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Assisted inflation in Friedmann-Robertson-Walker and Bianchi spacetimes

Juan M. Aguirregabiria and Alberto Chamorro
Fı́sica Teo´rica, Universidad del Paı´s Vasco, Apdo. 644, 48080 Bilbao, Spain

Luis P. Chimento and Norberto A. Zuccala´
Departamento de Fı´sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Pabello´n I,

1428 Buenos Aires, Argentina
~Received 18 April 2000; published 26 September 2000!

We use exact general solutions for the spatially flat FRW and the anisotropic Bianchi type I cosmologies to
show that generically uncoupled scalar fields cooperate to make inflation more probable, while the presence of
several interacting fields hinders the occurrence of the phenomenon, in accordance with previous results based
on particular power-law solutions. Similar conclusions are reached in the case of Bianchi type VI0 spacetimes,
for power-law solutions which are proved to be attractors.

PACS number~s!: 04.20.Jb, 98.80.Hw
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I. INTRODUCTION

In many inflationary models the effective potential ener
density of a scalar field is responsible for an epoch of ac
erated inflationary expansion@1#. Very often one assume
that inflation is driven by a scalar field of the Liouville form
i.e., an exponential potential, because this kind of poten
arises in various higher-dimensional supergravity@2# and su-
perstring@3# models@4–7#.

Although there are many scalar fields in superstring th
ries, in the past it was often assumed that typically only o
scalar field was responsible for inflation, while those hav
higher exponents were quickly redshifted away. Howeve
has been found@8# that so-calledassisted inflationmay occur
when several scalar fields are present, even if each indivi
field is too steep to drive the inflation, provided that t
fields are uncoupled and interact only through the geome
On the other hand, if the fields interact directly with ea
other, the opposite effect may happen and the presenc
cross couplings beteween fields may hinder inflation@9–11#.

Assisted inflation has been mainly studied in power-l
solutions (a}tp) for the spatially flat Friedmann-Robertso
Walker ~FRW! cosmology, which can be shown@8# to be the
late-time attractor for evolution of this kind of model.~Re-
cently, Green and Lidsey@12# discussed in the context o
assisted inflation late-time evolution in a general geomet!

The purpose of this work is to extend previous studies
multi-scalar field cosmologies in two directions: first, we w
use general solutions~instead of the special power-law one!
to analyze if the presence of several fields generically he
or impedes inflation, and second, going beyond the afo
mentioned FRW cosmology, we will consider the anisotro
inhomogeneous generalization given by Bianchi type I m
els. Thus in Sec. II A we deal withn interacting scalar fields
in a FRW spacetime and use the general solution to s
that the larger the number of interacting scalar fields, the
likely is inflation. Section II B makes plausible for more ge
eral scalar field potentials the results obtained in Sec. II A
exponential potentials. We do not know the solution forn
non-interacting scalar fields in a FRW cosmology in the g
eral case, but we use the discussion of the late-time attra
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of Sec. II C to restrict the analysis of uncoupled fields in S
II D to the particular case in which all fields are assumed
be equal, for which the general solution can be found.
show that non-interacting fields generically cooperate to
sist inflation. The density fluctuations corresponding to
last case are discussed in Sec. II E. General solutions of
isotropic Bianchi type I cosmologies with interacting an
uncoupled fields are used in the first part of Secs. III A a
III B, respectively, to check that also in those cases intera
ing fields make inflation more difficult while uncouple
fields assit it. The stability of power-law solutions is di
cussed in Sec. III C. Finally in Sec. IV we turn to power-la
solutions of the Bianchi type VI0 model, reaching again the
same conclusions.

II. n-SCALAR FIELD PROBLEM IN A FLAT FRW
SPACETIME

In the following we will consider two kinds of problem
in flat FRW spacetimes in which there aren homogeneous
scalar fields driven by exponential potentials. First of all,
will assume that the scalar fields are interacting throug
product of exponential potentials. Then we will consider t
case in which the scalar fields are uncoupled because
potential is a sum of potentials involving a single field.

