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[. INTRODUCTION with reference to Tsallis’s measure, giving rise to what is
called Tsallis’s thermostatistics, responsible for the success-
We will be concerned in what follows with the workings ful description of an ample variety of phenomena that cannot
of two information measures that have received much atterbe explained by appeal to the conventional formulatibiat
tion lately, those of Fishdil,5] and Tsallig[4,6,7]. Our goal  of Boltzmann-Gibbs-Shannof4,6,7].
is to show that their interplay naturally yields a type of
Naudts’s duality{3].
Fisher's information measuré~IM) [1,5] had already Il A BRIEF FISHER PRIMER
been advanced in the 1920s, well before the advent of infor- Fisher’s information measuieis of the form
mation theory(IT), being conventionally designated with the

symbol | [5] [see Eq.(2.1) below for the pertinent defini- gf 12
tion]. Much interesting work has been devoted to the physi- | :f dx f(x, 6) _} , (2.2
cal applications of FIM in recent timeee, for instance, f(x,0) 96

[1,5,8,9 and references thergirFrieden and Soffgrl] have
shown that Fisher’s information measure provides one with §herex is a stochastic variable antla parameter on which
powerful variational principle, the extreme physical informa- the probability distributiorf(x, 6) depends. The Fisher infor-
tion (EPI) principle, that yields the canonical Lagrangians of mation measure provides a lower bound for the mean-square
theoretical physic$1,5]. Additionally, I has been shown to error associated with the estimation of the paraméteNo
provide an interesting characterization of the “arrow of matter what specific procedure we choose in order to deter-
time,” alternative to the one associated with Shannd®’s mjne it, the associated mean-square eefohas to be larger
[8-10. _ o _ than or equal to the inverse of the Fisher meagBieThis
Tsallis’s measure is a generalization of Shannon’s. Noticegylt, i.e.e2=1/, is referred to as the Cramer-Rao bound,
that IT was created by Shannon in the 1905,12. One of  anq constitutes a very powerful statistical re$6lt
content(Shannon’s measuré¢o any normalized probability mention. These are monoparametric families with distribu-
distribution. The whole of statistical mechanics can be elyigns of the formf(x— @) which are known up to the shift
egantly reformulated by extremization of this measure, subparameten. Following Mach’s principle, all members of the
ject to the constraints imposed by thepriori information family possess identical shaftbere are no absolute origis

one may possess concerning the system of intgt@$titis  anq here Fisher's information measure adopts the appearance
shown in[4,6,7] that a parallel process can be undertaken

of 12

. 2.2

1
= dx—
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The parametep has dropped outl.=I[f] becomes then a a pertinent experiment. Nature’s information is called, say,

functional off.

At this point we introduce the useful concept of escort

probabilities(see[2] and references therginvhich one de-
fines in the fashion

f(x)4

Fo(X)=———
f f(x)%dx

, (2.3

whereq is any real parametef,F,(x)dx=1, and, of course,
for g=1 we haveF,=f. The concomitant “escort-FIM”
becomes

2

1 9F4(x) (2.4

Fq(X)  ax

I[Fq]= J dx Fy(x)

which, in terms of the originaf (x) acquires the aspect

f dx f(x)972[ of (x)/ 9x]?

I[Fql=0? (2.5
J dx f(x)4
We shall denote by, the escort FIM
f dx f(x)9~ [ af (x)/9x]?
4= (2.6

q

fdxf(x)q

(Notice that forq=0 the integration range must be finite in

order to avoid divergences in the denominator.

[1,5].

Assume now that, due to the measuring process, the sys-
tem is perturbed, which in turn induces a changje It is
natural to ask ourselves how the data informatignvill be
affected. Enters here FS’s ERt:its relay from the phenom-
enon to the data no loss of information should take place
The ensuing new conservation law states that o1, or,
rephrasing it,

o(l4—=J3)=0, (3.0
so that, defining an actiod,
Ag=14—13, (3.2

the EPI principle asserts that the whole process described
above extremizesl,. FS[1,5] conclude that the Lagrangian
for a given physical environment is not just ad hoccon-
struct that yields a suitable differential equation. It possesses
an intrinsic meaning. Its integral represents the physical in-
formation.A, for the physical scenario. On such a basis some
of the most important equations of physics can be derived for
g=1 [1,5]. For an interesting quantum mechanical deriva-
tion seg17]. A cosmological application of the nonextensive
(g# 1) conservation law3.1) is reported in18]. Mechani-

cal analogs that can be built up using this law are discussed
in [19]. Notice, however, that the last two references use an
old Tsallis normalization procedur@advanced in[13,14)

that cannot be assimilated within the framework of the escort
distribution concept.

