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The stability of the de Sitter era of cosmic expansion in spatially curved homogeneous
isotropic universes is studied. The source of the gravitational field is an imperfect fluid
such that the parameters that characterize it may change with time. In this way we
extend our previous analysis for spatially-flat spaces as well as the work of Barrow.

1. Introduction

Inflationary cosmic expansions driven by a dissipative fluid has attracted some at-
tention in the past as a mechanism able to solve the problems usually attached to
the standard hot big-bang scenario (i.e. flatness, horizons, and monopoles abun-
dance) different from those based on one (or more) scalar fields. The main dynamic
effect of either the scalar field(s) or the dissipative fluid is to produce a state of
cosmic accelerated expansion through the violation of the strong energy condition.
If this accelerated state is sufficiently long, and if the Universe is able to exit it,
the mentioned problems may find a satisfactory solution. Very often this analysis
has been restricted to spatially-flat Friedmann-Lemâıtre-Robertson-Walker (FLRW
for short) space-times, if only because the dependence of the scale factor on the
spatial curvature k becomes negligible shortly after inflation has set in. However,
one should be mindful that this curvature may have some impact on the stability
of the inflationary solutions. Given the potential importance of such a scenario, it
is advisable to stablish its generality with respect to the effect of spatial curvature.
In 1 we studied the stability of inflationary expansions caused by a dissipative fluid
governed by a causal transport equation (i.e. one that respects both relativistic
causality and hydrodynamic stability of the fluid 2, 3), assuming k = 0. Before
going any further, a word of caution seems in order. The stability of the dissipative
fluid, in the sense this expression is used here, depends on the physical properties of
the fluid under consideration, i.e. on its state and transport equations 4, 5. Accord-
ingly it should not be confused with the stability of the cosmic expansion -either
inflationary or not. The stability of inflationary expansions driven by dissipative
fluids in curved FLRW space-times was briefly discussed by Barrow 6, 7. However,
his study was confined to fluids governed by transport equations of Eckart’s type 8

which, as is well-known, entails the aforesaid problems of acausality and instability.
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The aim of this paper is to investigate the combined effects of viscosity and
curvature extending the analysis of 1 to spatially curved FLRW space-times and to
study scenarios not considered previously. This bears some interest because obser-
vationally it is doubtful whether the spatial curvature of the Universe is positive,
null or negative. On the one hand the average matter density is well below the
critical value (∼ 0.3 in critical units), but on the other hand the Universe seems to
have entered an accelerated phase nowadays, which strongly hints to a cosmological
constant of about 0.7 in the same units -however its value is limited by gravitational
lensing 9. Further, although the location of the first acoustic peak in the CBR spec-
trum seems to suggest a flat Universe, its exact position is still uncertain 10, 11. In
extending the results of 1 we also extend the work of Barrow’s since the transport
equation we consider is of causal type and therefore more general than the one used
by him -for a brief illustration of the impact of causal transport equations in FLRW
cosmology see 12 13 14 15 and 16.

To analyse the asymptotic stability of the inflationary expansions we will resort
again to the second method of Lyapunov 17, succintly stated in the appendix of 1.
In addition, some of the scenarios considered in this paper will be similar to those
of 1, whereby we shall avoid unnecessary repetition of details. As it turns out, the
set of de Sitter solutions is drastically restricted because of a constraint that links
some of the fluid parameters with the rate of cosmic expansion. Our choice of units
is c = 8πG = kB = 1.

2. Asymptotic Stability

We consider a FLRW universe filled with a imperfect fluid whose dissipative bulk
pressure obeys the causal transport equation 2, 3, 14, 15

π + τ π̇ = −3ζH (1)

where τ(> 0) is the relaxation time associated at the dissipative process, ζ(> 0) the
phenomenological coefficient of bulk viscosity, H ≡ ȧ(t)/a(t) denotes the Hubble
function, and a(t) the scale factor of the FLRW metric. The corresponding Einstein
field equations are

H2 =
1
3
ρ− k

a2
(k = 0,±1) (2)

