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Comparative Magnetotelluric Modeling of Smooth 2D and 3D
Conducting Bodies Using Rayleigh-Fourier Codes

PATRICIA MARTINELLI,1,3 ANA OSELLA1,3 and CRISTINA POMPOSIELLO2,3

Abstract—Recently, a method for 3D magnetotelluric modeling was developed, which is based on
the application of the Rayleigh scattering theory. This method, RF-3D, is especially capable of modeling
multilayered structures with smooth irregular boundaries. The formulation allows inclusion of layers
with vertically anisotropic electrical conductivity.

Using RF-3D, the response of smooth structures of practical interest is calculated and the impor-
tance of 3D effects is evaluated. Two models consisting of a 3D conductive body in the presence of a
2D shallow distortion are analyzed. In the first model, the direction of maximum elongation of the body
is perpendicular to the strike direction of the 2D upper structure, and in the second one both directions
coincide. In addition, the case of a small 3D shallow conductor over a regional 2D structure is also
considered.

3D effects are compared to those generated by 2D models with identical cross sections. In all the
cases, the 3D responses differ from those of the 2D, especially directly over the bodies. A good
agreement between the 2D transverse magnetic response and the corresponding components of the 3D
response, along centrally located transverse profiles, is expected for elongate, prismatic conductors.
Then, the differences obtained for the models considered in this study, particularly for the second and
third models, are a consequence of the smooth geometry. They can be explained in terms of galvanic
effects produced by boundary charges, which are greater near the vertical sides of a prism than on the
sides of a body with smooth contours.

Equivalent 2D models of the first and second structures are also obtained. In these models, the
thickness of the conductor is underestimated, respectively, by about 30% and 24%.

For the third model, when vertical anisotropy is analyzed, it is found that only the anisotropy of the
first layer can be detected. This is because the effect of vertical anisotropy decreases strongly with depth
and appears to be important only near the 3D anomaly.

Key words: 3D magnetotelluric modeling, electrical anisotropy.

Introduction

Improvements in magnetotelluric (MT) data quality have encouraged the appli-
cation of new methods to interpret the MT impedance tensor in cases where the
surveyed structure is not one-dimensional (1D) or two-dimensional (2D). There are
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many situations where the conductive structure is approximately 2D; several
methods have been developed for these cases, usually using finite elements and finite
differences techniques (e.g., WANNAMAKER et al., 1987; SMITH and BOOKER, 1991)
or Rayleigh-Fourier expansions (JIRACEK et al., 1989; OSELLA and MARTINELLI,
1993). Although for many studies the 2D modeling can give a realistic interpreta-
tion of MT data, even in the presence of three-dimensional (3D) structures, in many
cases, 3D structures introduce strong distortions, and therefore, the resulting
impedance tensor has a significant 3D behavior. Some methods for 3D modeling
have been developed using integral equation approaches (e.g., HOHMANN, 1975;
WANNAMAKER, 1991). These methods are especially appropriate when dealing with
a few blocks embedded in a 1D layered medium, however they become difficult to
apply when the complexity of the structure increases. More recently, 3D algorithms
have been proposed which allow modeling of more arbitrarily complex media, using
finite differences (MACKIE et al., 1993; SMITH, 1996) and finite elements (MOGI,
1996).

In a previous paper, MARTINELLI and OSELLA (1997) presented an alternative
algorithm to model the MT response of 3D structures composed of homogeneous,
vertically anisotropic layers with smooth, irregular boundaries, using a modified
Rayleigh technique (RF-3D). Rayleigh solutions for the case of isotropic media
were previously reported by DANIYAN and PEEPLES (1986) and BOERSMA and
JIRACEK (1987).

When dealing with field data, 2D algorithms are commonly used to model the
MT response, with diagnostic tests to establish the dimension of the structure (e.g.,
BAHR, 1988; GROOM and BAILEY, 1989). These methods are satisfactory for
superficial anomalous bodies in a 2D regional structure. They do not recover static
shift anisotropy, however.

