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Assisted inflation in Friedmann-Robertson-Walker and Bianchi spacetimes
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We use exact general solutions for the spatially flat FRW and the anisotropic Bianchi type | cosmologies to
show that generically uncoupled scalar fields cooperate to make inflation more probable, while the presence of
several interacting fields hinders the occurrence of the phenomenon, in accordance with previous results based
on particular power-law solutions. Similar conclusions are reached in the case of Bianchi fygea¥@étimes,
for power-law solutions which are proved to be attractors.

PACS numbe(s): 04.20.Jb, 98.80.Hw

[. INTRODUCTION of Sec. Il C to restrict the analysis of uncoupled fields in Sec.
IID to the particular case in which all fields are assumed to
In many inflationary models the effective potential energybe equal, for which the general solution can be found. We
density of a scalar field is responsible for an epoch of accelshow that non-interacting fields generically cooperate to as-
erated inflationary expansiofi]. Very often one assumes Sist inflation. The density fluctuations corresponding to the
that inflation is driven by a scalar field of the Liouville form, last case are discussed in Sec. Il E. General solutions of an-
i.e., an exponential potential, because this kind of potentialSotropic Bianchi type | cosmologies with interacting and
arises in various higher-dimensiona| Supergra[ml/and Su- UnCOUpled fields are used in the first part of Secs. llIA and
perstring[3] models[4—7]. 11l B, respectively, to check that also in those cases interact-
Although there are many scalar fields in superstring theolnd fields make inflation more difficult while uncoupled
ries, in the past it was often assumed that typically only ondields assit it. The stability of power-law solutions is dis-
scalar field was responsible for inflation, while those havingcussed in Sec. lll C. Finally in Sec. IV we turn to power-law
higher exponents were quickly redshifted away. However, igolutions of the Bianchi type yImodel, reaching again the
has been founfB] that so-calledssisted inflatiomay occur ~Same conclusions.
when several scalar fields are present, even if each individual
field is too steep to drive the inflation, provided that the Il. n-SCALAR FIELD PROBLEM IN A FLAT FRW
fields are uncoupled and interact only through the geometry. SPACETIME
On the other hand, if the fields interact directly with each ] ) ) )
other, the opposite effect may happen and the presence of In the following we WI|.| con§|der two kinds of problems
cross couplings beteween fields may hinder inflafloa1g. N flat FRW spacetimes in which there anehomogeneous
Assisted inflation has been mainly studied in power-lawScalar fields driven by exponential potentials. First of all, we
solutions @=tP) for the spatially flat Friedmann-Robertson- will assume that the_z scalar f!elds are interacting th_rough a
Walker (FRW) cosmology, which can be shoi] to be the produpt of e_xponentlal pote_ntlals. Then we will consider the
late-time attractor for evolution of this kind of modéRe- ~ Ca@se in which the scalar fields are uncoupled because the
cently, Green and Lidse12] discussed in the context of potential is a sum of potentials involving a single field.
assisted inflation late-time evolution in a general geomketry.
The purpose of this work is to extend previous studies on A. Interacting n-scalar field problem in flat FRW spacetime

muItl—scaIarIfleIId tqosmo:og:;as;rtlr]two dwep;uons: f'rISt’ we will  +pe broblem ofn interacting homogeneous scalar fields,
;Jse gelnera.fst(r)]u lorgnstea ]? espl)ef_culaa power-_aw"om:sl gﬁi, driven by a product ofn exponential potentialsy;
o analyze if the presence of several fields generically helpS'\, "o~k minimally coupled to gravity in a flat

or impedes inflation, and second, going beyond the aforeF_eobertson-Walker spacetime, with metric
mentioned FRW cosmology, we will consider the anisotropic '
inhomogeneous generalization given by Bianchi type | mod- ds’= —dt?+a?(t)[dx?+dy?+dZ], )
els. Thus in Sec. Il A we deal with interacting scalar fields

in a FRW spacetime and use the general solution to shovy formulated by the system of equations

that the larger the number of interacting scalar fields, the less

likely is inflation. Section Il B makes plausible for more gen- 1.

eral scalar field potentials the results obtained in Sec. Il A for 3H2=§¢2+V, 2
exponential potentials. We do not know the solution ffior

non-interacting scalar fields in a FRW cosmology in the gen- - - .

eral case, but we use the discussion of the late-time attractor ¢+3Hp—Vk=0, 3)
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whereH=a/a and the potential and the overdots stand for derivation with respect.t®nce
o s(7) is known one can compute, in principle, the scale factor
V(g)=Voe ¥ (4  a(r) from Eq.(10), and the fieldsp(t) from Eq. (6).