3(Ḣ +H2) = −1
2

[ρ+ 3(p+ π)] (3)

with ρ and p the energy density and hydrostatic pressure, respectively. These latter
two quantities are assumed to be linked by the equation of state p = (γ−1)ρ, where
γ denotes the adiabatic index of the cosmic fluid. This, in general, depends on time
-though oftenly, for simplicity, it is assumed constant.
The above set of equations yields

Ḧ + 3γHḢ + τ−1
[
Ḣ + 3

2 (γ + τ γ̇)H2 − 3
2 ζH

]
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+
k

a2

[
(1− 3

2γ)
(
2H − τ−1

)
+ 3

2 γ̇
]

= 0 (4)

and the latter can be recast as

d

dt

[
1
2
Ḣ2 + V (H)

]
= D(H, Ḣ). (5)

Here, the left hand side is the time derivative of a Lyapunov function (see appendix
in 1) with

V (H) =
1
2

(γ + τ γ̇) τ−1H3 +
[
k

a2

(
1− 3

2
γ

)
− 3

4
ζτ−1

]
H2

+
k

a2

[
3
2
γ̇ −

(
1− 3

2
γ

)
τ−1

]
H (6)

and

D(H, Ḣ) = −
(
3γH + τ−1

)
Ḣ2 +

1
2
τ−2

(
τ γ̇ − τ̇ γ + τ2γ̈

)
H3

+
3
4
τ−2

(
ζτ̇ − ζ̇τ

)
H2 − 2k

a2

(
1− 3

2
γ

)
H3 − 3k

2a2
γ̇H2

−2k
a2

[
3
2
γ̇ −

(
1− 3

2
γ

)
τ−1

]
H2 +

k

a2

[
3
2
γ̈ +

3
2
γ̇τ−1 +

(
1− 3

2
γ

)
τ−2τ̇

]
H. (7)

As shown in figure 1 the potential (6) has two extrema, a minimum at H+ and a
maximum at H−. Their asymptotic behaviours for an expanding evolution at late
time are

H+ =
ζ

γ + τ γ̇
+O(a−2) (8)

and

H− =
k

9ζa2

[
3
2
γ̇ −

(
1− 3

2
γ

)
τ−1

]
+O(a−4). (9)

The solution (9) is unstable, while the stability of the solution (8) is determined by
the sign of the leading term of D in a neighbourhood of the point (H0, 0) of the
phase plane (H, Ḣ), where H0 is the leading term of H+

D ≈ −
(
3γH + τ−1

)
Ḣ2 +

1
3
H2

(
H − 3

2
H+

)
d

dt

(
3γH + τ−1

)
+O(a−2). (10)

Here we have assumed that H+ is a quasi-de Sitter solution. A sufficient condition
for this solution to be asymptotically stable is that 3γH + τ−1 increases for large
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time. This is equivalent to the condition that ζ/τ increases with time. Then using
the relationship 14

ζ

τ
= v2γρ (11)

where v is speed of the dissipative signal associated to π, this condition is also
equivalent that γv2 is an increasing function of time.

It can be seen that H0 is an exact de Sitter solution when the constraint

γ̇ +
[
τ−1 − 2H0

]
γ =

2
3
[
τ−1 − 2H0

]
(12)

is satisfied. It gives for γ 6= 2/3

H0 =
−1±

√
1 + 6 (3γ − 2) τζ

2 (3γ − 2) τ
(13)

and

H0 =
3
2
ζ (14)

when γ = 2/3. Also the static solution H = 0 exists for k = 1, when the constraint

τ γ̇ + γ =
2
3

(15)

holds. To analyse its stability we linearize equation (4) about it,

Ḧ + τ−1Ḣ + 3
[
γ̇τ

a2
− 1

2
ζτ−1

]
H = 0. (16)

The general solution of (16) grows for any decreasing adiabatic index showing that
the static solution is unstable and can be indentified with the limiting case of the
unstable solution H−. This result could be different if a non-standard increasing
adiabatic index in the limit t → ∞ were admitted. However, by fine tuning the
initial condition a one-parameter family of solutions that approaches a static space-
time at large times can be obtained. Besides, there exists a one-parameter family
of solutions that starts from a static spacetime in the far past and evolves towards
a stable de Sitter solution.

