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I. INTRODUCTION

We will be concerned in what follows with the working
of two information measures that have received much at
tion lately, those of Fisher@1,5# and Tsallis@4,6,7#. Our goal
is to show that their interplay naturally yields a type
Naudts’s duality@3#.

Fisher’s information measure~FIM! @1,5# had already
been advanced in the 1920s, well before the advent of in
mation theory~IT!, being conventionally designated with th
symbol I @5# @see Eq.~2.1! below for the pertinent defini-
tion#. Much interesting work has been devoted to the phy
cal applications of FIM in recent times~see, for instance
@1,5,8,9# and references therein!. Frieden and Soffer@1# have
shown that Fisher’s information measure provides one wi
powerful variational principle, the extreme physical inform
tion ~EPI! principle, that yields the canonical Lagrangians
theoretical physics@1,5#. Additionally, I has been shown to
provide an interesting characterization of the ‘‘arrow
time,’’ alternative to the one associated with Shannon’sS
@8–10#.

Tsallis’s measure is a generalization of Shannon’s. No
that IT was created by Shannon in the 1940s@11,12#. One of
its fundamental tenets is that of assigning an informat
content~Shannon’s measure! to any normalized probability
distribution. The whole of statistical mechanics can be
egantly reformulated by extremization of this measure, s
ject to the constraints imposed by thea priori information
one may possess concerning the system of interest@12#. It is
shown in @4,6,7# that a parallel process can be undertak
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with reference to Tsallis’s measure, giving rise to what
called Tsallis’s thermostatistics, responsible for the succe
ful description of an ample variety of phenomena that can
be explained by appeal to the conventional formulation~that
of Boltzmann-Gibbs-Shannon! @4,6,7#.

II. A BRIEF FISHER PRIMER

Fisher’s information measureI is of the form

I 5E dx f~x,u! F 1

f ~x,u!

] f

]uG2

, ~2.1!

wherex is a stochastic variable andu a parameter on which
the probability distributionf (x,u) depends. The Fisher infor
mation measure provides a lower bound for the mean-sq
error associated with the estimation of the parameteru. No
matter what specific procedure we choose in order to de
mine it, the associated mean-square errore2 has to be larger
than or equal to the inverse of the Fisher measure@5#. This
result, i.e.,e2>1/I , is referred to as the Cramer-Rao boun
and constitutes a very powerful statistical result@5#.

The special case oftranslation familiesdeserves specia
mention. These are monoparametric families with distrib
tions of the formf (x2u) which are known up to the shif
parameteru. Following Mach’s principle, all members of th
family possess identical shape~there are no absolute origins!,
and here Fisher’s information measure adopts the appear

I 5E dx
1

f F ] f

]xG2

. ~2.2!
7462 ©2000 The American Physical Society
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The parameteru has dropped out.I 5I @ f # becomes then a
functional of f.

At this point we introduce the useful concept of esc
probabilities~see@2# and references therein!, which one de-
fines in the fashion

Fq~x!5
f ~x!q

E f ~x!qdx

, ~2.3!

whereq is any real parameter,*Fq(x)dx51, and, of course,
for q51 we haveF1[ f . The concomitant ‘‘escort-FIM’’
becomes

I @Fq#5E dx Fq~x! F 1

Fq~x!

]Fq~x!

]x G2

, ~2.4!

which, in terms of the originalf (x) acquires the aspect

I @Fq#5q2
E dx f~x!q22@] f ~x!/]x#2

E dx f~x!q

. ~2.5!

We shall denote byI q the escort FIM

I q5

E dx f~x!q22@] f ~x!/]x#2

E dx f~x!q

. ~2.6!

~Notice that forq50 the integration range must be finite
order to avoid divergences in the denominator.!

The parameterq can be identified with Tsallis’s nonexten
sivity index @13–15#, which allows one to speak of ‘‘Fishe
measures in a nonextensive context.’’ Their main proper
have been discussed in@16#.

III. EXTREME PHYSICAL INFORMATION
PRINCIPLE „EPI…

The principle of extreme physical information is an ove
all physical theory that is able to unify several subdisciplin
of physics@1,5#. In Ref. @1# Frieden and Soffer~FS! show
that Lagrangians in physics arise out of a mathematical g
between an intelligent observer and nature~which FS per-
sonalize in the appealing figure of a ‘‘demon,’’ reminisce
of the celebrated Maxwell’s demon!. The game’s payoff in-
troduces the EPI variational principle, which determines
multaneously the Lagrangianand the physical ingredients o
the concomitant scenario.