] ] ] ] Equation(8) is a particular case of the second order non-
allows for interactions between the field, is the constant  jinear ordinary differential equation

VoiVoz- - - Von, andk=(ky ks, . .. k,) is ann -component
constant vector with respect to an orthonormal basis in the . :
n-dimensional Euclidean internal space to which the vector s+af(s)s+Bf(s) | f(s)ds+ yf(s)=0, (11

d=(db1, b5, ....dy), built with the n minimally coupled . _
scalar fields, also belongs. In the remainder of this sedtion wheref(s) is some real function and, 8, andy are con-

k2, and $2 stand for| IZ|, KK and;S- b respectively. Poten- stant parameters. Depending on the valuds’afur equation

tials of this type are of interest because they may be consio(-8 ) iotgi%ondz to the next two cases:
ered just as an approximation to a more complex potential. In @ an
fact, in higher-dimensional superstring theories, the scalar
field is like one of the matter fields that contribute to the f(s)=s" a=1 _ m+1 -0
. . , . : : , y=0. (12
action and effective potential of the theory. Loop expansion 4 colo
[3], or expansion in the number of interacting partidl&3],
of the action leads to a perturbative expression of the poten?) k?=6 and
tial which is a summation of exponential terf&6]. From
Egs. (2),(3), and discarding the trivial static metric solution

. 1 1
H=0, %4?+V=0,we get (o= aml B0 v= e,

(13

. 1.
H=-— Eqsz. (5) Inserting the first integral) in the Einstein equatio(®),
we get a quadratic equation in the expansion ktehich

Using this equation and the syste@),(3) one finds that the has real solutions only when its discriminant is non-negative.
Klein-Gordon equatiorf3) has the first integrals This condition leads to

-

! < ! (14
2abv| 4’

2

>

¢=HIZ+;, ©) p=

4] 1+

c

whereEz(cl,cz, ...,Cp) is an arbitrary vector integration

constant. As Eq(6) involves only geometrical quantities the discarding the oscillatory solutions of E@.1), which would

Einstein-Klein-Gordon equations uncouple and the genergle gptained for a negative potential gt>1/4. It follows
parametric solution can be obtaingth—18. that, if k2+ 6, real solutions exist always for

One can easily verify that in this kind of model the
Einstein-Klein-Gordon equations have power-law solutions
k2<ki=—0+H. 15

axrt U °sirto 9

so that they inflate at all times whérf<2. We will show  This sets a restriction on the integration constants and the
below that the general solution has the same kind of behaviggxponent of the exponential potential.
when the scale factaa is large enough. The general solution of Eq11) can be obtained making

second-order equation for the scale facir):

S+sMs+ 1 $2M1=0  (g#7/2), (8) ‘ f Heods w f fs)dr. .
4 codo
Under this transformation E48) becomes a linear inhomo-
where geneous ordinary differential equation with constant coeffi-
L. cients
c-k
CoSo= 1 © 7'+ az' + Bz+ y=0, (17)
m= —6/k2<0, C:|6|, a, andt have been rep|aced by the which for a>0 andﬂ>0 is the equation of a damped har-
new variabless and 7 defined by monic oscillator in a constant external field. Here the prime
indicates differentiation with respect tp. In our case the
a=s ™3  r=cktcoso, (100  nonlocal transformation of variablé&6) is
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Sm+1
— — m
e R js dr, (19
for k?#6, and
dr
z=Ins, p=| —, (19
S
for k?=6.
Taking =1 in Eq.(17) we get
b,e+7+b,e -7 for k#86,
b;+b,e 7—yy for k=6,
where
—1+1-48
+= ’ (21)
2
andb,, b, are real integration constants.
We see from Eqs10) and (18) that
aocz—m/3(m+1)’ (22)

so that, while fork?>6 the scale factor goes to 0 as-0,

one has that fok?<6 the scale factor goes to infinity when
z—0. On account of Eq.20) one may assume that the latter

occurs asp— 7, for an appropriate value ofy. Let us now
write 7= 7o+ dn and expand Eqgs(20) and (22) aboutz
=0 and = 7y, keeping only terms linear id#», so that
6z=6n and

a= 5z~ MM+ 1) 5, ~m3(m+1), 23)
Now, we see from Eq910) and(18) that
sp=a 35rxa 34t. (24)
If we use this in Eq(23), we get, successively,
accgM(m+1) sp~mia(m+1) (25)
and
o ot~ M= 52K (26)