A. Interacting n-scalar field problem in flat FRW spacetime

The problem ofn interacting homogeneous scalar field
f i , driven by a product ofn exponential potentials,Vi
5V0i e2kif i, minimally coupled to gravity in a flat
Robertson-Walker spacetime, with metric

ds252dt21a2~ t !@dx21dy21dz2#, ~1!

is formulated by the system of equations

3H25
1

2
ḟ21V, ~2!

fẄ 13HfẆ 2VkW50, ~3!
©2000 The American Physical Society29-1
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whereH5ȧ/a and the potential

V~fW !5V0 e2kW•fW ~4!

allows for interactions between the fields.V0 is the constant
V01V02•••V0n , andkW5(k1 ,k2 , . . . ,kn) is ann -component
constant vector with respect to an orthonormal basis in
n-dimensional Euclidean internal space to which the vec
fW 5(f1 ,f2 , . . . ,fn), built with the n minimally coupled
scalar fields, also belongs. In the remainder of this sectiok,

k2, andḟ2 stand forukW u, kW•kW , andfẆ •fẆ respectively. Poten-
tials of this type are of interest because they may be con
ered just as an approximation to a more complex potentia
fact, in higher-dimensional superstring theories, the sc
field is like one of the matter fields that contribute to t
action and effective potential of the theory. Loop expans
@3#, or expansion in the number of interacting particles@13#,
of the action leads to a perturbative expression of the po
tial which is a summation of exponential terms@5,6#. From
Eqs. ~2!,~3!, and discarding the trivial static metric solutio

H50, 1
2 ḟ21V50, we get

Ḣ52
1

2
ḟ2. ~5!

Using this equation and the system~2!,~3! one finds that the
Klein-Gordon equation~3! has the first integrals

fẆ 5HkW1
cW

a3
, ~6!

wherecW5(c1 ,c2 , . . . ,cn) is an arbitrary vector integration
constant. As Eq.~6! involves only geometrical quantities th
Einstein-Klein-Gordon equations uncouple and the gen
parametric solution can be obtained@14–16#.

One can easily verify that in this kind of model th
Einstein-Klein-Gordon equations have power-law solution

a}t2/k2
, ~7!

so that they inflate at all times whenk2,2. We will show
below that the general solution has the same kind of beha
when the scale factora is large enough.

Inserting Eq.~6! into Eq. ~5! we obtain the following
second-order equation for the scale factora(t):

s̈1smṡ1
1

4 cos2s
s2m1150 ~s5” p/2!, ~8!

where

coss5
cW•kW

ck
, ~9!

m526/k2,0, c5ucW u, a, and t have been replaced by th
new variabless andt defined by

a5s2m/3, t5ckt coss, ~10!
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and the overdots stand for derivation with respect tot. Once
s(t) is known one can compute, in principle, the scale fac
a(t) from Eq. ~10!, and the fieldsfW (t) from Eq. ~6!.

Equation~8! is a particular case of the second order no
linear ordinary differential equation

s̈1a f ~s!ṡ1b f ~s!E f ~s!ds1g f ~s!50, ~11!

where f (s) is some real function anda, b, andg are con-
stant parameters. Depending on the values ofk2 our equation
~8! corresponds to the next two cases:

~1! k25” 6 and

f ~s!5sm, a51, b5
m11

4 cos2s
, g50. ~12!

~2! k256 and

f ~s!5
1

s
, a51, b50, g5

1

4 cos2s
. ~13!

Inserting the first integrals~6! in the Einstein equation~2!,
we get a quadratic equation in the expansion rateH which
has real solutions only when its discriminant is non-negati
This condition leads to

b<
1

4F11
2a6V

c2 G,
1

4
, ~14!

discarding the oscillatory solutions of Eq.~11!, which would
be obtained for a negative potential orb.1/4. It follows
that, if k25” 6, real solutions exist always for

k2,k0
25

6

sin2s
. ~15!

This sets a restriction on the integration constants and
exponent of the exponential potential.

The general solution of Eq.~11! can be obtained making
the nonlocal transformation of variables@17#

z5E f ~s!ds, h5E f ~s!dt. ~16!

Under this transformation Eq.~8! becomes a linear inhomo
geneous ordinary differential equation with constant coe
cients

z91az81bz1g50, ~17!

which for a.0 andb.0 is the equation of a damped ha
monic oscillator in a constant external field. Here the prim
indicates differentiation with respect toh. In our case the
nonlocal transformation of variables~16! is
9-2
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z5
sm11

m11
, h5E smdt, ~18!

for k25” 6, and

z5 ln s, h5E dt

s
, ~19!

for k256.
Taking a51 in Eq. ~17! we get

z5H b1 el1h1b2 el2h for k25” 6,

b11b2 e2h2gh for k256,
~20!

where

l65
216A124b

2
, ~21!

andb1 , b2 are real integration constants.
We see from Eqs.~10! and ~18! that

a}z2m/3(m11), ~22!

so that, while fork2.6 the scale factor goes to 0 asz→0,
one has that fork2,6 the scale factor goes to infinity whe
z→0. On account of Eq.~20! one may assume that the latt
occurs ash→h0, for an appropriate value ofh0. Let us now
write h5h01dh and expand Eqs.~20! and ~22! about z
50 and h5h0, keeping only terms linear indh, so that
dz5dh and

a5dz2m/3(m11)5dh2m/3(m11). ~23!

