(G′) but not a clique tree of G′ because Cv2 = {C1, C2}.

Therefore, the dart and the gem are not basic chordal graphs.
(ii) → (iii) See Proposition 2.3.
(iii) → (iv) Let C1C2 be any edge of K(G). If it is the only edge of K(G), then C1C2 itself is a clique tree. Otherwise, the fact

that K(G) is connected implies that there exists another clique C3 that is adjacent to C1 or to C2 in K(G). Assumewithout loss
of generality that C3 is adjacent to C2 in K(G). Hence, by the hypothesis, there exists a clique tree having C1C2C3 as a path.
Particularly, there exists a clique tree having C1C2 as an edge.

Therefore, every edge of K(G) is in some clique tree of G.
Now suppose that S and S ′ are minimal vertex separators of G such that S ⊆ S ′. Let C1, C2, C3 and C4 be cliques of G such

that S = C1 ∩ C2 and S ′
= C3 ∩ C4.

If C3 = C1 or C4 = C1, then it is clear that C3 ∩ C4 is contained in C1. Otherwise, there exists by the hypothesis a clique
tree T such that C3C1C4 is a path in T . We also conclude from this that C3 ∩ C4 is contained in C1.

Similarly, we can prove that C3 ∩ C4 ⊆ C2. Therefore, C3 ∩ C4 ⊆ C1 ∩ C2, that is, S ′
⊆ S. We infer that S = S ′.

Therefore, no minimal vertex separator of G contains another.
(iv) → (v) Let C1, C2, C3 be a triple of pairwise intersecting cliques of G. By (iv), there exists a clique tree T of G such

that C1C2 ∈ E(T ). Suppose without loss of generality that C2 ∈ T [C1, C3]. As a consequence, C1 ∩ C3 ⊆ C1 ∩ C2 and
C1 ∩ C3 ⊆ C2 ∩ C3. Since intersecting cliques are in the edge of some clique tree by the hypothesis and the cliques of
an edge of a clique tree form a separating pair by Theorem 1.3, we have that C1 ∩ C2, C1 ∩ C3 and C2 ∩ C3 are mini-
mal vertex separators of G. As no minimal vertex separator contains another, the inclusions in this paragraph imply that
C1 ∩ C3 = C1 ∩ C2 and C1 ∩ C3 = C2 ∩ C3.

(v) → (vi) Let S ∈ S(G) and C ∈ C(G) be such that S ∩ C ≠ ∅. Take cliques C1 and C2 such that S = C1 ∩ C2. If
C = C1 or C = C2, then it is clear that S ⊆ C . If not, then C, C1, C2 is a triple of pairwise intersecting cliques. Therefore, by
(v), C ∩ C1 = C1 ∩ C2 = S, from which the inclusion S ⊆ C follows.

(vi) → (vii) Let S and S ′ be minimal vertex separators of G such that S ∩ S ′
≠ ∅. We will prove that S = S ′.

Let S be the intersection of two cliques C1 and C2 of G. The fact that S ∩ S ′
≠ ∅ implies that C1 ∩ S ′

≠ ∅ and C2 ∩ S ′
≠ ∅.

By (vi), S ′
⊆ C1 and S ′

⊆ C2. Hence, S ′
⊆ C1 ∩ C2, that is, S ′

⊆ S.
Similarly, we can prove that S ⊆ S ′. Therefore, S = S ′.
(vii) → (i) Suppose that G is not hereditary basic chordal and let G′ be an induced subgraph of G that is not basic chordal.

We need to prove that there exist two different minimal vertex separators of G that are not disjoint.
Consider a minimal vertex separator S of G′ such that BS and CS , both computed with respect to G′, are different. Let C , C1

and C2 be cliques of G′ such that C ∈ BS \CS , C1, C2 is a separating pair and C1 ∩ C2 = S. Next we will prove that C ∩ S ≠ ∅.
As C ∈ BS , it follows that C ∩ C1 ≠ ∅ and C ∩ C2 ≠ ∅. The clique C cannot intersect both C1 \ S and C2 \ S because

otherwise C1 \ S and C2 \ S would not be separated by S, contradicting that C1, C2 is a separating pair. Thus, C ∩ C1 ⊆ S or
C ∩ C2 ⊆ S. In either case, we conclude that C ∩ S ≠ ∅.

Let v1 be a vertex of C ∩ S. Since C ∉ CS , we can also take a vertex v2 ∈ S \ C . There also exists a vertex v3 in C that is
not adjacent to v2. The vertex v3 is clearly different from v1 because S is complete.

Let S ′ be a minimal v2v3-separator in G. Then, S ≠ S ′ because v2 ∈ S \ S ′ and S ∩ S ′
≠ ∅ because v1 ∈ S ∩ S ′. �

It is interesting to note that part (vi) of Theorem 2.5 implies that the vertices of a given minimal vertex separator of a
hereditary basic chordal have the same closed neighborhood, i.e., are twins, since they are contained in the same cliques.

On another side, part (vii) ensures the existence of a quite simple procedure to determine whether a given chordal graph
is a hereditary basic chordal graph. When a clique tree of the chordal graph is found, the intersections of the endpoints of
each edge of the tree give all the minimal vertex separators of the graph and it can be tested whether they are pairwise
disjoint.

Finally, the characterization of hereditary basic chordal graphs via minimal forbidden induced subgraphs reveals that
this class appeared before in some other works under very different contexts and names.

First, in 2005, William Kennedy studied strictly chordal graphs in his Masters Thesis [15]. There, a graph G is said to be
strictly chordal ifG is chordal and for every subfamilyF ⊆ C(G) satisfying that I(F ) :=


C∈C(G) C ≠ ∅ andF = {C ∈ C(G) :

C ∩ I(F ) ≠ ∅}, we have that C ∩ C ′
= I(F ) for all C, C ′

∈ F . Moreover, the thesis includes a proof of the fact that strictly
chordal graphs are just the (dart–gem)-free chordal graphs.