We see then that ik°<2, the solution does inflate at least

along some time interval. Now, sinck?=k2+k3+---

+kr21, one concludes from our analysis of the general solu-
tion that the larger the number of interacting scalar fields, the
less likely will bek?< 2 as well that inflation takes place. On

the other hand, for €k?<kZ, one has & 8<1/4, which
implies that both\ .. <0; thus Eqs(18) and(20) tell us that
the scale factor goes to infinity when—«~ and n— —o

(with no loss of generality we are taking both constants
b,,b,>0). By keeping only the dominant terms we have for

very large negative; that

ax e m\ _ »/3(m+1)

(27)
This relation and Eq(24), which is generally valid, yield
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da

—oca 35t (28)

a

whose general solution ia=t'. In this case the solution
does not inflate and it approaches the free scalar field solu-
tion. These results are in accordance with those obtained
with particular solutions by other authgra—11].

It would be surprising if folk?=6 the scale factor had a
behavior drastically departing from that suggested by the
previous analysis whek?®e (k3,6)U(6,2). In fact, we see
from Egs.(10) and(19) that z=3 loga so that, as a conse-
quence of Eq(20), a goes to infinity asp— —. From Eq.

(20) we see that log~— 5, whenn— — o and, by using Eq.
(24),

oa oz 5 ot 29
oL — ~ — o —
aloga z g ad’ 29
which can be written as
oa
;~a‘35t loga. (30)

In the asymptotic regime in whicla—o we haveada

<a’salloga<a?sa, so that from Eq.(30) we geta’<t

<a® and, finally,
t"3<a=<t¥? when a—wx.

(31)

We see that the solution does not inflate.

B. More general potentials

The results of the above section show that we can intro-
duce ann-dimensional Euclidean internal vector space con-

taining then-component vecto@=(¢1,¢2, .. .,b,) built
with n minimally coupled scalar fields. Let us assume now
that the potential has the general form
V=V(d), d=k-é. (32)
In this case the Einstein equatidd) remains unchanged;
however, the Klein-Gordon equatidB) becomes
d+3Hd+V'K=0. (33

where the prime indicates derivatives with respect to the
ariable®. Since Eqs(2), (32) and(33) are invariant under
rotations of the orthogonal axes in the Euclidean space men-
tioned above, we may choose the first axis of this internal

space along the vectdr. Then the Klein-Gordon equation
splits into one equation fop,= ¢,

d+3Hp+kV' =0, (34)
and ann—1 free field Klein-Gordon equation fop,=- - -
=¢n= 1

#+3Hy=0. (35)
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From Eq.(35) we obtain the first integraly= co/a®, where ) cf,/

Co is an arbitrary integration constant. Hence the original V(®)> ¢+ —. (42)
n-scalar field problem is equivalent to considering a self- a
interacting scalar field with stiff matter. In fact, the Einstein

equation(2) now reads Hence, when there is only one scalar field the solution in-

flates forV( ) > ¢2. However, then interacting scalar fields

1 c2 produce a desassisted inflation because the solutions inflate
3H2=—¢?+V+ _‘”6 (36)  only if Eq. (42) holds. Using the effective perfect fluid de-
2 2a scription we can generalize this analysis to an arbitrary po-

) N . _ . tential V(é41,d5, ...,¢,). In this case we obtain that
where cy is the sum ofn—1 positive defined integration V(1 dbo, ... ,¢n)>¢i+ ¢§+ L +¢§, so that the inter-
constants. _ actingn scalar fields might make inflation more unlikely in a