Now, we see from Eqs.~10! and ~18! that

dh5a23dt}a23dt. ~24!

If we use this in Eq.~23!, we get, successively,

a}am/(m11)dt2m/3(m11) ~25!

and

a}dt2m/35dt2/k2
. ~26!

We see then that ifk2,2, the solution does inflate at lea
along some time interval. Now, sincek25k1

21k2
21•••

1kn
2 , one concludes from our analysis of the general so

tion that the larger the number of interacting scalar fields,
less likely will bek2,2 as well that inflation takes place. O
the other hand, for 6,k2,k0

2, one has 0,b,1/4, which
implies that bothl6,0; thus Eqs.~18! and~20! tell us that
the scale factor goes to infinity whenz→` and h→2`
~with no loss of generality we are taking both consta
b1 ,b2.0). By keeping only the dominant terms we have f
very large negativeh that

a} e2ml2h/3(m11). ~27!

This relation and Eq.~24!, which is generally valid, yield
08402
-
e

s
r

da

a
}a23dt ~28!

whose general solution isa}t1/3. In this case the solution
does not inflate and it approaches the free scalar field s
tion. These results are in accordance with those obtai
with particular solutions by other authors@9–11#.

It would be surprising if fork256 the scale factor had a
behavior drastically departing from that suggested by
previous analysis whenk2P(k0

2,6)ø(6,2). In fact, we see
from Eqs.~10! and ~19! that z53 loga so that, as a conse
quence of Eq.~20!, a goes to infinity ash→2`. From Eq.
~20! we see that logz;2h, whenh→2` and, by using Eq.
~24!,

da

a loga
}

dz

z
;2dh}

dt

a3
, ~29!

which can be written as

da

a
;a23dt loga. ~30!

In the asymptotic regime in whicha→` we have ada
,a2da/ loga,a2da, so that from Eq.~30! we get a2&t
&a3 and, finally,

t1/3&a&t1/2, when a→`. ~31!

We see that the solution does not inflate.

B. More general potentials

The results of the above section show that we can in
duce ann-dimensional Euclidean internal vector space co
taining then-component vectorfW 5(f1 ,f2 , . . . ,fn) built
with n minimally coupled scalar fields. Let us assume no
that the potential has the general form

V5V~F!, F5kW•fW . ~32!

In this case the Einstein equation~2! remains unchanged
however, the Klein-Gordon equation~3! becomes

fẄ 13HfẆ 1V8kW50. ~33!

where the prime indicates derivatives with respect to
variableF. Since Eqs.~2!, ~32! and~33! are invariant under
rotations of the orthogonal axes in the Euclidean space m
tioned above, we may choose the first axis of this inter
space along the vectorkW . Then the Klein-Gordon equation
splits into one equation forf15f,

f̈13Hḟ1kV850, ~34!

and ann21 free field Klein-Gordon equation forf25•••

5fn5c:

c̈13Hċ50. ~35!
9-3
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From Eq.~35! we obtain the first integralċ5c0 /a3, where
c0 is an arbitrary integration constant. Hence the origi
n-scalar field problem is equivalent to considering a se
interacting scalar field with stiff matter. In fact, the Einste
equation~2! now reads

3H25
1

2
ḟ21V1

cc
2

2a6
, ~36!

where cc
2 is the sum ofn21 positive defined integration

constants.
Taking into account that the scalar fieldf depends only

on t, its energy-momentum tensor may be written in the p
fect fluid form

Tik5~pf1rf!uiuk1pfgik , ~37!

where

rf5
1

2
ḟ21V~f!,

pf5
1

2
ḟ22V~f!. ~38!