3. Inflationary Solutions

Accelerated expansion requires a sufficiently negative pressure, hence we will con-
sider evolutions that approach asymptotically to a negatively constant viscous pres-
sure. To this end we will investigate three models, two of them have the viscous
pressure coefficient proportional to Hubble time, and in the last one it is determined
by causality and stability of scalar perturbations. These three cases are character-
ized by the specific instances: (i) when γ̇ = 0 and ζ ∝ H−1, (ii) when τ and ζ vary
as H−1, and (iii) when τ−1 ∝ H and ζ = v2γρτ . We will see them in turn.
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3.1. Constant adiabatic coefficient model

When ζ = constant (4) can be rewritten as

τ
d

dt

[
Ḣ +

3
2
γH2 − k

a2

(
1− 3

2
γ

)]

+
[
Ḣ +

3
2
γH2 − k

a2

(
1− 3

2
γ

)
− 3

2
ζH

]
= 0 (17)

accordingly, the bulk viscosity coefficient must be given by

ζ =
2c
3H

(18)

with c a positive constant, and

Ḣ +
3
2
γH2 − k

a2

(
1− 3

2
γ

)
= c (19)

is a first integral of (17). Assuming that the adiabatic index does not vary with
time, this equation can be easily reduced to an equivalent mechanical system by the
substitution a = s2/3γ (in the appendix we obtain its parametric general solution),
with first integral

ṡ2

2
+

9γ2k

8
s2(1−2/3γ) − 3γc

4
s2 =

3γE
2

(20)

where E plays the role of a mechanical energy. This expression shows that the
curvature and viscosity terms behave as “conservative forces”. In particular vis-
cosity provides an effective spring with negative elastic constant, and it determines
the late time behaviour of this model. Next we will integrate this system for some
values of γ that yield simple solutions and were considered in 6 to compare with
the results obtained for fluids governed by Eckart’s transport equation:

I) When γ = 1/3 we obtain

a(t) = c1 + c2 exp
(√

2ct
)

+ c3 exp
(
−
√

2ct
)

(21)

provided the constraint 8cc2c3 − k − 2cc21 = 0 holds. In the limit c → 0 the usual
perfect fluid solutions are recovered

a(t) = a1t
2 + a2t+ a3 (22)

provided the constraint 4a1a3 − a2
2 − k = 0 is satisfied. This family of solutions

includes several interesting possibilities. Solutions with and without initial singu-
larity, bouncing solutions and solutions with a finite time-span, as well as the Milne
solution when k = −1 and a1 = 0.

II) When γ = 2/3 there are three families of solutions depending on the sign of
E:
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1. For E > 0

a(t) =

√
2E
c

sinh
(√
c∆t

)
(23)

i.e. the scale factor initially grows as
√

2E∆t independently of c.

2. For E < 0

a(t) =

√
−2E

c
cosh

(√
c∆t

)
(24)

this family of non-singular solutions bounce at ∆t = 0 when the scale factor
attains its minimum value am =

√
−2E/c.

3. For E = 0

a(t) =

√
1
c

exp
(√
c∆t

)
. (25)

The three families of solutions exist for all k = 0 or ±1, and for large time they
approach the inflationary de Sitter scenario a(t) ≈ exp

√
c∆t. These results extend

those of §4 in 6 obtained in the framework of the non–causal Eckart’s theory, and
where the viscosity was assumed to follow a power-law dependence upon the density.

III) When γ = 4/3 (i.e. a radiation-dominated universe) one has

a2(t) =
1
c

[
k + b exp

(
−
√

2ct
)

+
1
8b

(1− 4cE) exp
(√

2ct
)]

(26)

where b is an integration constant. This familiy of solutions comprises three types
of behaviours depending on the value of E. When E > 0 singular solutions occur
for all k. However, when −1/4c < E < 0 a singularity arises only if k < 0. Near
the singularity the behaviour of the solution (26) is radiation–like. When E < −c
there is no singularity.