Taking into account that the scalar fiefldepends only  Frw spacetime.
ont, its energy-momentum tensor may be written in the per-

fect fluid form C. n-scalar field attractor problem in the FRW spacetime

Ti=(Py+ P y)UiU+ PyTik (37 Let us now assume that tmeehomogeneous scalar fields,
¢;, in the FRW spacetime are driven by a general potential
where V=V(¢;). In that case the Einstein-Klein-Gordon equations
are
ps= ~F V() 12
2 3H?=5 2 ¢ +V, (43)
=1
Ly v (39
p(/;_ 2¢ (d)) ¢|+3H¢|+V'¢|:0, (44)

The fluid interpretation of the scalar field has proved verywhereV , stand foraV/d¢;. From these equations we get
useful in the study of inflationary an@-matter scenarios '

[18]. In particular it leads us to consider its equation of state 1

p,=(74—1)ps. On the other hand, the state equation for H=— 5 > #. (45)
fluid representing stiff matter ip;=(ys—1)ps with y;=2. =1

Because of the additivity of the stress-energy tensor, it ) ] ) )
makes sense to consider an effective perfect fluid description N order to investigate the stable scalar field configura-
with equation of state=(y—1)p wherep=p;+p,, p tions, we introduce the quantity

n
> of
YiPt T YeP o i=1
= 39 =
pitpy 39 ® nd’i ' (46)
i_s the overall(i.'e., effective adiabatic index. For this effec- \yhich reduces tav=1 for the configurationp; = ¢p,= - - -
tive perfect fluid the dynamical equations are = ¢,,. Using Eqs(43)—(46) we find the differential equation
. for w:
a2
32F 40 NV bV
w= 2“.—2 47
and néa
. (In this section no summation convention applies to repeated
a__ }[ +3p] (41) Greek indexes.If we further assume that the potential satis-
a gLl TPl fies the condition
wherep andp are the density and pressure of the effective V= nv, %éﬁa, (48)

perfect fluid. They involve the self-interacting scalar field
and then-1 free scalar fields. Inflationary solutions occur Equation(47) becomes

whena>0; this means that the expansion is dominated by a

gravitationally repulsive stress that violates the strong energy . Vi,
condition p+3p<0 or equivalentlyy<2/3. When we im- 0w=2—"(w—1) (49
pose this condition on Ed39), we obtain that b
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which has a fixed point solutiono=1. Furthermore, the . n.,
general solution of Eq49) can be found using Eq44): H=-3¢ (56)
C and the first integral of the Klein-Gordon equati
0=1+ —— (50 ? Auatiss)
' bq .k c
. . . . L ¢o=—H+—, (57
wherec is an arbitrary integration constant. However, it is n as

useful to express the last solution in terms of geometrical

quantities with the aid of Eq$45) and(46). The final result ~Wherec is an arbitrary integration constant.

is As in the previous section, the Einstein-Klein-Gordon
equations have power-law solutioft]

-1
nc

221 (5 axt?, (58

1+

w=

so that this type of solutions inflates at all times when
Evaluating Eq(51) in the asymptotic regime, it can be easily <2n. We will now show that the general solution of the
shown that the particular solutiom=1 is an attractor for Einstein-Klein-Gordon equatior(§4) and(55) has the same
evolutions that behave asymptotically @st” with ¥>1/3.  kind of behavior when the scale factaiis large enough.
This result strongly suggests that the special case in which Inserting Eq.(57) into Eq. (56) we obtain the following
all scalar fields are equal may be the late-time attractor oecond-order equation for the scale faci¢r):
more general problems. In fact, this has been prove@jn

for potential (4) with k;=---=k, and Vgi1=---=Vq,, . .

WhiCFl)W guarange)e assumé)tiMS). We did not use this fact in s+ss+ Zszmﬂzo’ (59)
the previous section because we were able to use the general

solution with no additional assumption én, Vq;, and ¢;, where m= —6n/k?<0, the overdots mean derivative with
but it will be useful to simplify somewhat the problem ana- respect tor and we have used, instead @fandt, the new
lyzed in the following section. variabless and = defined by

— o~ M3 —
D. Non-interacting n-scalar field problem in the FRW a=s ™, r=ckt (60)

spacetime We have again a particular case of Efil) with a=1

Let us now assume that trehomogeneous scalar fields, and to find the general exact solution of E§9) one has to
¢, in the spacetime given by E@l) do not interact directly, consider the following two possibilities:

but are driven by a sum of exponential potentiald/; (1) k?#6n and
=V e X%, In that case the Einstein-Klein-Gordon equa-
tions are m+1
f(s)=s"  B=—1—, »=0. (61)
n
1.
2_ —u2 _