The fluid interpretation of the scalar field has proved ve
useful in the study of inflationary andQ-matter scenarios
@18#. In particular it leads us to consider its equation of st
pf5(gf21)rf . On the other hand, the state equation
fluid representing stiff matter ispf5(g f21)r f with g f52.
Because of the additivity of the stress-energy tensor
makes sense to consider an effective perfect fluid descrip
with equation of statep5(g21)r where p5pf1pf , r
5r f1rf and

g5
g fr f1gfrf

r f1rf
~39!

is the overall~i.e., effective! adiabatic index. For this effec
tive perfect fluid the dynamical equations are

3
ȧ2

a2
5r ~40!

and

ä

a
52

1

6
@r13p#, ~41!

wherep andr are the density and pressure of the effect
perfect fluid. They involve the self-interacting scalar fie
and then-1 free scalar fields. Inflationary solutions occ
whenä.0; this means that the expansion is dominated b
gravitationally repulsive stress that violates the strong ene
condition r13p,0 or equivalentlyg,2/3. When we im-
pose this condition on Eq.~39!, we obtain that
08402
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V~F!.ḟ21
cc

2

a6
. ~42!

Hence, when there is only one scalar field the solution
flates forV(f).ḟ2. However, then interacting scalar fields
produce a desassisted inflation because the solutions in
only if Eq. ~42! holds. Using the effective perfect fluid de
scription we can generalize this analysis to an arbitrary
tential V(f1 ,f2 , . . . ,fn). In this case we obtain tha
V(f1 ,f2 , . . . ,fn).ḟ1

21ḟ2
21•••1ḟn

2 , so that the inter-
actingn scalar fields might make inflation more unlikely in
FRW spacetime.

C. n-scalar field attractor problem in the FRW spacetime

Let us now assume that then homogeneous scalar fields
f i , in the FRW spacetime are driven by a general poten
V5V(f i). In that case the Einstein-Klein-Gordon equatio
are

3H25
1

2 (
i 51

n

ḟ i
21V, ~43!

f̈ i13Hḟ i1V,f i
50, ~44!

whereV,f i
stand for]V/]f i . From these equations we ge

Ḣ52
1

2 (
i 51

n

ḟ i
2 . ~45!

In order to investigate the stable scalar field configu
tions, we introduce the quantity

v5

(
i 51

n

ḟ i
2

nḟa
2

, ~46!

which reduces tov51 for the configurationf15f25•••

5fn . Using Eqs.~43!–~46! we find the differential equation
for v:

v̇52
nV,fa

ḟav2V̇

nḟa
2

. ~47!

~In this section no summation convention applies to repea
Greek indexes.! If we further assume that the potential sat
fies the condition

V̇5nV,fa
ḟa , ~48!

Equation~47! becomes

v̇52
V,fa

ḟa

~v21! ~49!
9-4
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which has a fixed point solution:v51. Furthermore, the
general solution of Eq.~49! can be found using Eq.~44!:

v511
c

a6ḟa
2

~50!

wherec is an arbitrary integration constant. However, it
useful to express the last solution in terms of geometr
quantities with the aid of Eqs.~45! and~46!. The final result
is

v5S 11
nc

2a6Ḣ
D 21

. ~51!

Evaluating Eq.~51! in the asymptotic regime, it can be easi
shown that the particular solutionv51 is an attractor for
evolutions that behave asymptotically asa}tn with n.1/3.

This result strongly suggests that the special case in w
all scalar fields are equal may be the late-time attracto
more general problems. In fact, this has been proved in@9#
for potential ~4! with k15•••5kn and V015•••5V0n ,
which guarantee assumption~48!. We did not use this fact in
the previous section because we were able to use the ge
solution with no additional assumption onki , V0i , andf i ,
but it will be useful to simplify somewhat the problem an
lyzed in the following section.

D. Non-interacting n-scalar field problem in the FRW
spacetime

Let us now assume that then homogeneous scalar field
f i , in the spacetime given by Eq.~1! do not interact directly,
but are driven by a sum ofn exponential potentialsVi
5V0i e2kif i. In that case the Einstein-Klein-Gordon equ
tions are

3H25(
i 51

n F1

2
ḟ i

21Vi G , ~52!

f̈ i13Hḟ i2kiVi50. ~53!

From now on we will consider a simplified problem
which k15k25•••5kn[k and V015V025•••5V0n[V0.
As discussed in the previous section, we can expect in
particular case that in the asymptotic evolution all sca
fields tend to a common limit. That this is actually the ca
has been proved in@8#. As a consequence, in the remaind
of this section we will takef15f25•••5fn[f, so that
V15V25•••5Vn[V5V0 e2kf and Eqs.~52!–~53! reduce
to

3H25
n

2
ḟ21nV, ~54!

f̈13Hḟ2kV50. ~55!