Again the large-time behaviour is qualitatively the same as that found with
Eckart’s theory. Otherwise the evolution behaves differently.

IV) When γ > 2/3 it follows, using the results of the appendix, a family of
solutions that near the singularity evolves as a ≈ t2/3γ , and at late time it exhibits
a de Sitter expansion a ≈ exp

√
2c/3γt, irrespective of the spatial curvature.

3.2. Constant interactions number per expansion time model

The expanding universe defines a natural time–scale – the expansion time H−1.
Any particle species will remain in thermal equilibrium with the cosmic fluid so
long as the interaction rate is high enough to allow rapid adjustment to the falling
temperature. The relaxation time τ is the characteristic colisional time of hydro-
dynamical procesess occurring after the quantum era. Then a necessary condition
for maintaining thermal equilibrium is

τ < H−1 (27)

Now τ is determined by
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τ ' 1
nσv

(28)

where σ is the interaction cross–section, n is the number density of the target
particles with which the given species is interacting, and v is the mean relative speed
of interacting particles. So we have that ν = (τH)−1 is the number of interactions
in an expansion time. Now we will consider the case when ν is a constant larger
than one.

To find the solutions of equation (4) that satisfy this property we insert the
ansatz

γ =
2
3

(1 + ε) (29)

along with (18) in the equation (4). A set of solutions can be found for a variable
adiabatic index. Expression (4) splits in two equations,

Ḧ + (2 + ν)HḢ + νH3 − νcH = 0 (30)

plus a linear equation in ε,[
H2 +

k

a2

]
ε̇+

[
2H
(
Ḣ − k

a2

)
+ τ−1

(
H2 +

k

a2

)]
ε = 0 (31)

provided τ−1 = νH with ν a constant. Solving (31), we get

γ =
2
3

(
1 + b

a2−ν

k + ȧ2

)
(32)

where b is a free parameter. To make explicit the t dependence of the adiabatic
index we need solutions of (30) that satisfy 0 ≤ γ ≤ 2. Equation (30) can be
transformed into a second order linear differential equation whose general solution,
obtained in 24, reads

H2 = c+
c1
a2

+
c2
aν

(33)

where c1 and c2 are arbitrary integration constants. There it was shown that simple
explicit solutions of (30) can be obtained when ν = 1 and when ν = 4. In this case
the solutions are

a(t) = c1 + c2 exp
(√
ct
)

+ c3 exp
(
−
√
ct
)

(34)

and
a(t) =

[
c1 + c2 exp

(
2
√
ct
)

+ c3 exp
(
−2
√
ct
)]1/2 (35)

respectively. For t � c−1/2, both (34) and (35) describe inflationary expansions
regardless the initial conditions.

3.3. Stable causal sound perturbations model

7



In this subsection we will investigate the consequences imposed by causality and
stability on scalar longitudinal sound perturbations. It can be seen that the re-
lationship between the viscosity coefficient and the dissipative contribution to the
sound speed is ζ = v2γρτ .

In this case equation (4) transforms into

h′′ + (3γ + ν)h′ + 3γ
(
ν − 3v2

)
h = 0 (36)

where the variable h = H2 + k/a2 is proportional to the energy density of the fluid
and the prime indicates derivative with respect to η = ln a. Except for ν = 3v2,
the general solution of this equation leads asymptotically to power–law behaviors
1318. When ν = 3v2 the solution exhibit de Sitter expansion at late time. Exact
solutions of (36) are

a(t) =
1√
b

sinh
(√

b∆t
)
, (k = −1) (37)

a(t) =
1√
b

cosh
(√

b∆t
)
, (k = 1) (38)

where b is an integration constant. These solutions are attractors and therefore of
singular importance as they indicate the leading behaviour for large cosmological
times. It is remarkable that the expressions (37) and (38) do not explicitly contain
any quantity directly associated to viscosity (or particle creation) even though it
is precisely this effect that drives the exponential expansion. In this case the same
effect generates the translational invariance of the energy density.