IV. SOLUTIONS TO THE VARIATIONAL PROBLEM

According to the EPI principle] is fixed by the physical

The parameteq can be identified with Tsallis’s nonexten- scenario[5]. We adopt here a more modest posture by as-
sivity index[13—15, which allows one to speak of “Fisher suming thatJ embodies only the normalization constraint,
measures in a nonextensive context.” Their main propertie@nd say nothing regarding a specific physical scendrie.

have been discussed [ith6].

IIl. EXTREME PHYSICAL INFORMATION
PRINCIPLE (EPI)

just

J=)\f f(x)dx, 4.1

where\ is the pertinent Lagrange multiplier. Suchléhas

The principle of extreme physical information is an over-peen successfully employed[in7] with reference to a quan-
all physical theory that is able to unify several subdisciplines;m mechanical problem. Playing the Frieden-Soffer game,

of physics[1,5]. In Ref.[1] Frieden and SoffefFS show

i.e., performing the variatio3.1), then leads to

that Lagrangians in physics arise out of a mathematical game

between an intelligent observer and natGnich FS per-

sonalize in the appealing figure of a “demon,” reminiscent

of the celebrated Maxwell's dempriThe game’s payoff in-

2ff+(q—2)F2+qlf2+1QF*9=0, 4.2

a g-dependent, nonlinear differential equation that should

troduces the EPI variational principle, which determines siyield our “optimal” probability distribution f (we setQ

multaneously the Lagrangiaandthe physical ingredients of

the concomitant scenario.

= [f9dx). Now, one should demand that, fge=1, Eq.(4.2)
becomes identical to the differential equation that arises in

FS[1] envision the following situation, involving Fisher's such circumstanceee that equation ifil7], for instance,
information for translation families: some physical phenom-and denote by’ the concomitant Lagrange multiplier used
enon is being investigated so as to gather suitable, pertineffiera. This requirement is fulfilled if we sex=\"—qlg.
data. Measurements must be performed. Any measuremenhe q=1 expression then becomes
of physical parameters appropriate to the task at hand ini-

tiates a relay of informationm (or I,

in a nonextensive envi-
ronmenj from nature(the demon into the data. The ob-

2ff—f24+\’f2=0, 4.3

server acquires information, in this fashion, that is preciselywhere, of course, one h&=1. The solution of Eq(4.3) is
I (or ). FS assume that this information can be elicited viaof the form
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fq—1(x) =A% cos’ k(X—Xo), (4.4)

wherek is a constant to be determined below ahdk, are
arbitrary integration constants.
It easy to show that Eq4.2) has, as a first integral,

(4.9

f24+1,f2+AQf3 9=cf279,
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and obtaining
u”+ auu’ + Bu+ yu=0, (5.2
with
a=(20-1), p=5a(@-1), y=p. 3

where c is an integration constant. This equation involves

Fisher’'s generalized information for translation families. We

[A complete study of the properties of E¢.2) is found in

must solve it having Eq2.6) in mind. In order to establish [20]-] Further, we effect the transformation

the consistency between Ed4.5 and(2.6) we introduce a
set of normalized variables

—AQ — ¢
Z:f \/EdX, =I—, :I—

(the integral is an indefinite ohein terms of which Egs.
(2.6), (4.1), (4.2, and(4.5 are transformed into

(4.6

qu‘zf’zdz
1=— 4.7
ffqdz
— g
Jg=A f f(z)dz (4.9
ffqdz
(an indefinite integra)
2ff"+(q—2)f 2+ qf2+\f3"9=0, (4.9
and
f'24+ f24+ N3 9=cf2 0, (4.10

Inserting Eq.(4.10 into Eq.(2.6) we conclude that the inte-
gration constant acquires the aspect

(4.12)

wherex, andx, are the integration limits, to be fixed by the

f—1/f, (5.9

so that

14 n

Uu——u, u——-u’, u—-u (5.5

If we require that Eq(5.2) be invariant under this trans-
formation, the parameteks, B, andy must change accord-
ing to «— —«, B— B, andy— vy, respectively. This entails
that the parameteas, which characterizes the degree of non-
extensivity of the system, transform @s»1—q. A property
of this type has been called “duality” by Naud{8], al-
though in his case the relationship is of the fogn-1/q
(duality betweemg>1 andg<1 statistic$. In our case, the
duality arises between twq values whose sum adds up to
unity.