In this paper a study is performed to analyze the importance of 3D effects in the
MT response of conductive bodies with smooth contours in the presence of shallow
distortions, considering the cases of both embedded and superficial locations.

Methodology

The MT responses are calculated using the RF-3D method, recently developed
by MARTINELLI and OSELLA (1997), which has been formulated for modeling
N-layered structures with smooth, irregular boundaries, as the one shown in Figure
1. In the following, a brief description of this method is given.

Generally it is assumed that each medium is homogeneous and linear, with
magnetic permeability equal to that of the vacuum, m0. The possibility of vertical
anisotropy of the electrical conductivity is included in the formulation, sh and s6
being, respectively, the conductivities in the horizontal and vertical directions. The
coefficient of vertical anisotropy is defined as a=sh/s6.
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The inner boundaries are described by functions z=Sn(x, y) for 15nBN−1,
and the air-earth interface is given by z=0. To simplify the treatment, it is
presumed that the interfaces Sn(x, y) are even and periodic functions of x and y,
their spatial wavelengths being namely lx and ly. The studied area corresponds to
points (x, y) such that �x−lx/4�5Lx/2 and �y−ly/4�5Ly/2; outside this zone, the
interfaces are planar. The effect that the imposed symmetries and periodicities exert
over the zone of interest can be reduced by taking lx and ly much larger than Lx

and Ly.
The magnetotelluric response is given by the impedance tensor, Z, and the

tipper, T, which relate the values of the components of the electric, E, and magnetic
H, fields at the earth surface for each frequency, v. They are defined as:�Ex(x, y, 0, v)

Ey(x, y, 0, v)
n

=
�Zxx(x, y, 0, v) Zxy(x, y, 0, v)

Zyx(x, y, 0, v) Zyy(x, y, 0, v)
n�Hx(x, y, 0, v)

Hy(x, y, 0, v)
n

, (1)

Hz(x, y, 0, v)=Tx(x, y, 0, v)Hx(x, y, 0, v)+Ty(x, y, 0, v)Hy(x, y, 0, v). (2)

Figure 1
Generalized N-layered model. Interfaces z=Sn are functions of x and y. The electrical conductivity of

each medium can be vertically anisotropic.
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From each element of Z, Zij, with i, j=x, y, an apparent resistivity is defined as:

rij(x, y, 0, v)= �Zij(x, y, 0, v)�2/v2m0. (3)

The magnetospheric inducing field is unknown, but can be considered horizon-
tal and spatially uniform (CAGNIARD, 1953). Then, due to the linearity of Maxwell
equations, it can be demonstrated that Z and T only depend on the characteristics
of the structures surveyed and not on the inducing field. They are calculated using
two different, linearly polarized external fields, one in the x direction and the other
in the y direction.

For a 2D structure with strike direction y, there are two uncoupled modes; the
transverse electric mode (TE), with E parallel to y, and the transverse magnetic
mode (TM), with H parallel to y. In this case:

Zxx=Zyy=0, (4)

Zxy=ZTM, (5)

Zyx=ZTE, (6)

and

Tx=TTE, (7)

Ty=0. (8)

For a general 3D structure, there are no uncoupled modes, and all the elements
of Z and T are different from 0.

In the RF formalism, the 3D response is calculated applying Rayleigh’s scatter-
ing theory on every interface. Since some multiple reflections are not included in
Rayleigh’s formalism, it actually constitutes an approximation. However, this
approximation works well in many cases, provided that boundary slopes are not
too large (LIPPMANN, 1953; MILLER, 1971). Using this method, structures have
been accurately modeled with maximum boundary slopes between 50 and 60
degrees, depending on layer resistivities (MARTINELLI and OSELLA, 1997).

In this work the RF method is applied to calculate the MT response of three
different models. Models A and B, which are shown in Figures 2a and 2b,
respectively, represent 3D conductive bodies of smooth contours, with 2D shallow
(superficial) distortions. In model A, the direction of maximum elongation of the
3D conductor is perpendicular to the strike direction of the 2D upper boundary,
while, in model B, both directions are coincident. Model C (see Fig. 3) corresponds
to a 2D structure distorted by a shallow, small, 3D conductive body.