Note that, for the cliques of a family F like the one of the previous paragraph, the conditions I(F ) :=


C∈C(G) C ≠ ∅

and C ∩ C ′
= I(F ) for all C, C ′

∈ F , imply that the members of F are pairwise intersecting and that the intersection of
every two of them is always the same. This bears some resemblance with condition (v) of Theorem 2.5. A difference is that
condition (v) involves three cliques only. However, it is possible to get a very similar condition using more cliques.

Proposition 2.6. Let G be a chordal graph. Then G is hereditary basic chordal graph if and only if for every tuple C1, C2, . . . , Cn
of pairwise intersecting cliques of G we have that Ci ∩ Cj =

n
m=1 Cm, for 1 ≤ i, j ≤ n, i ≠ j.
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Fig. 4. The bull graph (left) and a representation of it as a (4, 6)-leaf power (right).

Proof. Suppose that for every tuple C1, C2, . . . , Cn of pairwise intersecting cliques of Gwe have that Ci ∩ Cj =
n

k=1 Ck, for
1 ≤ i, j ≤ n, i ≠ j. Thus condition (v) of Theorem 2.5 is satisfied and hence G is hereditary basic chordal.

Conversely, suppose that G is hereditary basic chordal and let C1, C2, . . . , Cn be any tuple of pairwise intersecting cliques
of G. Let i, j, k and l be four integers between 1 and n, with i ≠ j and k ≠ l.

If |{i, j, k, l}| = 2, then {i, j} = {k, l}. It is thus clear that Ci ∩ Cj = Ck ∩ Cl.
If |{i, j, k, l}| = 3, then we can suppose without loss of generality that i = k and j ≠ l. Apply condition (v) of Theorem 2.5

to Ci, Cj, Cl to obtain that Ci ∩ Cj = Ci ∩ Cl. Since i = k, it follows that Ci ∩ Cj = Ck ∩ Cl.
If |{i, j, k, l}| = 4, then apply condition (v) of Theorem 2.5 to Ci, Cj, Ck and to Cj, Ck, Cl to obtain that Ci ∩ Cj = Cj ∩ Ck

and Cj ∩ Ck = Ck ∩ Cl. Therefore, Ci ∩ Cj = Ck ∩ Cl.
As the intersection of every two cliques of the tuple is always the same, we have that Ci ∩ Cj =

n−1
m=1(Ci ∩ Cj) =n−1

m=1(Cm ∩ Cm+1) =
n

m=1 Cm. �

We could use Proposition 2.6 to simplify the definition of strictly chordal graphs given in [15].
A connection with leaf powers was found later. Let G be a graph and k, l be integers such that 2 ≤ k < l. The graph G is

defined to be a (k,l)-leaf power if there exists a tree T whose set of leaves is V (G) and such that dT (u, v) ≤ k for all uv ∈ E(G)
and dT (u, v) ≥ l for all uv ∉ E(G) (see example in Fig. 4). Brandstädt and Wagner proved that strictly chordal graphs are
exactly the (4, 6)-leaf powers [4].

We present even two more previous characterizations of (dart, gem)-free chordal graphs.

• A graph G is the k-simplicial power of a graph H if V (G) equals the set of simplicial vertices of H , and for every two
distinct vertices x and y of G, it holds that xy ∈ E(G) if and only if the distance in H between x and y is at most k. The
(dart, gem)-free chordal graphs are the 2-simplicial powers of block graphs [3].

• A subset S of V (G) is said to be convex if for every two vertices v and w in S, the vertices of every minimum length path
between v and w in G are contained in S.
For u ∈ S, define eccS(u) to be equal to max{d(u, v) : v ∈ S}. We say that u is a contour vertex of S if eccS(u) ≥ eccS(v)
for every neighbor v of u in S.
G is a (dart, gem)-free chordal graph if and only if the set of contour vertices of S equals the set of simplicial vertices of
G[S], for every convex set S [5].

The previous paragraphs can be summarized as follows:

Theorem 2.7. Let G be a graph. The following conditions are equivalent:

1. G is hereditary basic chordal.
2. G is strictly chordal.
3. G is a (4, 6)-leaf power.
4. G is the 2-simplicial power of a block graph.
5. The set of contour vertices of S equals the set of simplicial vertices of G[S], for every convex set S of G.

3. Clique graphs of hereditary basic chordal graphs

In this section, we show that the class of clique graphs of hereditary basic chordal graphs is the class of block graphs and
we find some applications of this result. We will also obtain new characterizations for hereditary basic chordal graphs.

As a first step, note that hereditary basic chordal graphs are sun-free because every k-sun has the gem as an induced
subgraph, k ≥ 3. Chordal sun-free graphs are exactly the strongly chordal graphs [8], so every hereditary basic chordal
graph is strongly chordal. Since the clique graph of a strongly chordal graph is also strongly chordal [1], we conclude that
the clique graph of every hereditary basic chordal graph is chordal.

For the next steps, we need the following proposition:

Proposition 3.1. Let G be a hereditary basic chordal graph and C, C ′ be two cliques of G such that C ∩ C ′
≠ ∅. Then, the edge

CC ′ is contained in only one clique of K(G).
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Proof. Let C ′′ be another clique of G adjacent to both C and C ′ in K(G). Thus, C, C ′, C ′′ is a triple of pairwise intersecting
cliques and, by Theorem 2.5, C ∩ C ′′

= C ∩ C ′. Therefore, C ∩ C ′
⊆ C ′′.

We infer that the family of cliques of G containing C ∩ C ′ forms a complete set of K(G) that contains all the cliques
adjacent to both C and C ′ in K(G). Therefore, this family is the only clique of K(G) containing the edge CC ′. �

As a remark on the previous proof, note that, by Proposition 2.2, C ∩ C ′ is in S(G), so the only clique of K(G) containing
the edge CC ′ consists of all the cliques of G containing the minimal vertex separator C ∩ C ′. This fact can be used to derive
a new characterization of basic chordal graphs.

Proposition 3.2. Let G be a chordal graph. Then G is hereditary basic chordal if and only if G is complete or C(K(G)) = {CS : S ∈

S(G)}.