One can easily get, from Eqs.~54!–~55!,
08402
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Ḣ52
n

2
ḟ2 ~56!

and the first integral of the Klein-Gordon equation~55!

ḟ5
k

n
H1

c

a3
, ~57!

wherec is an arbitrary integration constant.
As in the previous section, the Einstein-Klein-Gordo

equations have power-law solutions@8#

a}t2n/k2
, ~58!

so that this type of solutions inflates at all times whenk2

,2n. We will now show that the general solution of th
Einstein-Klein-Gordon equations~54! and~55! has the same
kind of behavior when the scale factora is large enough.

Inserting Eq.~57! into Eq. ~56! we obtain the following
second-order equation for the scale factora(t):

s̈1smṡ1
1

4
s2m1150, ~59!

where m526n/k2,0, the overdots mean derivative wit
respect tot and we have used, instead ofa and t, the new
variabless andt defined by

a5s2m/3, t5ckt. ~60!

We have again a particular case of Eq.~11! with a51
and to find the general exact solution of Eq.~59! one has to
consider the following two possibilities:

~1! k25” 6n and

f ~s!5sm, b5
m11

4
, g50. ~61!

~2! k256n and

f ~s!5
1

s
, b50, g5

1

4
. ~62!

The general solution of Eq.~59! can be obtained by per
forming the nonlocal transformation of variables given
Eqs. ~18!,~19! with the new value ofm, which reduces Eq.
~59! to the linear inhomogeneous ordinary differential equ
tion with constant coefficients~17!.

If one now repeats the analysis of the previous section
systematically takings50 and using the newm, the same
final results forz and a are obtained: just replacek25k1

21

•••1kn
2 by k2/n in the quantities involved in Eqs.~20! and

~22!. One readily concludes that, whena→`, these models
inflate if k2,2n, so that the fields cooperate to make infl
tion more likely in the so-called ‘‘assisted inflation,’’ whic
was first discussed—but only for power-law solutions—
@8#.

This result could have been anticipated since the pre
case is included in the mathematical problem set in Sec.
9-5
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FIG. 1. Spectrum of the curva
ture perturbations fork53, c5
21, b1521, andb250.001. As
n increases~inflation is possible
when n>5) the spectral distribu-
tion peak is shifted to high fre-
quencies.
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by Eqs.~8! and ~9! by just taking coss561 ~which corre-
sponds to the simplified problem under consideration! and
m526n/k2.

E. Density fluctuations

The fact that the contributions of the density fluctuatio
differ significantly in different inflationary universe mode
has motivated a detailed study of all the alternatives. In
context, it is interesting to derive the spectral indices for
perturbations that would be created during the periods
inflation described by the solutions given in the last secti
It is well known that, for multi-scalar field models, the spe
trum of the curvature perturbation reads@19#

PS5S H

2p D 2 ]N

]f i

]N

]f j
d i j , ~63!

whereN is the number ofe-foldings of inflationary expan-
sion remaining, and there is a summation overi and j. In the
case considered in the previous section,where all the sc
fields are equal, Eq.~63! yields @8#

PS~ k̃!5S H

2p D 2 1

n

H2

ḟ2 c
aH5 k̃

, ~64!

whereH and ḟ have to be evaluated at the time when t
wave number of interest,k̃, leaves the horizon during infla
tion. Also in this case, the spectral indexnS( k̃) defined as

nS~ k̃!511
d ln PS

d ln k̃
08402
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is given by@19,8#

12nS522
Ḣ

H2
. ~65!

The availability of exact solutions allows us to express
relevant quantities as functions of the variableh introduced
in Eq. ~16!. The scale factor reads@see Eq.~22!, which is
satisfied for uncoupled scalar fields withm526n/k2, as one
can easily see#

a~h!5@~m11! z~h!#2m/3(m11) ~66!

wherez(h) is given by Eqs.~20!,~21!. The spectrumPS( k̃)
obtained from Eq.~64! is shown in Fig. 1, fork53, c5
21, b1521, b250.001 and different values ofn. Here,
inflation is possible forn>5, and one can see that the pe
of the spectral distribution moves towards the high freque
region asn increases. The corresponding spectral indexnS is
shown in Fig. 2. From Eq.~65! and the general solution
~20!, ~21! and ~66!, it can be shown that the value ofnS
→1 in the asymptotic regiona@1 as the numbern of
present fields increases. This feature is exemplified in Fig
where we can see how the larger the value ofn, the closer is
the spectrum to the scale invariance@8#.