The 3D effects are evaluated for each model by comparing its response along
two profiles perpendicular to the y direction (one passing just over the center of the
conductor and the other passing near its border) to the response of 2D structures
with identical x-z cross sections. The y direction corresponds to the superficial
strike in models A and B, and to the regional strike in model C.
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For models A and B, equivalent 2D models are also obtained for each profile.
The structures employed for the forward 2D calculations have the same layer
resistivities as models A and B and the same interface S1; however the interfaces S2

and S3 are described by the functions:

S2
(2D)(x)=5 km−D/[1+ (x/G)2], (9)

S3
(2D)(x)=5 km−D/[1+ (x/G)2]. (10)

Using an iterative trial-and-error procedure, the values of the parameters D and
G are varied to find the best fitting between the 3D and 2D responses. For each
profile of each model, two equivalent 2D models are obtained; one adjusting the
apparent resistivity rxy and the phase of Zxy, fxy (TM model), and other adjusting

Fig. 2.
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Figure 2
3D conducting body of smooth contours underlying a 2D structure, with (a) 3D direction of maximum
elongation perpendicular (Model A) and (b) parallel (Model B) to the 2D symmetry axis, respectively.

ryx and the phase of Zyx, fyx (TE model). For the 2D responses, rxy and fxy

correspond to the TM mode and ryx and fyx to the TE mode.
In a previous work (OSELLA and MARTINELLI, 1993), it was found that the

presence of vertical anisotropy in the upper layers can strongly influence the MT
response of 2D structures; there, basins and anticlinals were considered. The same
seems to be true for 3D cases; in particular, the effect of vertical anisotropy in 3D
basins has recently been investigated (MARTINELLI and OSELLA, 1997) and the
results indicated that this effect decreases strongly with depth. Hence, only the
effect of vertical anisotropy for the case of the shallow 3D conductor (model C) is
analyzed here.
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Figure 3
2D underlying structure with a shallow, small, 3D conducting body overlying it (Model C).

Results

In this section the main results obtained for each model are summarized.

Model A

As mentioned, two profiles are considered for model A: the profile y=0, which
passes over the center of the conducting body (Fig. 4a), and the profile y=4 km
(Fig. 5a), which passes near its border.

Profile y=0—In Figure 4b the apparent resistivities rxy and ryx, and the phases
fxy and fyx corresponding to model A are plotted as functions of the period T, as
y=0 km, for different values of x.
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Figure 4
(a) Cross section of Model A at y=0, together with the equivalent 2D models (dashed contours—2D TM model obtained adjusting the 3D xy-component
responses; dotted contours—2D TE model obtained adjusting the 3D yx-component responses). (b) 3D apparent resistivity (rxy and ryx) and phase (fxy

and fyx) curves from the corresponding impedance tensor components, at y=0, for different values of x. The responses of a 2D model with the same cross
section are also shown. (c) 2D TM model fits of the 3D xy-components. Results for the 2D TE model are similar. (d) Comparison of 3D modulus and phase

of Tx, with 2D TE forward responses of the TM and TE models.
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Figure 5
(a) Cross section of Model A at y=4 km, together with the equivalent 2D models (dashed contours—2D TM model obtained adjusting the 3D
xy-component responses; dotted contours—2D TE model obtained adjusting the 3D yx-component responses). (b) 3D apparent resistivity (rxy and ryx) and
phase (fxy and fyx) curves from the corresponding impedance tensor components, at y=4 km, for different values of x. The responses of a 2D model with
the same cross section are also shown. (c) 2D TM model fits of the 3D xy components. Results for the 2D TE model are similar. (d) Comparison of 3D

modulus and phase of Tx, with 2D TE forward responses of the TM and TE models.



2D
and

3D
M

agnetotelluric
M

odeling
393

V
ol.

157,
2000

Fig. 5.