Proof. Suppose that G is a hereditary basic chordal graph that is not complete. Thus G has more than one clique. Let D be a
clique of K(G). Assuming the connectedness of G, we have that D contains an edge CC ′. Let S = C ∩ C ′. Apply the reasonings
in the proof of Proposition 3.1 and the remark after it to conclude that D = CS . Therefore, every clique of K(G) is of the form
CS , with S ∈ S(G).

Furthermore, no two different sets of the form CS can be such that one is contained in the other because the minimal
vertex separators of G are pairwise disjoint due to Theorem 2.5. This is sufficient to conclude that C(K(G)) = {CS : S ∈

S(G)}.
In order to prove the converse, it is trivial that a complete graph is hereditary basic chordal, so we can assume that G is

not complete. If |S(G)| = 1, then condition (vii) of Theorem 2.5 trivially holds, so G is hereditary basic chordal. From now
on, assume that |S(G)| ≥ 2.

Let S and S ′ be any two different minimal vertex separators of G. We will prove that S ∩ S ′
= ∅. Suppose to the contrary

that there exists a vertex v ∈ S ∩ S ′. Thus CS ∪ CS′ ⊆ Cv . Since S and S ′ are different, it follows that CS ( Cv or CS′ ( Cv .
Suppose without loss of generality that CS ( Cv . As Cv is complete in K(G), we infer that CS is not a clique of K(G), which
contradicts the hypothesis. Therefore, S ∩ S ′

= ∅.
We conclude that the minimal vertex separators of G are pairwise disjoint, which implies by Theorem 2.5 that G is

hereditary basic chordal. �

A graphG is biconnected ifG−v is connected for every v ∈ V (G). A block of a graphG is amaximal biconnected component
of G. We say that G is a block graph if it is the intersection graph of the blocks of some graph H .

We will basically work with two other characterizations of block graphs:

• A graph G is a block graph if and only if every block of G is a clique.
• A graph G is a block graph if and only if G is a diamond-free chordal graph.

Now we prove that the clique graphs of hereditary basic chordal graphs are the block graphs.

Theorem 3.3. Let G be a graph. Then, G is the clique graph of a hereditary basic chordal graph if and only if G is a block graph.

Proof. Let G be a hereditary basic chordal graph. Reason like in the second paragraph of this section to conclude that K(G)
is chordal.

Now we prove that K(G) is diamond-free. It suffices to verify that for all four cliques C1, C2, C3, C4 of G, if C1C2, C1C3,
C1C4, C2C3 and C2C4 are all edges of K(G), then C3C4 is also an edge of K(G), thus avoiding the formation of an induced
diamond. Proving it requires Proposition 3.1. Since C1C2 is contained in only one clique of K(G), the clique of K(G) containing
{C1, C2, C3} is equal to the one containing {C1, C2, C4}. Thus, C3 and C4 are in the same clique and hence are adjacent.

Therefore K(G) is a chordal diamond-free graph, i.e., it is a block graph.
This proves that the clique graph of every basic chordal graph is a block graph. Furthermore, trees form a subclass of

hereditary basic chordal graphs and their clique graphs are all block graphs [14].
Therefore the class of clique graphs of hereditary basic chordal graphs is equal to the class of block graphs. �

Block graphs not only appear as the clique graphs of hereditary basic chordal graphs. They also allow to characterize the
structure of basic chordal graphs. To further explain this point, we need to introduce the notion of critical clique of a graph.

A subset C of V (G) is a critical clique of G if all the vertices of C have the same closed neighborhood and C is maximal in
this sense. That is, C is a critical clique if N[v] = N[w] for every v, w ∈ C and N[v] ≠ N[u] for every u ∉ C and v ∈ C . The
critical cliques of G form a partition of V (G), since they are the equivalence classes of the relation where x and y in V (G) are
related if and only if N[x] = N[y].

Now we find the critical cliques of a hereditary basic chordal graph.

Proposition 3.4. Let G be a hereditary basic chordal graph and C be a subset of vertices of G. Then C is a critical clique of G if
and only if C ∈ S(G) or C is the set of simplicial vertices of a simplicial clique D of G.
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Proof. It is trivial that C is a critical clique of G if it is the set of simplicial vertices of a simplicial clique D of G.
Now suppose that C is a minimal vertex separator of G. We know from the remark after Theorem 2.5 that all the vertices

of C have the same closed neighborhood. Let v be any vertex of G not in C . Thus, vertex v is not adjacent to any vertex outside
the connected component of G−C containing v. We cannot say the same about the vertices of C . Therefore, v does not have
the same closed neighborhood as the vertices of C , so C is a critical clique of G.

Conversely, suppose that C is a critical clique of G. Let v be a vertex of C . If v is simplicial, then let D be the only clique
of G containing v. Thus D is a simplicial clique and the set of simplicial vertices of D is a critical clique intersecting C . Since
critical cliques are pairwise disjoint, C is equal to the set of simplicial vertices of D.

If v is not simplicial, then there exists a minimal vertex separator S such that v ∈ S. Thus S is a critical clique intersecting
C . Therefore C = S. �

Define the critical clique graph CC(G) of G as the graph whose vertices are the critical cliques of G and such that two
critical cliques C and C ′ are adjacent in CC(G) if and only if every vertex of C is adjacent to every vertex of C ′. Thus we have
the following characterization of hereditary basic chordal graphs.

Theorem 3.5 ([4]). Let G be a graph. Then G is hereditary basic chordal if and only if CC(G) is a block graph.

Given a graph G, we say that G′ is obtained from G by replacing the vertex v ∈ V (G) by the complete set C , where C ∩

(V (G) \ {v}) = ∅, if V (G′) = (V (G) \ {v}) ∪ C and E(G′) is obtained from E(G) by removing all the edges containing v and
adding all the edges between vertices of C and all the edges between vertices of C and NG(v).

We say that G′ is obtained from G by adding the simplicial vertex v to the clique C ∈ C(G) if G′ results from G after adding
the vertex v and all the edges between v and the vertices of C .