3H?=2, {zd’i Vil (52 (2) K?=6n and

. . 1 1

¢i+3Hd—kV;=0. (53 f(S)Zg, B=0, r=7. (62

From now on we will consider a simplified problem in

which ky=kp="--- =ky=k and Vo, =Vo,=- - - =V,=V,. forming the nonlocal transformation of variables given in

As (_jlscussed in the previous sectlont we can_expect in th'ﬁqs.(18),(19) with the new value ofn, which reduces Eq.
particular case that in the asymptotic evolution all scalar,

. . o 59) to the linear inhomogeneous ordinary differential equa-
fields tend to a common limit. That this is actually the caseg ) : 09 y q

has b qi A inth ind ion with constant coefficientél?).

as been proved ifB]. As a consequence, in the remainder If one now repeats the analysis of the previous section by

The general solution of E459) can be obtained by per-

Sf t_h{f iectioE\yv ez\\//wﬂ \t/akefﬁk{,,: ¢2d:E' - (:5%“5(5‘%’ SO dthat systematically takingr=0 and using the newn, the same
tol_ 2= =Va=V=Voe ™" and Eqs(52)—(53) reduce g vosuits forz anda are obtained: just repladeé=kZ+

e +kﬁ by k?/n in the quantities involved in Eq$20) and

n (22). One readily concludes that, when-<, these models
3H2=—-¢%+nV, (54) inflate if k><2n, so that the fields cooperate to make infla-

2 tion more likely in the so-called “assisted inflation,” which
B ) was first discussed—but only for power-law solutions—in
¢+3Hp—kV=0. (55  [8].

This result could have been anticipated since the present

One can easily get, from Eq&4)—(55), case is included in the mathematical problem set in Sec. Il A
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30—+ n=>5 n=06 n=8 n=10 n=14

25+

201

FIG. 1. Spectrum of the curva-
PS (k) ture perturbations fok=3, c=
-1, b;=-1, andb,=0.001. As
n increases(inflation is possible
whenn=5) the spectral distribu-
tion peak is shifted to high fre-
104 guencies.

151

s

0 1 2 3 4 5 6

by Egs.(8) and (9) by just taking cosr==*1 (which corre- is given by[19,8]
sponds to the simplified problem under consideratiand
m= —6n/k>. H

1—n5:—2m. (65)
E. Density fluctuations

The availability of exact solutions allows us to express the

The fact that the contributions of the density ﬂuctuationsrelevant quantities as functions of the variabéntroduced
differ significantly in different inflationary universe models in Eq. (16). The scale factor readsee Eq.(22), which is

has motivated a detailed study of all the alternatives. In thid" =9 ) ;
context, it is interesting to deri)\//e the spectral indices for thesat'Sf'ed. for uncoupled scalar fields with= —6n/k as one
perturbations that would be created during the periods ofan easily sele
inflation described by the solutions given in the last section.
It is well known that, for multi-scalar field models, the spec-

trum of the curvature perturbation regd$)]

a(n)=[(m+1) z(n)] ™MD (66)

wherez(7) is given by Eqs(20),(21). The spectrunPg(k)

H\2 6N oN obtained from Eq(64) is shown in Fig. 1, fok=3, c=

s= (Z) Ere (975,@1 : (63 -1, b;=-1, b,=0.001 and different values of Here,
g inflation is possible fon=5, and one can see that the peak

whereN is the number of-foldings of inflationary expan- of the spectral distribution moves towards the high frequency

sion remaining, and there is a summation ovend]. In the ~ '€9ion ashincreases. The corresponding spectral indgis

; : - ; own in Fig. 2. From Eq(65) and the general solutions
ngdi (;Orgsé%ir:ﬁ ér&ég? ;;?(\j”so[g section,where all the scal 0), _(21) and (66), it can b_e shown that the value of
—1 in the asymptotic regiora>1 as the numben of
present fields increases. This feature is exemplified in Fig. 2,
(64) where we can see how the larger the value,ahe closer is
' the spectrum to the scale invariar{@&.