Introducing now into Eq(4.9) the new variable

1
h=—, (5.6
f
we get
2hh"—(g+2)h’2—gh?—\h9"1=0, (5.7
which under the substitutiop— 1—q becomes
2hh'+(q—3)h'2+(q—1)h?>~\h?"9=0. (5.9
This equation can be rewritten, if we first define
w(q)=(—h’2—h%2—\h2"9+ch379), (5.9

remaining parameters of the theory. A quite interesting poin(LJls

is thatthe general solution of Eq. (fcan be given in closed
form as

fq/2— 1

z
fdz=z—const=tjf
ve—Nf—fd

df, (4.12

where the constanE and\ must be of such a nature that a

real f ensues.

V. SYMMETRY PROPERTIES OF THE EPI PROBABILITY
DISTRIBUTION

We start by changing variables in E@.9) to

(5.9

2hh’+(q—2)h'2+qh?—ch® 9+w(q)=0, (5.10

where the terms im(q) correspond to théransformedgfirst
integral of Eq.(4.9),

/2424 \f3 9=cf27 9, (5.19)
which under Eq(5.6) becomes
h'24+h24+\h2"9=ch37 9, (5.12

As a consequencey(q) in Eqg. (5.10 vanishes and Eq.
(4.9), under the transformatio(b.6), turns out to retain its

form, changingy— 1—q andc— —\. It is convenient at this

point to effect a slight change of notation and denotef by
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the solution to Eq(4.9) that obtains when the nonextensivity s /1+x
index isq. The above symmetry argument entails f1(z)= —=cog > (z—zo), (5.19
1+\
- 1
fg(CN)»———. (5.13
f1-g(=N\,=©) which, after a little algebra that involves also going back to

b_the x variable adopts indeed the for4.4) with A2=c/\’

Using this symmetry property we can reobtain the pro
g 4 y Property P and k= \/\/2. A similar analysis can be performed for Eq.

ability distribution (4.4) for g=1, i.e., theordinary, exten-

sive one in term of the probability distribution fog=0, (5.15. .
which an easily be caIcSIated fro% E.10: g We have thus found the general solution for tle&ten-
T sive) EPI variational treatment corresponding td that en-

tails just normalization of the probability distribution. Notice
that, within the context of Naudts's effo[8], the extensive
thermostatisticsj=1 is self-dual. Instead, according to the
present Fisher framework, the self-dual instance obtains for

f'&=(c—-1)f2—\f3, qg=0. (5.14

The solutions are

fo(z)= — | 1—tank? (z—20)(, c>1,
N 2
(5.19 VI. CONCLUSIONS
and We have shown that the EPI principle, used in conjunc-
— \/—_ tion with a Fisher measure constructed with escort distribu-
fo(2)= c-1 1+tar? 1-c (2—20) o<1 tions that depend upon the Tsallis indgxrenders a prob-
0 N 2 o7 ’ ability distribution endowed with a remarkable symmetry: a

(5.19 Naudts’s-like duality[3]. Tsallis’s enthusiasts had thought,
before the advent of Naudts’'s wofR], that a different sta-

where the latter solution must be normalized in a finite inter+jstics obtains foreach different value of the nonextensivity
val. The symmetry transformatidb.13 now yields the gen- index g The duality concept is thus important because it
eral solution forq=1, ascribes the same statistics to a given paifsofitably re-
lated g values. We have shown here that such a pair can be
selected in two distinct manners, i.e., in the style of Naudts
or of Fisher, and have detailed the prescription correspond-
ing to the latter choice. Finally, we have also ascertained the
This is to be compared with the res@t.4). We start with  general(normalized probability distribution that extremizes
Eq. (5.16), effect the transformatiofb.17), and reach the physical information.

- 1
fl(c1)\)_>fT' (517)
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