The characterization of the structure of hereditary basic chordal graphs that had been mentioned before can be deduced
from Theorem 3.5 and is as follows:

Theorem 3.6 ([4]). Let G be a graph. Then G is chordal and (dart, gem)-free if and only if G can be obtained from some block
graph by replacing vertices by complete sets.

We finally find, for a block graph G, all the hereditary basic chordal graphs with clique graph equal to G. All the concepts
that we have been using are still useful.

Lemma 3.7. Let G be a hereditary basic chordal graph and G′ be a graph obtained from G by replacing a vertex by a complete set
or by adding a simplicial vertex to a clique. Then G′ is also hereditary basic chordal.

Proof. Suppose that G′ is obtained from G by replacing a vertex by a complete set. It is easy to verify that CC(G) = CC(G′).
Since G is hereditary basic chordal, CC(G) is a block graph. Hence CC(G′) is also a block graph. By Theorem 3.5, G′ is
hereditary basic chordal.

Now suppose that G′ is obtained by adding the simplicial vertex v to the clique C . It is easy to verify that G and G′ have
the same clique trees. Since the minimal vertex separators of a chordal graph are determined by the intersections of the
endpoints of the edges of a clique tree, S(G) = S(G′). As G is a hereditary basic chordal graph, the members of S(G) are
pairwise disjoint, so the same can be said about S(G′). Therefore, G′ is hereditary basic chordal by Theorem 2.5. �

Lemma 3.8 ([12]). Let F be a Helly and separating family. Then, C(L(F )) = DF .

Proposition 3.9. Let G be a block graph. For each simplicial vertex v of G, add the vertex v∗ and the edge vv∗ to G to obtain the
graph G′. Let H = K(G′) and let J be another graph. Then J is hereditary basic chordal and K(J) = G if and only if J = H or J can
be obtained from H by successive applications of the two following operations: replacing a vertex by a complete set and adding a
simplicial vertex to a clique.

Proof. Suppose that J is a hereditary basic chordal graph such that K(J) = G. By Theorem 1.7, J is the intersection graph
of a separating family F , where F = {Fi}i∈I , such that every F in F is in SDC(G) and S(G) = F . In other words, J is the
intersection graph of complete sets of G that are in SDC(G) and cover the edges of G. Since G is a block graph, every of these
complete sets is either a clique of G or it is a unit set. As a consequence, C(G)must necessarily be contained in F to cover all
the edges of G. Furthermore, the fact that F is separating implies that every simplicial vertex v of G satisfies that {v} is in F .

Let F ′ be the subfamily of F consisting of the cliques of G and the sets of the form {v}, where v is a simplicial vertex of G.
Let I ′ be a subset of I such that F ′

= {Fi}i∈I ′ . If F = F ′, then it is easy to verify that J = H . Otherwise, let i ∈ I \ I ′. If Fi = Fj
for some j ∈ I ′, then the intersection graph of {Fi}i∈I ′∪{j} can be obtained from the intersection graph of {Fi}i∈I ′ by replacing
vertex Fj by the complete set {Fi, Fj}.

If Fi ≠ Fj for every j ∈ I ′, then we necessarily have that Fi = {v}, where v is a nonsimplicial vertex of G, that is, a cut
vertex of G. Since F ′ is a Helly and separating family, we infer from Lemma 3.8 that C(L(F ′)) = DF ′. Thus the sets of F ′

that contain v form a clique of L(F ′). Therefore, the intersection graph of {Fi}i∈I ′∪{j} can be obtained from the intersection
graph of {Fi}i∈I ′ by adding the simplicial vertex {v} to the clique {Fi : i ∈ I ′, v ∈ Fi}.

Applying similar reasonings to the remaining elements of I \ I ′ in a successive way, we conclude that J can be obtained
from H through the operations of replacing a vertex by a complete set and adding a simplicial vertex to a clique.
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Conversely, we can infer from the first part of the proof that K(H) = G. Note that H is a block graph because it is the
clique graph of the block graph G′, so H is hereditary basic chordal. Furthermore, replacing a vertex by a complete set and
adding a simplicial vertex to a clique are operations that do not change the clique graph. Therefore, every graph obtained
fromH through the operations of replacing a vertex by a complete set and adding a simplicial vertex to a clique has its clique
graph equal to G and is hereditary basic chordal because of Lemma 3.7. �

Note that the first part of the proof of Proposition 3.9 does not require that J is a hereditary basic chordal graph. Actually,
it is enough that J is basic chordal to be able to apply Theorem 1.7. Hence, the following result can be proved.

Proposition 3.10. Let J be a basic chordal graph such that K(J) is a block graph. Then J is a hereditary basic chordal graph.

Proof. Let G = K(J) and G′ and H be like in Proposition 3.9. Once again H is a hereditary basic chordal graph. Reason like in
the first part of the proof of Proposition 3.9 to conclude that J = H or that J can be obtained from H through the operations
of replacing a vertex by a complete set and adding a simplicial vertex to a clique. Therefore, Lemma 3.7 yields that J is a
hereditary basic chordal graph. �

Thus we have a new characterization of hereditary basic chordal graphs.

Corollary 3.11. Let G be a graph. Then G is hereditary basic chordal if and only if it is basic chordal and K(G) is a block graph.

3.1. Clique trees of hereditary basic chordal graphs

In this last section about hereditary basic chordal graphs, we characterize their clique trees and use them to further
characterize hereditary basic chordal graphs.

There are two facts that simplify this task: that the clique graph of a hereditary basic chordal graph is a block graph and
that the clique trees of the graph are the compatible trees of that block graph.

Proposition 3.12. Let G be a noncomplete hereditary basic chordal graph and T be a graph with V (T ) = C(G). Let S(G) =

{Si}1≤i≤n. Then T is a clique tree of G if and only if E(T ) =
n

i=1 E(Ti), where Ti is a tree such that V (Ti) = CSi , for 1 ≤ i ≤ n.