III. n-SCALAR FIELD PROBLEM IN BIANCHI TYPE I
MODELS

Now we turn to the general Bianchi type I model withn
homogeneous scalar fields driven by exponential potent
As we proceeded in the case of FRW spacetimes, we
first assume that the scalar fields are interacting throug
product of exponential potentials, and then we will consid
9-6
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FIG. 2. The spectral indexnS( k̃) for the gen-
eral solution approaches 1 in the asymptotic
gion a@1 as the number of fields increases.
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the case in which the scalar fields are uncoupled becaus
potential is a sum of potentials involving a single field.

A. Interacting n-scalar field problem in the anisotropic Bianchi
type I model

The general Bianchi type I model is the anisotropic ge
eralization of the spatially flat FRW universe expanding d
ferently in thex, y, andz directions. In the usual synchronou
form its line element is given by

ds252dT21a1
2~T!dx21a2

2~T!dy21a3
2~T!dz2. ~67!

For convenience we use the semiconformal coordinates

dt[
dT

a3
, ef[a3

2 , G[a1a2 , ep[
a1

a2
, ~68!

to cast the metric~67! into the form

ds25ef (t)~2dt21dz2!1G~ t !~ep(t)dx21e2p(t)dy2!.
~69!

We first consider, as in Sec. II A,n scalar fieldsf i inter-
acting directly through the exponential potential~4!. The
problem of n interacting homogeneous scalar fields,f i ,
driven by a product of n exponential potentialsVi
5V0ie

2kif i, minimally coupled to gravity in the Bianchi
spacetime~69!, is formulated by the following system o
Einstein-Klein-Gordon equations:

ṗ5
a

G
, ~70!

ef5
G̈

2VG
, ~71!

G̈

G
2

1

2
S Ġ

G
D 2

2
Ġ

G
ḟ 1

1

2
ṗ252ḟ2, ~72!
08402
the

-
-

fẄ 1
Ġ

G
fẆ 2efVkW50, ~73!

wherea is an arbitrary integration constant. It can be eas
seen that the vector

fẆ 5
Ġ

G

kW

2
1

mW

G
~74!

~wheremW is a n-dimensional vector whose components a
integration constants! is a first integral of the Klein-Gordon
equation set~73!. Inserting Eq.~70! into Eq.~74! the general
solution of the Klein-Gordon equations is found:

fW 5fW 01p
mW

a
1

kW

2
ln G, ~75!

where fW 0 is an arbitrary constant vector. Equations~70!–
~72! along with Eq.~75! uncouple and their solutions can b
obtained if one is able to solve the following third-ord
equation forG:

GG̈22ĜĠG1S 1

2
2

k2

4 D G̈Ġ21S m21
a2

2 D G̈50. ~76!

OnceG(t) is known, in principle one can computep(t) and
fW (t) from Eqs.~70! and ~75!, respectively;f (t) is then ob-
tained from Eq.~71!.

The Einstein-Klein-Gordon equations admit power-la
solutions,G5ta, but they happen to be isotropic and, thu
equal to the ones discussed in Sec. II A. Thus we will a
lyze, instead, the general solution of Eq.~76!.

Equation~76! has the first integral

G
G̈

Ġ
1~K21!Ġ1

M2

Ġ
5C, ~77!

whereC is an arbitrary constant and
9-7
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K[
k2

4
2

1

2
, M2[m21

a2

2
. ~78!

If instead of t and G we use the new variablesz and t
defined, forC5” 0, in

G5z1/K, t52
t

C
, ~79!

then, Eq.~77! becomes

z91z21/Kz81
KM2

C2
z122/K50, ~80!

where a prime denotes the derivative with respect tot. This
equation is, once more, a particular case of Eq.~11! and can
be linearized by using the non-local transformation~16!,
which in this case is

y[E z21/Kdz5K
z121/K

K21
, h[E z21/Kdt52

C

a
p

~81!

for K5” 1 and

y[E z21dz5 ln z, h[E z21dt52
C

a
p ~82!

for K51. If we take

b[~K21!
M2

C2
, g50 ~83!

for K5” 1 and

b50, g5
M2

C2
~84!

for K51, Eq.~80! reduces to two particular cases of Eq.~17!
for a51. The trivial solution of this equation gives the im
plicit general solution of Eq.~76! which can be written, for
arbitrarya, M and non-vanishingC, as

G5@e2h/2~C1 elh1C2 e2lh!#1/(K21) ~85!

for K5” 1 and as

G5C1e2gh1C2e2h
~86!

for K51. HereC1 and C2 are integration constants andl
5A124b/2.