FS @1# envision the following situation, involving Fisher’
information for translation families: some physical pheno
enon is being investigated so as to gather suitable, perti
data. Measurements must be performed. Any measurem
of physical parameters appropriate to the task at hand
tiates a relay of informationI ~or I q in a nonextensive envi
ronment! from nature~the demon! into the data. The ob-
server acquires information, in this fashion, that is precis
I ~or I q). FS assume that this information can be elicited
t
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a pertinent experiment. Nature’s information is called, sayJ
@1,5#.

Assume now that, due to the measuring process, the
tem is perturbed, which in turn induces a changedJ. It is
natural to ask ourselves how the data informationI q will be
affected. Enters here FS’s EPI:in its relay from the phenom
enon to the data no loss of information should take pla.
The ensuing new conservation law states thatdJ5dI q , or,
rephrasing it,

d~ I q2J!50, ~3.1!

so that, defining an actionAq

Aq5I q2J, ~3.2!

the EPI principle asserts that the whole process descr
above extremizesAq . FS@1,5# conclude that the Lagrangia
for a given physical environment is not just anad hoccon-
struct that yields a suitable differential equation. It posses
an intrinsic meaning. Its integral represents the physical
formationAq for the physical scenario. On such a basis so
of the most important equations of physics can be derived
q51 @1,5#. For an interesting quantum mechanical deriv
tion see@17#. A cosmological application of the nonextensiv
(qÞ1) conservation law~3.1! is reported in@18#. Mechani-
cal analogs that can be built up using this law are discus
in @19#. Notice, however, that the last two references use
old Tsallis normalization procedure~advanced in@13,14#!
that cannot be assimilated within the framework of the esc
distribution concept.

IV. SOLUTIONS TO THE VARIATIONAL PROBLEM

According to the EPI principle,J is fixed by the physical
scenario@5#. We adopt here a more modest posture by
suming thatJ embodies only the normalization constrain
and say nothing regarding a specific physical scenario.J is
just

J5l E f ~x!dx, ~4.1!

wherel is the pertinent Lagrange multiplier. Such aJ has
been successfully employed in@17# with reference to a quan
tum mechanical problem. Playing the Frieden-Soffer gam
i.e., performing the variation~3.1!, then leads to

2 f f̈ 1~q22! ḟ 21qIqf 21lQ f32q50, ~4.2!

a q-dependent, nonlinear differential equation that sho
yield our ‘‘optimal’’ probability distribution f ~we set Q
5* f qdx). Now, one should demand that, forq51, Eq.~4.2!
becomes identical to the differential equation that arises
such circumstances~see that equation in@17#, for instance,
and denote byl8 the concomitant Lagrange multiplier use
there!. This requirement is fulfilled if we setl5l82qIq .
The q51 expression then becomes

2 f f̈ 2 ḟ 21l8 f 250, ~4.3!

where, of course, one hasQ51. The solution of Eq.~4.3! is
of the form
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f q51~x!5A2 cos2 k~x2x0!, ~4.4!

wherek is a constant to be determined below andA, x0 are
arbitrary integration constants.

It easy to show that Eq.~4.2! has, as a first integral,

ḟ 21I qf 21lQ f32q5c f22q, ~4.5!

where c is an integration constant. This equation involv
Fisher’s generalized information for translation families. W
must solve it having Eq.~2.6! in mind. In order to establish
the consistency between Eqs.~4.5! and ~2.6! we introduce a
set of normalized variables

z5E AI q dx, l̄5
lQ

I q
, c̄5

c

I q
~4.6!

~the integral is an indefinite one!, in terms of which Eqs.
~2.6!, ~4.1!, ~4.2!, and~4.5! are transformed into

15

E f q22f 82dz

E f qdz

, ~4.7!

Jq 5l̄
I q

E f qdz
E f ~z!dz ~4.8!

~an indefinite integral!,

2 f f 91~q22! f 821q f21l̄ f 32q50, ~4.9!

and

f 821 f 21l̄ f 32q5 c̄ f 22q. ~4.10!

Inserting Eq.~4.10! into Eq. ~2.6! we conclude that the inte
gration constant acquires the aspect

c̄5
2Q1l̄

x22x1
, ~4.11!

wherex2 andx1 are the integration limits, to be fixed by th
remaining parameters of the theory. A quite interesting po
is thatthe general solution of Eq. (f’! can be given in closed
form as

Ez

dz5z2const56E f q/221

Ac̄2l̄ f 2 f q
d f , ~4.12!

where the constantsc̄, andl̄ must be of such a nature that
real f ensues.