Proof. Suppose that T is a clique tree of G. Then CSi induces a subtree of T for 1 ≤ i ≤ n. Let Ti = T [CSi ]. It is clear thatn
i=1 E(Ti) ⊆ E(T ).
Let CC ′ be an edge of T and let j be such that C ∩ C ′

= Sj. Thus CC ′
∈ E(Tj). It follows that E(T ) ⊆

n
i=1 E(Ti). Therefore,

E(T ) =
n

i=1 E(Ti).
Conversely, suppose that T1, . . . , Tn are trees such that V (Ti) = CSi for 1 ≤ i ≤ n and that E(T ) =

n
i=1 E(Ti). We now

prove that T [CSi ] = Ti for 1 ≤ i ≤ n.
Let CC ′ be an edge of T [CSi ] and suppose that there exists j ≠ i such that CC ′ is an edge of Tj. Thus C and C ′ are both in CSi

and CSj , so Si ⊆ C ∩ C ′ and Sj ⊆ C ∩ C ′. Consequently, either Si ≠ C ∩ C ′ or Sj ≠ C ∩ C ′. In either case, we would have
two different minimal vertex separators such that one is contained in the other, thus contradicting that G is hereditary basic
chordal. Therefore, such number j cannot exists and every edge of T [CSi ]must be an edge of Ti. We conclude that T [CSi ] = Ti.

Now we prove that T is a tree. To prove that T is connected it is enough to demonstrate that every two adjacent vertices
of K(G) are connected by T .

Let CC ′ be an edge of K(G). Let D be the clique of K(G) containing that edge. By Proposition 3.2 there exists i such that
D = CSi . Hence C and C ′ are connected by Ti.

Suppose that C is a cycle in T . Then C is a biconnected graph. Let D be the block of K(G) containing C . Once again we
conclude that D is of the form CSi , so C is a cycle in T [CSi ], that is, a cycle in Ti, which is a contradiction.

Hence T contains no cycle and it is a tree.
Since T [CSi ] = Ti for 1 ≤ i ≤ n, it follows from Proposition 3.2 that every clique of K(G) induces a subtree of T . Hence T

is a compatible tree of K(G). As G is basic chordal, T is also a clique tree of G. �

Theorem 3.13. Let G be a graph. Then G is hereditary basic chordal if and only if every spanning tree of K(G) is a clique tree of G.

Proof. Suppose that G is hereditary basic chordal. Then K(G) is a block graph. Now we prove that every spanning tree T of
K(G) is compatible with it. For that purpose, it is sufficient to prove that each block of K(G) induces a subtree in T .

Let B be a block of K(G) and suppose that T [B] is not a subtree of T . Thus there exist C1 and C2 in B such that T [C1, C2] is
not contained in B. In that case, the subgraph of K(G) induced by B ∪ T [C1, C2] is biconnected, thus contradicting that B is a
block. Hence we necessarily have that T [B] is a subtree.

Therefore, every block of K(G) induces a subtree of T , so T is compatible with K(G). Since G is basic chordal, T is also a
clique tree of G.

Consequently, every spanning tree of K(G) is a clique tree of G.
Suppose now that G is not hereditary basic chordal. Then, by Theorem 2.5, there exist cliques C1, C2 and C3 such that

C1 ∩ C2 ≠ ∅, C2 ∩ C3 ≠ ∅ and the path C1C2C3 does not appear in any clique tree of G. Note that C1C2C3 is a path in K(G), so
there exists a spanning tree T ofK(G) containing that path. Hence, T is a spanning tree ofK(G) that is not a clique tree ofG. �
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Fig. 5. A UV graph G and its clique graph.

Going back to condition (iii) of Theorem 2.5, Theorem 3.13 now allows to strengthen it to cover the case of longer paths.

Theorem 3.14. Let G be a graph. Then G is hereditary basic chordal if and only if every path of K(G) appears in at least one clique
tree of G.

Proof. Suppose that G satisfies that every path of K(G) appears in at least one clique tree of G. Thus, condition (iii) of
Theorem 2.5 holds, so G is hereditary basic chordal.

Conversely, suppose that G is hereditary basic chordal and let P be a path of K(G). Let T be a spanning tree of K(G)
containing P . By Theorem 3.13, T is a clique tree of G, thus completing the proof. �

4. Basic DV and basic RDV graphs

This section focuses on the existence of special types of clique trees and compatible trees and their connection with basic
chordal graphs. Three subclasses of clique trees have been studied among others for more than twenty years [16] and we
describe them below.

A UV-clique tree of a graph G is a clique tree such that, for every v ∈ V (G), we have that T [Cv] is a path off T . A chordal
graph is UV if it has a UV -clique tree. A DV-clique tree of G is a clique tree such that its edges have been directed and, for
every v ∈ V (G), we have that T [Cv] is a directed path of T . A chordal graph is DV if it has a DV -clique tree. An RDV-clique
tree of G is a DV -clique tree that is rooted at a vertex w. A chordal graph is RDV if it has an RDV -clique tree.

It is clear from the definition that RDV graphs form a subclass of DV graphs and DV graphs form in turn a subclass of UV
graphs. The class of clique graphs of UV graphs is that of dually chordal graphs. This and other reasons justify that a dual
class was not defined for UV graphs.

On the other hand,DV and RDV graphs do have each a dual class.Dually DV graphs are the clique graphs ofDV graphs and
dually RDV graphs are the clique graphs of RDV graphs [17]. This duality is also reflected by the existence of characteristic
trees. The DV(RDV)-compatible tree characterizing a dually DV (RDV ) graph is a (rooted) directed spanning tree such that
every clique of the graph induces a directed path.

Once again our focus will be on finding the relationship between clique trees and compatibles trees, but the concepts
that have just been introduced will allow to do it at a deeper level. We had mentioned in the introduction that every clique
tree of a chordal graph G is a compatible tree of K(G). There is a similar result for DV and RDV graphs.

Proposition 4.1. Let G be a DV (RDV ) graph. Then, every DV (RDV )-clique tree of G is a DV (RDV )-compatible tree of K(G).