~  [H\?1H?
Ps(k)=<g) VE

aH=k

lll. N-SCALAR FIELD PROBLEM IN BIANCHI TYPE |

whereH and ¢ have to be evaluated at the time when the MODELS

wave number of interesk, leaves the horizon during infla-
tion. Also in this case, the spectral index(k) defined as Now we turn to the general Bianchi type | model with
homogeneous scalar fields driven by exponential potentials.
As we proceeded in the case of FRW spacetimes, we will
~ dinPg . . . .
ng(k)=1+ _ first assume that the scalar fields are interacting through a
dink product of exponential potentials, and then we will consider

084029-6
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n=14
n=10

n=8

ns{k)

n=6
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FIG. 2. The spectral indems(k) for the gen-
eral solution approaches 1 in the asymptotic re-
gion a>1 as the number of fields increases.

n=5

-1

the case in which the scalar fields are uncoupled because the

potential is a sum of potentials involving a single field.

A. Interacting n-scalar field problem in the anisotropic Bianchi
type | model

- G- -
¢+§¢—er=0, (73

wherea is an arbitrary integration constant. It can be easily
seen that the vector

The general Bianchi type | model is the anisotropic gen-

eralization of the spatially flat FRW universe expanding dif-

ferently in thex, y, andz directions. In the usual synchronous
form its line element is given by

d&?=—dT?+af(T)dx?+a3(T)dy?+a3(T)dZ. (67)
For convenience we use the semiconformal coordinates

ai

G=ajay, =— (68)
2

to cast the metri¢67) into the form

ds?=e'0(—dt?+dz?) + G(t)("Vdx?+ e Pdy?).
(69)

We first consider, as in Sec. Il A&, scalar fieldsg; inter-
acting directly through the exponential potentid). The
problem of n interacting homogeneous scalar fields,,
driven by a product ofn exponential potentialsV;
=Vye %, minimally coupled to gravity in the Bianchi |
spacetime(69), is formulated by the following system of
Einstein-Klein-Gordon equations:

- 70
P=3 (70
- G 71
€ ve (7)
. . 2 -
6 1(6)° 6 1, ., .
s 2lg) &'t (72

+

o O
N| X
[olR=D

;Z’: (74)

(wherem is a n-dimensional vector whose components are
integration constantss a first integral of the Klein-Gordon

equation set73). Inserting Eq(70) into Eq.(74) the general
solution of the Klein-Gordon equations is found:

- >

b= Gotp k| G 75
¢=¢otp +5InG, (79
where cZO is an arbitrary constant vector. Equatiof&0)—
(72) along with Eq.(75) uncouple and their solutions can be

obtained if one is able to solve the following third-order
equation forG:

2

L Yee
27 7)66

2

GG?-GGG+ m2+ 7)G:o. (76)

OnceG(t) is known, in principle one can compupgt) and
&(t) from Egs.(70) and (75), respectively;f(t) is then ob-
tained from Eq.(71).

The Einstein-Klein-Gordon equations admit power-law
solutions,G=t%, but they happen to be isotropic and, thus,
equal to the ones discussed in Sec. Il A. Thus we will ana-
lyze, instead, the general solution of E@6).

Equation(76) has the first integral

G . M?
G—+(K-1)G+—=
G G

C, (77

whereC is an arbitrary constant and
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k2 1 — a?
Mc=m +7. (78)

If instead oft and G we use the new variablesand
defined, forC+#0, in

= 1K = — —
G=z", t=-5, (79
then, Eq.(77) becomes
KM?2
Z//+Z—1/KZ/+ _221—2/K:0, (80)

where a prime denotes the derivative with respect.tdhis
equation is, once more, a particular case of @4) and can
be linearized by using the non-local transformatidr®),

which in this case is

y= | z ¥Xdz=K

z C
_ Ky =
K—1' ”_fz dr=-3P
(81)

for K#1 and

C
yEJz‘ldz=Inz, nzfz‘ldr=—gp (82

for K=1. If we take

M2
BE(K—l)g, y=0 (83
for K+£1 and
M2
B=0, 7=g (84)

for K=1, Eq.(80) reduces to two particular cases of E&j7)

for «=1. The trivial solution of this equation gives the im-
plicit general solution of Eq(76) which can be written, for

arbitrarya, M and non-vanishing, as
G=[e "¥C,€"+C,e 7)]VKD (85)
for K#£1 and as
G=C,e 77tCe " (86)

for K=1. HereC,; andC, are integration constants and

= 1-48/2.