4. Additional Inflationary Scenarios

4.1. Variable τ

When either γ or ζ is a constant the solution (13) is asymptotically stable provided
τ is a decreasing function. When τ is a function that first decreases and in a second
stage increases, there is a first period of exponential inflation followed by a graceful
exit. On the other hand, when the relationship (11) holds, τ presents a minimum
provided v2 has a maximum. In this case the Universe enters an inflationary stage
and afterwards exits it. This parallels the cosmic scenario of §2.2 in 1. There the
cosmic fluid was modelled as a mixture of radiation and heavy particles that decayed
at a very high rate into (more stable) lighter particles (less massive modes), with
high or moderate multiplicity 19.

4.2. Variable τ and γ

Another model of dissipatively driven inflation arises when ζ is a constant (or nearly
a constant) and γ varies as

γ(t) =
2
3

[
1 +

c

τ(t)

]
(39)
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with c a constant. From (7) we see that D is negative-definite when τ̇ < 0, and
accordingly the de Sitter expansion results asymptotically stable. Likewise γ(t)
increases when c > 0.

By choosing c = τ(t1)/2 and τ(t1)/τ(t2) = 2 one follows a model in which
initially all the energy is in the form of non-relativistic particles, γ = 1, and it is
gradually transferred to relativistic ones, so that finally γ = 4/3. This corresponds
to the dissipative process of decay of dust particles into radiation. Additional dis-
sipation may arise from the interaction matter-radiation. Once the heavy particles
have decayed, the Universe exits inflation. A similar scenario in flat space was re-
ported in 1, (see equations (17) & (18) there) but in that work τ was considered
constant instead.

Assuming that the dust particles are primeval mini-black holes of rest mass m
and that the thermodynamic properties of the mixture of black holes and relativis-
tic particles correspond to a Boltzmann gas of vanishing chemical potential, the
adiabatic index reads

γ(z) = 1 +
K2(z)

zK1(z) + 3K2(z)
(40)

where Kn are modified Bessel functions of the second kind, and z ≡ m/T the
dimensionless inverse temperature. By equating the right hand sides of (39) and
(40) we can describe the continuous process of decay of mini-black holes from t = t1,
when the black hole energy density dominates the Universe, until t2 when the mini-
black holes have completely evaporated away and the Universe becomes radiation–
dominated. Here it is understood that all the black holes have the same mass and
therefore the same temperature, and that this one equals the temperature of the
massless component of the cosmic fluid at the beginning of the evaporation. The
temperature behaves as in the k = 0 case 1

z′

z
=

12K2(z) + 3zK1(z)−Bz2

12K2(z) + 5zK1(z) + z2K0(z)
(41)

where B = 9Hζ/A0, with A0 a constant and ′ ≡ d/Hdt. From this equation follows
that z′ is negative for large z, which agrees with the warm inflationary scenario of
above.

The time dependence of this temperature near t1 and t2 for a generic τ(t) can
be made explicit by expanding (39) about t = t1 and (40) for z → ∞. Thus one
follows T ∝ t − t1, while in the opposite limit (i.e. t → t2 and z → 0) it yields
T ∝ (t2− t)−1/2. This reproduces the results of 1 but this time with a generic τ(t).
Again the production of relativistic particles at the final stage of the black holes
evaporation is accompanied by a huge increase of the temperature of the cosmic
fluid -which also agrees with a previous study of this process 20.

The entropy production per unit volume in the radiation fluid is given by the
well-known expression 2, 3, 14, Ṡ = π2/(ζT ). It has the limiting behaviours

Ṡ ' − 3τ(t1)π2(t1)
mζτ̇(t1) (t− t1)

, t→ t1 (42)
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Ṡ ' 2
π2(t2)

√
6τ̇(t2) (t− t2)
mζ

, t→ t2 (43)

where

π2(t) =
1

τ2(t)

{
1

2τ2(t1)

(
1 +

2τ(t)
τ(t1)

)2 [
3τ(t1)ζ

(
2 +

3
2
τ(t1)ζ

)
+

1− (1 + 3τ(t1)ζ)
√

1 + 6τ(t1)ζ + 1
]