Proof. Let T be aDV (RDV )-clique tree ofG. Since the 3-sun is not aDV (RDV ) graph, it is the induced subgraph of noDV (RDV )
graph. It is known that every chordal graph without induced 3-suns is clique-Helly [11]. Hence, G is a clique-Helly graph.
This implies that every clique of K(G) is of the form Cv , for some v ∈ V (G). These sets induce directed paths of T because T
is a DV (RDV )-clique tree. Therefore, T is a DV (RDV )-compatible tree. �

Note that there is not a similar result for UV graphs. Consider for example the UV graph G in Fig. 5. The spanning tree of
K(G) with edges C1C2, C2C3, C3C4, C4C5, C2C6, C3C8 and C4C7 is a UV -clique tree of G. However {C3, C4, C5, C7} is a clique of
K(G) not inducing a path in the tree.

Once again, the converse is not necessarily true. Given a DV (RDV ) graph, there could be a DV (RDV )-compatible tree of
K(G) that is not a DV (RDV )-clique tree of G. See an example in Fig. 6. However, the case that G is basic chordal is special.

Proposition 4.2. Let G be a basic chordal graph. Then every DV (RDV )-compatible tree of K(G) is a DV (RDV )-clique tree of G.

Proof. Let T be a DV (RDV )-compatible tree of K(G) and v be any vertex of G. Since G is basic chordal, T is a clique tree of
G, so Cv induces a subtree of T . Furthermore, Cv is a complete set of K(G). Let D be a clique of K(G) containing Cv . As T is
DV (RDV ) compatible with K(G), we have that D induces a directed path of T . Hence, Cv induces a subtree of T contained in
a directed path of T . Therefore, T [Cv] itself is a directed path. This completes the proof. �
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Fig. 6. For the graph G on top, the lower left shows a DV -compatible tree of K(G) and the lower right shows an RDV -compatible tree of K(G). Neither is a
clique tree of G because one of the sets Cv is {C3, C4}, which does not induce a subtree.

Themost important thing about Proposition 4.2 is that it shows that, for a basic chordal graphG, the correspondence is not
only between the clique trees of G and the compatible trees of K(G), but it is stronger in a way that also the DV (RDV )-clique
trees of G correspond to the DV (RDV )-compatible trees of K(G), when they exist.

As we are now comparing DV (RDV )-clique trees and DV (RDV )-compatible trees, it would be interesting to define new
subclasses of basic chordal graphs that we could call basic DV and basic RDV graphs. In our opinion, the most natural
definitions that we can give at the moment would be as a follows:

A chordal graph is basic DV if it is a DV basic chordal graph such that the DV -clique trees of G are exactly the DV -
compatible trees of K(G). Similarly, a basic RDV graph is defined to be an RDV basic DV graph whose RDV -clique trees are
exactly the RDV -compatible trees of K(G).

Based on Proposition 4.2, we find that the definitions can be simplified, since it is not necessary to require the correspon-
dence between DV (RDV )-clique trees and DV (RDV )-compatible trees.

Theorem 4.3. Let G be a chordal graph. Then,

(a) G is basic DV if and only if G is basic chordal and DV .
(b) G is basic RDV if and only if G is basic chordal and RDV .

Proof. The definition clearly implies that a basic DV (RDV ) graph is basic chordal and DV (RDV ). Conversely, if G is basic
chordal and DV (RDV ), then Proposition 4.2 implies that the DV (RDV )-clique trees of G are exactly the DV (RDV )-compatible
trees of K(G). �

Now we will study the clique graphs of these classes. For that purpose, given a dually DV graph G, we define X(G) to
be the family of sets of vertices of G inducing a directed path of every DV -compatible tree of G. If G is RDV , then Y(G) will
denote the family of sets of vertices of G inducing a directed path of every RDV compatible tree of G. The connection between
these families and clique graphs is the following:

Theorem 4.4. Let H be a chordal graph.

(a) Let G be dually DV . Then, K(H) = G and H is basic DV if and only if H is the intersection graph of a separating family F
where every F ∈ F is in SDC(G) ∩ X(G) and such that S(F ) = G.

(b) Let G be dually RDV . Then, K(H) = G and H is basic RDV if and only if H is the intersection graph of a separating family F
where every F ∈ F is in SDC(G) ∩ Y(G) and such that S(F ) = G.

Proof. (a) Suppose that H is basic DV . We know that H is equal to the intersection graph of {Cv}v∈V (H), which is a subfamily
of SDC(G) because H is basic chordal. Every member of this family induces a directed path of every DV -clique tree of H ,
i.e, of every DV compatible tree of G. Hence, every member of {Cv}v∈V (H) is in X(G). It is not difficult to verify that the two
section of the family is K(H), which equals G, and that it is separating.

Conversely, suppose that H is the intersection graph of a separating family F whose members are in SDC(G) ∩ X(G)
and such that S(F ) = G. Then, H can be seen as the intersection graph of directed paths of any DV -compatible tree of G and
hence H is DV . Furthermore, Theorem 1.7 implies that H is basic chordal and K(H) = G. Hence, H is basic DV and K(H) = G.

(b) The proof is the same provided that we replace DV by RDV and X(G) by Y(G). �

By the definition of the different types of compatible trees, a family F satisfying the conditions of Theorem 4.4 is the
family of cliques and unit sets of vertices. Thus, much like the clique graphs of basic chordal graphs are all dually chordal
graphs, the clique graphs of basic DV (RDV ) graphs are all dually DV (RDV ) graphs.
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Fig. 7. A dually chordal graph G and a compatible tree T .

Theorem 4.5. K(Basic DV ) = Dually DV and K(Basic RDV ) = Dually RDV .

Let us now consider the case where the family F of Theorem 4.4 not necessarily satisfies that each of its members is in
SDC(G). In that scenario, we still have a correspondence between some clique trees and some compatible trees, but it is
weaker.

Proposition 4.6. (a) Let G be a dually DV graph. Let F be a separating family such that every F ∈ F is in X(G) and S(F ) = G.
Then L(F ) is DV , K(L(F )) = G and every DV-compatible tree of G is a DV-clique tree of L(F ).