V. SYMMETRY PROPERTIES OF THE EPI PROBABILITY
DISTRIBUTION

We start by changing variables in Eq.~4.9! to

u5
f 8~z!

f ~z!
~5.1!
t

and obtaining

u91auu81bu31gu50, ~5.2!

with

a5~2q21!, b5
1

2
q~q21!, g5b. ~5.3!

@A complete study of the properties of Eq.~5.2! is found in
@20#.# Further, we effect the transformation

f→1/f , ~5.4!

so that

u→2u, u8→2u8, u9→2u9. ~5.5!

If we require that Eq.~5.2! be invariant under this trans
formation, the parametersa, b, andg must change accord
ing to a→2a, b→b, andg→g, respectively. This entails
that the parameterq, which characterizes the degree of no
extensivity of the system, transform asq→12q. A property
of this type has been called ‘‘duality’’ by Naudts@3#, al-
though in his case the relationship is of the formq→1/q
~duality betweenq.1 andq,1 statistics!. In our case, the
duality arises between twoq values whose sum adds up
unity.

Introducing now into Eq.~4.9! the new variable

h5
1

f
, ~5.6!

we get

2hh92~q12!h822qh22l̄hq1150, ~5.7!

which under the substitutionq→12q becomes

2hh91~q23!h821~q21!h22l̄h22q50. ~5.8!

This equation can be rewritten, if we first define

w~q!5~2h822h22l̄h22q1 c̄h32q!, ~5.9!

as

2hh91~q22!h821qh22 c̄h32q1w~q!50, ~5.10!

where the terms inw(q) correspond to the~transformed! first
integral of Eq.~4.9!,

f 821 f 21l̄ f 32q5 c̄ f 22q, ~5.11!

which under Eq.~5.6! becomes

h821h21l̄h22q5 c̄h32q. ~5.12!

As a consequence,w(q) in Eq. ~5.10! vanishes and Eq
~4.9!, under the transformation~5.6!, turns out to retain its
form, changingq→12q andc̄→2l̄. It is convenient at this
point to effect a slight change of notation and denote byf q
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the solution to Eq.~4.9! that obtains when the nonextensivi
index isq. The above symmetry argument entails

f q~ c̄,l̄ !→ 1

f 12q~2l̄,2 c̄!
. ~5.13!

Using this symmetry property we can reobtain the pro
ability distribution ~4.4! for q51, i.e., theordinary, exten-
sive one, in term of the probability distribution forq50,
which can easily be calculated from Eq.~4.10!:

f 825~ c̄21! f 22l̄ f 3, q50. ~5.14!

The solutions are

f 0~z!5
c̄21

l̄
H 12tanh2

Ac̄21

2
~z2z0!J , c̄.1,

~5.15!

and

f 0~z!5
c̄21

l̄
H 11tan2

A12 c̄

2
~z2z0!J , c̄,1,

~5.16!

where the latter solution must be normalized in a finite int
val. The symmetry transformation~5.13! now yields the gen-
eral solution forq51,

f 1~ c̄,l̄ !→ 1

f 0~2l̄,2 c̄!
. ~5.17!

This is to be compared with the result~4.4!. We start with
Eq. ~5.16!, effect the transformation~5.17!, and reach
s

a
ka

.
JP

A

-

-

f 1~z!5
c̄

11l̄
cos2

A11l̄

2
~z2z0!, ~5.18!

which, after a little algebra that involves also going back
the x variable adopts indeed the form~4.4! with A25c/l8
and k5Al/2. A similar analysis can be performed for E
~5.15!.

We have thus found the general solution for the~exten-
sive! EPI variational treatment corresponding to aJ that en-
tails just normalization of the probability distribution. Notic
that, within the context of Naudts’s effort@3#, the extensive
thermostatisticsq51 is self-dual. Instead, according to th
present Fisher framework, the self-dual instance obtains
q51/2.

VI. CONCLUSIONS

We have shown that the EPI principle, used in conjun
tion with a Fisher measure constructed with escort distri
tions that depend upon the Tsallis indexq, renders a prob-
ability distribution endowed with a remarkable symmetry
Naudts’s-like duality@3#. Tsallis’s enthusiasts had though
before the advent of Naudts’s work@3#, that a different sta-
tistics obtains foreach different value of the nonextensiv
index q. The duality concept is thus important because
ascribes the same statistics to a given pair of~suitably re-
lated! q values. We have shown here that such a pair can
selected in two distinct manners, i.e., in the style of Nau
or of Fisher, and have detailed the prescription correspo
ing to the latter choice. Finally, we have also ascertained
general~normalized! probability distribution that extremize
the physical information.
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