To check whether a model inflates, we will look at th
sign of the deceleration parameterq52u22(3u̇1u2),
whereu5u;a

a is the expansion andu̇5u ,aua, ua being the
four-velocity of the cosmic fluid. Since in this case we a
dealing with comoving coordinates,ua5(e2 f /2,0,0,0), one
can see that, apart from a positive factor, the deceleratio

q}9KĠ223~2km1C!1~km2C!219M . ~87!
08402
is

We see from Eq.~85! that whenK,1 ~i.e., whenk2

,6)G blows up for some valueh5h05(1/2l) log
(2C2 /C1), provided thatC1C2,0. If we expand Eq.~85!
around this value (h5h01dh) we get

G}dh1/(K21), ~88!

and from Eqs.~79! and ~81!

dh5
dt

G
52

C

G
dt, ~89!

so that

Ġ52
C

G
G8}

1

K21
dh21. ~90!

As a consequence, whenG→` the deceleration paramete
~87! is

q}9K
C2

~K21!2

1

dh2
~when dh→0!, ~91!

and there is inflation ifK,0, i.e., if k25k1
21k2

21•••1kn
2

,2. We conclude that in these anisotropic universes als
greater number of interacting scalar fields makes inflat
less likely.

B. Non-interacting n-scalar field problem in the Bianchi type I
model

We will now assume that then homogeneous scalar field
f i in the metric~67! do not interact directly, but are drive
by a sum ofn exponential potentials,Vi5V0i e2kif i. To sim-
plify the task of finding exact solutions of the Einstein-Klei
Gordon equations, we will further assume thatk15k25•••

5kn[k, f15f25•••5fn[f and V15V25•••5Vn[V
5V0 e2kf, so that aforementioned equations can be writ
as

ṗ5
a

G
, ~92!

ef5
G̈

2nVG
, ~93!

G̈

G
2

1

2
S Ġ

G
D 2

2
Ġ

G
ḟ 1

1

2
ṗ252nḟ2, ~94!

f̈1
Ġ

G
ḟ2k efV50, ~95!

where a is an arbitrary integration constant. It is easy
check that

ḟ5
k

2n

Ġ

G
1

m

G
~96!
9-8
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is a first integral of the Klein-Gordon equation~95!, in terms
of the new integration constantm. Inserting Eq.~92! into Eq.
~96! the general solution of the Klein-Gordon equations
found:

f5f01p
m

a
2

k

2n
ln G, ~97!

wheref0 is an arbitrary constant. Equations~92!–~94! along
with Eq. ~97! uncouple and their solutions can be obtained
one is able to solve the following third-order equation forG:

GG̈22ĜĠG1S 1

2
2

k2

4nD G̈Ġ21S m21
a2

2 D G̈50. ~98!

Since this equation is the same as Eq.~76!, once one
replacesk25k1

21k2
21•••1kn

2 by k2/n, we may repeat the
calculations of the previous section to reach the oppo
conclusion: if several non-interacting scalar fields a
present, they will cooperate to ‘‘assist’’ the inflation, whic
will be more likely and occurs fork2,2n.

C. Stability of power-law solutions in Bianchi type I model

For many purposes it is interesting to investigate the
bility of the solutions of Eq.~76!. In particular, we hope tha
the solution representing an accelerated expansion of the
verse and the solutions that correspond to the assisted i
tion are stable. To this end we introduce the variable

V5
ḣ

h2
, ~99!

whereh5Ġ/G, in Eq. ~76!:

V̇1FV1K2
M2

h2G2G ~V11!h50. ~100!

This equation has the fixed point solutionV521. Note that
Eq. ~100! has also the fixed point solutionV52K if Ġ
→` asymptotically. The corresponding asymptotic limits
these solutions can be obtained by solving Eq.~99! for them.
The final result isG}t and G}t1/K respectively. Let us in-
vestigate the stability of these solutions whenG blows up.
From Eq. ~100! it is easy to see thatV521 is unstable
because expanding the solutions about it,V5211e with
e!1, the sign ofė depends on the slope of potential and t
initial conditions. In fact, the corresponding solutionG}t
does not satisfies Einstein equations@cf. Eq. ~93!# and was
introduced when multiplying Eq.~94! by G2G̈ to obtain Eq.
~98!. On the other hand, the asymptotic solutionV52K is
stable because the dynamical equation for the perturbatioe,

ė52
12K

Kt
e ~101!
08402
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near the attractor indicates thate decreases forK,1. In
particular, the inflationary solutions, which occur forK,0,
are stable.