(b) Let G be a dually RDV graph. Let F be a separating family such that every F ∈ F is in Y(G) and S(F ) = G. Then L(F ) is
RDV , K(L(F )) = G and every RDV-compatible tree of G is an RDV-clique tree of L(F ).

Proof. We only prove part (a), because the proof of part (b) is very similar.
As every member of F is in X(G), we can see F as a family of directed paths of a fixed DV -compatible tree T of G.

Furthermore, every intersection graph of directed paths of a directed tree is DV [16]. Therefore, H is DV . Furthermore, every
family of subtrees of a tree is Helly [10]. Thus F is Helly.

Now we show that K(L(F )) is isomorphic to G. As F is Helly and separating, we can apply Lemma 3.8 to obtain that
C(L(F )) = DF . It is simple to prove that two different vertices u and v are adjacent in G if and only if Du and Dv are adja-
cent in K(L(F )), that is, the function f : V (G) → V (K(L(F ))) such that f (v) = Dv for all v ∈ V (G) is a graph isomorphism
between G and K(L(F )).

For every F ∈ F , consider thememberCF ofDC(L(F )). Then,CF = {C ∈ C(L(F )) : F ∈ C} = {Dv ∈ DF : v ∈ F}. Since
F ∈ X(G), it follows from the isomorphism between G and K(L(F )) that {Dv ∈ DF : v ∈ F} ∈ X(K(L(F ))). Consequently,
DC(L(F )) ⊆ X(K(L(F ))). Therefore, every DV -compatible tree of K(L(F )) is a DV -clique tree of L(F ), which completes
the proof. �

Consider the graph G of Fig. 7. This graph has three cliques, namely, {a, b, c, e}, {a, b, c, d} and {c, d, f }. It is dually
chordal because the tree T also appearing in the figure is compatible with it. What is more, it is dually RDV because the
directed path eabcdf is an RDV -compatible tree. By Theorem 4.4, there exists a separating family F whose members are in
SDC(G) ∩ X(G), the two section graph S(F ) equals G, the intersection graph L(F ) is basic DV and K(L(F )) = G.

Let T ′ be any DV -compatible tree of G. Since {a, b, c, e} ∩ {a, b, c, d} = {a, b, c} and {a, b, c, d} ∩ {c, d, f } = {c, d}, we
have that {a, b, c, d}, {a, b, c} and {c, d} induce directed paths in T ′. From this we also deduce that {a, b} induces a directed
path. Therefore {a, b} ∈ X(G).

Let F ′
= F ∪ {{a, b}}. Thus, by Proposition 4.6, K(L(F ′)) equals G and every DV -compatible tree of G is a DV -clique tree

of L(F ′). However, {a, b} ∉ SDC(G), as the compatible tree T in the figure reveals. We infer from Theorem 1.7 that L(F ′)
is not basic chordal.

As a conclusion from this example, we derive that the equality between the DV -clique trees of a graph and the DV -
compatible trees of its clique graph does not ensure that the graph is basic chordal. That is why, when we define basic DV
graphs with the goal of making it a subclass of basic chordal graphs, we cannot only focus on the correspondence between
the DV -clique trees and the DV -compatible trees of the clique graph, and instead we explicitly say that the graph must be
basic chordal. There is a similar conclusion about basic RDV graphs.

To finish this paper, we establish a relationship between hereditary basic chordal graphs and basic DV and basic RDV
graphs.

We know how to construct all the clique trees of every hereditary basic chordal graph. Particularly, we can find an RDV -
clique tree.

Proposition 4.7. Let G be a hereditary basic chordal graph. Then G is an RDV graph.
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Fig. 8. A graphical representation of the procedure to obtain an RDV -compatible tree of K(G).

Proof. We know that K(G) is a block graph. Now we find an RDV -compatible tree for K(G).
If K(G) is complete, then every directed hamiltonian path of K(G) is an RDV -compatible tree of K(G).
Otherwise, let D1,D2, . . . ,Dk be an ordering of C(K(G)) such that Di


(
i−1

j=1 Dj) ≠ ∅ for 2 ≤ i ≤ k. Such an ordering
exists because K(K(G)) is connected. We construct the RDV -compatible tree of K(G) as follows (see Fig. 8 for an example),

For i = 1, let P1 be an oriented hamiltonian path of D1. Let C1 be its initial vertex. Set T1 = P1 and i = 2.
For i = n, where n ≥ 2, let Dn


(
n−1

j=1 Dj) = {Cn}. The intersection has only one element because K(G) is a block graph.
Let Pn be a directed hamiltonian path of Dn starting at Cn. Let Tn be the tree formed by uniting Tn−1 and Pn. While i < k, set
i = m + 1. Otherwise end.

It is not difficult to prove in an inductive way that Tk is rooted at C1. Furthermore, Tk[Di] = Pi for 1 ≤ i ≤ k. Therefore, Tk
is an RDV -compatible tree of K(G).

In either case, the RDV -compatible tree of K(G) is also an RDV -clique tree of G by Proposition 4.2. Hence G is an RDV -
graph. �

Proposition 4.7 shows that hereditary basic chordal graphs are a subclass of basic RDV -graphs. A careful review of the
proof of Proposition 4.7 also yields that, for every clique C of a hereditary basic chordal graph G, there exists an RDV -clique
tree of G rooted at C . We just need to set D1 equal to a clique of K(G) containing C and to make P1 start at C . In view of this
fact, we characterize the RDV graphs with RDV -clique trees that can be rooted at any vertex.

Theorem 4.8. Let G be a graph. Then G is RDV and, for every C ∈ C(G), there exists an RDV-clique tree of G rooted at C if and
only if G is a gem-free chordal graph.

Proof. Suppose that G is a gem-free chordal graph. We prove that G is RDV and that, for every C ∈ C(G), there exists an
RDV -clique tree of G rooted at C by induction on |C(G)|. It is trivially true if G has one clique, i.e., G is a complete graph.