To check whether a model inflates, we will look at the

sign of the deceleration parametey=— 6" 2(36+ 6?),
where #=Uu?, is the expansion and= 6 ,u?, u? being the

four-velocitﬂ/ of the cosmic fluid. Since in this case we are
dealing with comoving coordinatesi?= (e~ 2,0,0,0), one

PHYSICAL REVIEW D 62 084029

We see from Eq(85) that whenK<1 (i.e., whenk?
<6)G blows up for some valuern=7ny=(1/2\)log
(—=C,/C,), provided thatC,C,<<0. If we expand Eq(85)
around this value = 7o+ 67) we get

Goc&y;ll(K—l), (88)
and from Eqgs(79) and(81)
dn=37__Cy4 89
so that
G CG’ Syt 90
= — — o
G~ K—=1°T7 - (90

As a consequence, whe&d— o the deceleration parameter

(87) is

2

qoc 9K (when 67—0), (92

(K—1)2 57

and there is inflation iK<O0, i.e., if k?=ki+k5+ - - +k2

<2. We conclude that in these anisotropic universes also a
greater number of interacting scalar fields makes inflation
less likely.

B. Non-interacting n-scalar field problem in the Bianchi type |
model

We will now assume that the homogeneous scalar fields
¢; in the metric(67) do not interact directly, but are driven
by a sum ofn exponential potentiald/,=V; e . To sim-
plify the task of finding exact solutions of the Einstein-Klein-
Gordon equations, we will further assume thatk,=- - -
=kn=k, p1=¢o=---=¢,=¢ andV;=V,=---=V,=V
=Vye *?, so that aforementioned equations can be written
as

a
P=3: (92
.G
€ =2nve 3
G 1(6)* 6, 1., ,
G 32\g| “gftap=—ne% (99)
. G. f
¢+ go—kev=0, (95)

where a is an arbitrary integration constant. It is easy to
check that

can see that, apart from a positive factor, the deceleration is .

q9KG2—3(2km+C)+(km—C)2+9M. (87

+ (96)

Ol ®
@3

._k
¢=%n
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is a first integral of the Klein-Gordon equatig®5), in terms  near the attractor indicates thatdecreases foK<<1. In
of the new integration constant Inserting Eq(92) into Eq.  particular, the inflationary solutions, which occur €0,
(96) the general solution of the Klein-Gordon equations isare stable.

found:
IV. n-SCALAR FIELD PROBLEM IN A BIANCHI TYPE
m k VI, MODEL
¢=¢otpo—5,ING, (97) _ . |
a n The Bianchi type V} model can be written as follows:
where g, is an arbitrary constant. Equatio(@2)—(94) along ds?=€'0(—dt>+d2?) + G(t)(fdx?+ e “dy?).
with Eq. (97) uncouple and their solutions can be obtained if (102

one is able to solve the following third-order equation Gr We first consider, as in previous sectionsscalar fields

¢; interacting through the exponential potenti&l. The cor-

2 2
GG2-EGG+ E_ k—)GG2+ m2+ a &=0. (98) responding Einstein-Klein-Gordon equations are
2 4n 2 '
G 103
Since this equation is the same as Efg6), once one €=ovG (103
replacesk?=kZ+k5+ - - - +k2 by k?%/n, we may repeat the
calculations of the previous section to reach the opposite G 1/6\% 6. 1 -
conclusion: if several non-interacting scalar fields are G 2lc —§f+ §=—¢ ; (104
present, they will cooperate to “assist” the inflation, which
will be more likely and occurs fok?<2n. . 6.
b+ ai—eva: 0. (105

C. Stability of power-law solutions in Bianchi type | model

For many purposes it is interesting to investigate the sta*S formerly, one can check that the vector
bility of the solutions of Eq(76). In particular, we hope that
the solution representing an accelerated expansion of the uni- (Z=
verse and the solutions that correspond to the assisted infla-
tion are stable. To this end we introduce the variable