+

k

a2(t)

(
1 +

2τ(t)
τ(t1)

)(
1 + 3τ(t1)ζ −

√
1 + 6τ(t1)ζ

)
+
τ2(t1)k2

a4(t)

}
(44)

and

a(t) = a0 exp

{[√
1 + 6ζτ(t1)− 1

2τ(t1)

]
t

}
. (45)

The entropy production rate in the radiation fluid happens to be very high at the
beginning of the evaporation, but decreases sharply about the end of this process.
As in 1 the net rate of radiation particle production per mini-black hole and unit of
volume varies roughly as (ρ+ p)−1, where in this case ρ and p refer to the radiation
fluid only 21.

5. General case

In this section we consider the de Sitter solution (13) and assume that γ, τ and ζ

vary with time. Again this more general situation may occur during the decay of
massive particles into lighter ones and also during the decay of four-dimensional
fundamental strings into massive and massless particles -admittedly this second
possibility is more speculative. In this case the algebraic relationship holds

γ(t) =
2
3

+
3ζ(t)− 2H0

6H2
0 τ(t)

. (46)

By adequately choosing the behaviour of ζ(t) and τ(t) the decay into radiation,
reaching relativistic gas state when γ = 4/3, can be described. After the decay a
condensation phase back into non-relativistic matter may occur. It ends when γ

returns to 1. A scenario compatible with the latter phase is the quantum tunneling
of radiation into black holes 22. This may arise very naturally because of the insta-
bility of the hot radiation against spontaneous condensation 23. (This is altogether
different from the whole disappearance of the radiation by black hole accretion).
During this period both the viscosity coefficient and the relaxation time may be
chosen as monotonic decreasing functions, provided ζ/τ grows with time.

Again we may interpret this behaviour in terms of a two-fluid model, where the
viscosity coefficient arises because of the particle production process from the decay
of massive non-relativistic particles into light ones. Shortly after the beginning of
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the decay the particle production rate is large and the energy density of the fluid
becomes dominated by the light component. Later on, as the decay rate slows down,
the effect of adiabatic dilution by the fast exponential expansion of the Universe
turns out to be more important. Accordingly the non-relativistic energy density
takes over again, since it goes down as a−3, while the relativistic energy density
goes down at the faster rate of a−4.

The adiabatic index (39) can be used to estimate the dissipative contribution to
the speed of sound v2 in (11)

v2 =
2H2

0ζ

(4τ + 3ζ − 2H0)
(
H2

0 − k
a2

) . (47)

In the limit t→∞, v2 is a monotonic function of ζ and τ within the region 2/3 < γ.
It vanishes when ζ = 0 and reaches a maximum value v2 = 2/3 when ζ/H0 � 1.

6. Concluding Remarks

We have applied the second method of Lyapunov to analyse the stability of cosmic
inflationary expansions, driven by a dissipative fluid governed by a transport equa-
tion that allows for relaxation (i.e. of causal type), for non spatially flat FLRW
metrics. The parameters characterizing the fluid (adiabatic index, viscosity coeffi-
cient and relaxation time) may vary as the expansion proceeds. This is interesting
as repeteadly stressed, a dissipative fluid can phenomenologically mimic a perfect
one where particle production takes place 25, 26, 6, 15, either from the quantum
vacuum, or by the decay of pre-existing heavy particles, or by the decay of massive
modes of fundamental strings into massless modes.

Essentially the curvature does not modify the results found in our previous paper
1 concerning the stability of the de Sitter solution. This result shows the insensibility
of the viscosity-driven inflationary scenario with respect to initial conditions even
when spatial curvature is present. However, it severely restrics the set of de Sitter
solutions encompassed by this model because a constraint (12), linking the adiabatic
index with the relaxation time, must be satisfied. Nevertheless, since the de Sitter
solution is asymptotically stable for a wide set of behaviours of the fluid parameters,
inflation appears rather natural. The static solution, H = 0, is found to be unstable;
however this result may be altered if a non-standard increasing adiabatic index could
enter the play. This work generalizes own previous study in spatially-flat FLRW
universes 1 as well as those of Barrow 6, 7. Further, new solutions describing the
effects of dissipation have also been found. They either go over a stable de Sitter
scenario from an initial power–law singularity or asymptotically approach a static
universe if a fine tuning of the initial condition is made.