Suppose that the property is true for every chordal gem-free graph Gwith |C(G)| ≤ k, were k ≥ 1.
Let G be a chordal gem-free graph with k + 1 cliques and let C be any clique of G. Take a clique tree T of G in a way that

the degree of C in T is minimum.
If the degree of C in T is one, then C is a simplicial clique. Let C ′ be the only vertex adjacent to C in T . Consider the chordal

gem-free graph G′ obtained after removing the simplicial vertices in C from G. It holds that C(G′) = C(G) \ {C}. By the
induction hypothesis, G′ is RDV and it has an RDV -clique tree T1 rooted at C ′. Let T2 be the tree obtained from T1 by adding
the vertex C and the oriented edge CC ′. Thus T2 is an RDV -clique tree of G rooted at C .

Suppose now that the degree of C in T is larger than one. Let T1, T2, . . . , Tj be the connected components of T − C and,
for 1 ≤ i ≤ k, let T ′

i be the tree obtained from Ti by adding the vertex C and the edge of T incident on C and Ti. Let GT ′
i
be the

subgraph of G induced by the vertices in the cliques of G appearing in T ′

i . It holds that C(GT ′
i
) = V (T ′

i ), for 1 ≤ i ≤ j.

By the induction hypothesis, GT ′
i
is an RDV graph and it has an RDV -clique tree Ti rooted at C . Let T be the tree such that

V (T ) = C(G) and E(T ) =
j

i=1 E(Ti). We now prove that T is an RDV -clique tree of G rooted at C .
It is clear that T is rooted at C . Let v be any vertex of G. If Cv is contained in the vertices of T ′

l , for some, 1 ≤ l ≤ k, then
T [Cv] = T ′

l [Cv], which is a directed path.
Now we show that it is impossible for Cv not to be contained in the vertices of T ′

l , for some 1 ≤ l ≤ k. Suppose to the
contrary that there exist two different numbersm and n between 1 and k such that Cv contains one clique Cm in V (Tm) and
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one clique Cn in V (Tn). Since T [Cv] is a subtree, we can assume without loss of generality that both Cm and Cn are adjacent
to C in T . As v ∈ Cm ∩ Cn and G is gem-free, we infer from Proposition 2.2 that CmCn is the edge of some clique tree of G.
Apply Theorem 1.4 to conclude that T + CmCn − CCn is a clique tree or T + CmCn − CCm is a clique tree, thus contradicting
our choice of T .

Combine the last two paragraphs to infer that T is an RDV -clique tree of G rooted at C , as we desired.
Suppose now that G is a chordal graph with vertices v1, v2, v3, v4, v5 inducing a gem like the one of Fig. 3. Let C1 be a

clique containing {v1, v2, v3}, let C2 be a clique containing {v1, v2, v4} and C3 be a clique containing {v1, v4, v5}.
We now prove that G does not have any RDV -clique tree rooted at C2. Let T be any RDV -clique tree of G. By considering

the directed paths induced byCv1 ,Cv2 andCv4 , we conclude that T [C1, C3] is a directed path containing C2. The latter implies
that C2 cannot be a root of T .

Therefore, no RDV -clique tree of G is rooted at C2. This completes the proof. �

As a consequence, the class of RDV graphs that can be rooted everywhere form a superclass of hereditary basic chordal
graphs. We now add one more condition to obtain a new characterization of basic chordal graphs.

Theorem 4.9. Let G be a graph. Then G is hereditary basic chordal if and only if G is RDV and, for every two different cliques C
and C ′ with nonempty intersection, there exists an RDV-clique tree of G rooted at C and with the edge CC ′.

Proof. Suppose that G is hereditary basic chordal graph. We can construct an RDV -clique tree for G that is rooted at C and
with the edge CC ′ by following the same procedure as in the proof of Proposition 4.7 and by requiring that D1 is the clique
of K(G) containing the edge CC ′ and that CC ′ is the initial edge of P1.

Conversely, suppose that G is RDV and, for every two different cliques C and C ′ with nonempty intersection, there exists
an RDV -clique tree of G rooted at C and with the edge CC ′. By Theorem 4.8, G is gem-free. Next we prove that G is dart-free.

Suppose to the contrary that v1, v2, v3, v4, v5 are vertices of G inducing a dart in G like the one of Fig. 3. Let C1 be a clique
containing {v1, v2, v3}, let C2 be a clique containing {v1, v2, v4} and C3 be a clique containing {v1, v5}.

Let T be anyRDV -clique tree ofG rooted atC1. ThusCv1 induces a directed path in T containingC1,C2 andC3.Wehave three
possibilities in this path, namely, C1 ∈ T [C2, C3], C2 ∈ T [C1, C3] and C3 ∈ T [C1, C2]. The first possibility cannot hold because
T is rooted at C1. Furthermore. Cv2 induces a directed path in T containing C1 and C2 but not C3. Therefore C2 ∈ T [C1, C3].
Consequently C1 is not adjacent to C3 in T .

Thus, there is no RDV -clique tree of G that is rooted at C1 and has the edge C1C3, which is a contradiction.
It necessarily follows that G is dart-free. Therefore, G is hereditary basic chordal. �

5. Concluding remarks

This is our second work on basic chordal graphs. The first one [6] approached them in a more general way, with a special
focus on the relation between the clique graphs of a chordal graph and the compatible trees of its clique graph, which was
the question that originally motivated us to define the class.

In this occasion we thought that trying to find some subclasses of basic chordal graphs and some of its principal
characteristics represented a step forward in our study of the class.

As a result, we defined hereditary basic chordal, basic DV and basic RDV graphs and found several characterizations for
them and for its clique graphs.

It is particularly pleasant for us the fact that hereditary basic chordal graphs are quite versatile and have so many
characterizations, in a way that they transcend the study of basic chordal graphs, especially because of the different ways
in which the class presented itself to many researchers. We do not discard that there are even manymore characterizations
to be discovered for hereditary basic chordal graphs.

Our study of basic DV and basic RDV graphs did not yield many characterizations compared to the case of hereditary
basic chordal graphs, but it was enough to show the interesting way in which basic chordal graphs behave in relation to
specific types of clique trees. Trying to find additional characterizations for these two classes could be the subject for future
research.
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