+

O O
N Xy
[ol=P

, (106

wherem is a n-dimensional arbitrary constant vector, is a

h first integral of the Klein-Gordon equation sdi05). By us-
Q= ﬁ (99) ing this result and the value éfone obtains from Eq103),
we get
whereh=G/G, in Eq. (76): . k2

GG2- GGG+

)GGZ+ 5GG?+m*G=0.
(107)

The solutions of this equation are not known. However, in-
vestigating the stability of its fixed points, the asymptotic
This equation has the fixed point solutiéh=—1. Note that  behavior of the general solution can be obtained in a simple
Eq. (100 has also the fixed point solutiof=—K if G Way._ln order to see vv_hc_ather as_sisted inflation works in_Bi—
— % asymptotically. The corresponding asymptotic limits of anchi t2ype V§ metrics it is suff|.C|ent to qnalyze the special
these solutions can be obtained by solving @§) for them. ~ casem-=0. In terms of the variabl€) defined by Eq(99),

The final result isG=t and GoctUK respectively. Let us in- - (107 becomes

vestigate the stability of these solutions wh@rblows up.

From Eqg.(100) it is easy to see thafl=—1 is unstable O+
because expanding the solutions abouflit= —1+ e with
e<1, the sign ofe depends on the slope of potential and the
initial conditions. In fact, the corresponding soluti@wv<t
does not satisfies Einstein equatiqué Eq. (93)] and was
introduced when multiplying Eq(94) by GG to obtain Eq.
(98). On the other hand, the asymptotic solutdr= —K is
stable because the dynamical equation for the perturbation

2 4
2

Q+|Q+K—

(Q+1)h=0. (100

h2G2

1
Q+K——[(Q+1)h=0. 108
@+ (108

This equation has three fixed poinf3;=—1, Q,=—K if
h—o asymptotically and();=0, which correspond tds
«t, Gt andGo &K respectively. Now, we investigate
the stability of these solutions whé&h blows up. Expanding
the solution about fixed points, that is, makifiy=Q, ;3
+ e with e<1, we get

€ (101 €= Sh€ (109
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for Q 4, which shows it is unstable, as in the case discussed itropic Bianchi type | cosmologies. Instead of using the im-
the previous section. On the other hand, one obtains Egortant but particular power-law solutions, we have taken

(101 for the linear approximation arourd,, and advantage of the general solution to analyze the generic be-
havior in FRW cosmology. In Bianchi type | cosmologies
S i the power-law solutions are isotropic and, thus, very particu-
€= oK € (110

lar, so that the use of the general solution is even more illus-
trative. In all cases we have found, in agreement with calcu-
lations made by other authors with power-law solutions in
FRW cosmology, that the existence of more than one scalar
field assists inflation provided that they are uncoupled and
interact only through expansion. Also, in this case, the spec-

; . trum of density perturbations becomes closer to scale invari-
solutions that are close to it. ) .

In this special case in whicln®>=0, one can readily see ance as the number of f!elds Increases. I, on th? contra}ry, the
that the the deceleration parameter for the solutidng ¥ fields interact directly with gach other, mflaﬂoq is Ie_ss I|!<ely .
is (after recovering the implicit absolute value arotutd to occur. T_he same behawor_has be_en obtained in Bianchi

type VI, universes, bufnot having available the general so-
lution) only for power-law solutions, which have been shown
to be attractors when inflation arises. These results reinforce
our belief that the presence of several uncoupled scalar fields
which is negative for—1/2<K<0. Again, the more inter- in more general cosmologies fosters inflation, but that, in
acting scalar fields, the less likely is inflation, which ensuesontradistinction, mutually interacting scalar fields tend to
whenk®=k2+k3+ - - - +k3<2. hinder the inflationary process.

If one assumes now that the scalar fields do not interact
directly and one sets all the fields equal, as in Secs. II D and
[11 B, it is easily seen that the attracting power-law solutions ACKNOWLEDGMENTS
inflate whenk?<2n, so that the scalar fields cooperate to
assist inflation.

in the case ofl3. We conclude that the asymptotic solution
Q, is stable forK <0, which meank?<2 (for this set of
potential slopes we have inflatiprand ()5 is stable forK
>0. Note thatG=tX is only an asymptotic solution of Eq.
(107, with m=0; however, it acts as an attractor for all

qocﬁurz*w, (111
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V. CONCLUSIONS
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