Lastly, an expression for the dissipative contribution to the sound speed have
been obtained (47). In general the latter goes down as the Universe expands,
something rather natural as the impact of disipative effects is thought to diminish
with expansion.
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4. W.A. Hiscock and L. Lindblom, Ann. Phys. N.Y. 151, 466 (1983).
5. W.A. Hiscock and L. Lindblom, Contemporary Mathematics 71, 181 (1988).
6. J.D. Barrow, Nucl. Phys. B 310, 743 (1988).
7. J.D. Barrow, in The Formation and Evolution of Cosmic Strings ed G.W. Gibbons,

S.W. Hawking and T. Vachaspati (Cambridge University Press, Cambridge, 1990).
8. C. Eckart, Phys. Rev. 58, 919 (1940).
9. M. Bartelmann et al., Astron. Astrophys. 330, 1 (1998).

10. J. Silk, Seven paradigms in structure formation. Report astro-ph/9903402.
11. K. Coble et al., Anisotropy in the cosmic microwave background at degree angular

scales: Pithon V results. Report astro-ph/9902195.
12. D. Pavón, J. Bafaluy and D. Jou, Class. Quantum Grav. 8, 347 (1991).
13. L.P. Chimento and A.S. Jakubi, Class. Quantum Grav. 10, 2047 (1993).
14. R. Maartens, in Hanno Rund Workshop on Relativity and Thermodynamics ed Maharaj

SD (Natal University, Natal 1997). Report astro-ph/9609119.
15. W. Zimdahl, Phys. Rev. D 53, 5483 (1996).
16. L.P. Chimento and A.S. Jakubi, Class. Quantum Grav. 14, 1811 (1997).
17. L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equa-

tions (Springer, Berlin, 1963).
18. L.P. Chimento and A.S. Jakubi, in Proceedings of the First Mexican School on Gravi-

tation and Mathematical Physics (World Scientific, Singapore, 1996).
19. W. Zimdahl, D. Pavón D and R. Maartens, Phys. Rev. D 55, 4681 (1997).
20. W. Zimdahl and D. Pavón, Phys. Rev. D 58, 103506 (1998).
21. W. Zimdahl and D. Pavón, Phys. Lett. A 176, 57 (1993).
22. D. Gross, M.J. Perry and L.G. Yaffe, Phys. Rev. D 25, 330 (1982).
23. J.I. Kapusta, Phys. Rev. D 30, 831 (1984).
24. L.P. Chimento, J. Math. Phys. 38, 2565 (1997).
25. B.L. Hu, Phys. Lett. A 90, 375 (1982).
26. Ya. B. Zel’dovich, JETP Lett. 12, 307 (1970).

Appendix

Equation (19) with the change of variable a = s2/3γ becomes

s̈+ F (s) = 0, F (s) =
3γ
2

(
3γ
2
− 1
)
ks1−4/3γ − 3γc

2
s. (48)

Then, by the nonlocal transformation

z =
∫
F (s)ds, η =

∫
F (s)dt (49)
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equation (48) turns into a linear second order differential equation with constant
coefficient

z′′ + 1 = 0 (50)

where the prime indicates derivative with respect to η. Solving it the general so-
lution of (48) in parametric form follows. This can be achieved by inserting this
solution in the second equation of (49)

−η
2

2
+ c1η + c2 =

9γ2

8
ks2(1−2/3γ) − 3γc

4
s2 (51)

The transformation law between η and t follows from solving (51) for s and inserting
the resulting expression in the second equation of (49)

t− t0 =
∫

dη

F (s(η))
. (52)

Figure Caption

Figure 1 Graph of the potential V (H), given by equation (6), for each value of the
spatial curvature k.
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