IV. n-SCALAR FIELD PROBLEM IN A BIANCHI TYPE
VI 0 MODEL

The Bianchi type VI0 model can be written as follows:

ds25ef (t)~2dt21dz2!1G~ t !~ezdx21e2zdy2!.
~102!

We first consider, as in previous sections,n scalar fields
f i interacting through the exponential potential~4!. The cor-
responding Einstein-Klein-Gordon equations are

ef5
G̈

2VG
, ~103!

G̈

G
2

1

2
S Ġ

G
D 2

2
Ġ

G
ḟ 1

1

2
52ḟ2, ~104!

fẄ 1
Ġ

G
fẆ 2efVkW50. ~105!

As formerly, one can check that the vector

fẆ 5
Ġ

G

kW

2
1

mW

G
, ~106!

where mW is a n-dimensional arbitrary constant vector, is
first integral of the Klein-Gordon equation set~105!. By us-
ing this result and the value ofḟ one obtains from Eq.~103!,
we get

GG̈22ĜĠG1S 1

2
2

k2

4 D G̈Ġ21
1

2
G̈G21m2G̈50.

~107!

The solutions of this equation are not known. However,
vestigating the stability of its fixed points, the asympto
behavior of the general solution can be obtained in a sim
way. In order to see whether assisted inflation works in
anchi type VI0 metrics it is sufficient to analyze the speci
casem250. In terms of the variableV defined by Eq.~99!,
Eq. ~107! becomes

V̇1FV1K2
1

2h2G ~V11!h50. ~108!

This equation has three fixed points:V1521, V252K if
h→` asymptotically andV350, which correspond toG
}t, G}t1/K, andG} et/A2K respectively. Now, we investigat
the stability of these solutions whenG blows up. Expanding
the solution about fixed points, that is, makingV5V1,2,3
1e with e!1, we get

ė5
1

2h
e ~109!
9-9
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for V1, which shows it is unstable, as in the case discusse
the previous section. On the other hand, one obtains
~101! for the linear approximation aroundV2, and

ė52A 1

2K
e ~110!

in the case ofV3. We conclude that the asymptotic solutio
V2 is stable forK,0, which meansk2,2 ~for this set of
potential slopes we have inflation!, and V3 is stable forK
.0. Note thatG}t1/K is only an asymptotic solution of Eq
~107!, with m50; however, it acts as an attractor for a
solutions that are close to it.

In this special case in whichm250, one can readily see
that the the deceleration parameter for the solutionsG}t1/K

is ~after recovering the implicit absolute value aroundt)

q}
K

12K
utu2221/K, ~111!

which is negative for21/2<K,0. Again, the more inter-
acting scalar fields, the less likely is inflation, which ensu
whenk25k1

21k2
21•••1kn

2,2.
If one assumes now that the scalar fields do not inte

directly and one sets all the fields equal, as in Secs. II D
III B, it is easily seen that the attracting power-law solutio
inflate whenk2,2n, so that the scalar fields cooperate
assist inflation.

V. CONCLUSIONS

We have studied the effects of the appearance of m
than one scalar field both in FRW spacetimes and in an
D

08402
in
q.

s

ct
d

re
o-

tropic Bianchi type I cosmologies. Instead of using the i
portant but particular power-law solutions, we have tak
advantage of the general solution to analyze the generic
havior in FRW cosmology. In Bianchi type I cosmologie
the power-law solutions are isotropic and, thus, very parti
lar, so that the use of the general solution is even more il
trative. In all cases we have found, in agreement with cal
lations made by other authors with power-law solutions
FRW cosmology, that the existence of more than one sc
field assists inflation provided that they are uncoupled a
interact only through expansion. Also, in this case, the sp
trum of density perturbations becomes closer to scale inv
ance as the number of fields increases. If, on the contrary
fields interact directly with each other, inflation is less like
to occur. The same behavior has been obtained in Bian
type VI0 universes, but~not having available the general so
lution! only for power-law solutions, which have been show
to be attractors when inflation arises. These results reinfo
our belief that the presence of several uncoupled scalar fi
in more general cosmologies fosters inflation, but that,
contradistinction, mutually interacting scalar fields tend
hinder the inflationary process.
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