Patricia Martinelli et al.394 Pure appl. geophys.,

Over the center of the structure, for periods greater than 10 s, rxy is almost an
order of magnitude lower than ryx. Going towards the border of the conductor, rxy

increases and ryx varies very slowly with x. A similar behavior is observed in the
apparent resistivities of a 2D model with the same section y=0 as model A.

Comparing the shape of rxy curves of the 3D and 2D structures, a near parallel
shift between the curves is basically observed for the larger periods, however, the
ryx curves have different slopes at these periods.

In Figure 4a, the two equivalent 2D models obtained adjusting either rxy and
fxy (TM model) or ryx and fyx (TE model) are shown, together with the
corresponding section of model A. The most interesting point to be noted is that
these two models are almost coincident (as will be shown later, the same is not valid
for model B, which resembles more a 2D structure). In addition, in both models the
thickness of the conductive body appears markedly underestimated. This last result
can be understood considering that the response of a 3D conductor of finite lateral
dimensions is being approximated by the response of a 2D body of infinite length
in the y-direction.

Both TM and TE models give similar responses, therefore in Figure 4c, only the
fittings obtained from the TM model are shown. Clearly, curves rxy and fxy are
well fitted for all periods while the ryx and fyx fits are acceptable only at periods
lower than 10–100 s (this indicates the 3D character of model A). In the table
below, the root-mean-square values of the percentual errors (RMSPE) of the
apparent resistivities and the root-mean-square values of the errors (RMSE) of the
phases, obtained for the TM and TE models, are listed.

RMSPE (ryx) RMSE (fyx)RMSE (fxy)RMSPE (rxy)

TM model 0.93° 51% 28°0.34%
49% 26°TE model 1.0% 3.9°

Forward calculations of the modulus and phase of Tx for the two equivalent 2D
models are presented in Figure 4d. These results are surprisingly good, since the
vertical field is not used for the fittings. The matches are better for the TE results,
because, for a 2D structure, Tx is the element of the tipper associated with the TE
mode. As mentioned previously, Ty is always equal to 0 for 2D structures; in
addition, due to the existing symmetries, it is also 0 for model A, along the y=0
profile.

Profile y=4 km—The apparent resistivities and phases of model A at y=4 km,
and of a 2D structure with the same x-z cross section, are shown in Figure 5b. The
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behavior of these curves when x is varied, is similar to the one described for the
profile y=0. In this case, the curves rxy and fxy of the 2D structure draw nearer
to the corresponding 3D curves, however, the slopes, the curves ryx of the 3D and
2D models are still different for the larger periods.

The thickness of the conductor is fairly well estimated by the 2D modelings. The
best result corresponds to the TM model (Fig. 5c). The errors are:

RMSPE (rxy) RMSE (fxy) RMSPE (ryx) RMSE (fyx)

15% 18°0.034% 0.083°TM model
22%TE model 11°1.5% 1.6°

The elements of the tippers Tx and Ty are shown in Figure 5d. For this profile,
Ty is different from 0 for model A, and its dependence on the period is intimately
related to the characteristics of this model. Ty is small at the shorter periods because
only the shallow 2D structure is detected and it is also small at the longer periods
where the 1D behavior is recovered; for intermediate periods, the value of Ty is
comparable to that of Tx, this being a clear indicator of the presence of the 3D
body. Once again, the best match between the 3D and 2D Tx values is obtained
from the TE model.

Model B

Because the strike direction of the upper 2D structure coincides in this case with
the direction of maximum elongation of the deeper 3D conductor, lower 3D effects
are expected.

The two profiles considered for this model are profile y=0 (Fig. 6a) and profile
y=8 km (Fig. 7a).

Profile y=0—The response of model B at y=0, together with the response of
a 2D structure with the same x-z cross section, is plotted in Figure 6b. The
differences between the two responses are less than the ones observed for model A.
In particular, for the longest periods, the curves rxy, fxy and fyx of model B
present only a parallel shift with respect to the curves of the 2D structure, and the
differences between the slopes of the curves ryx are not so great.

Contrary to what is obtained for model A, the equivalent 2D models are not
coincident in this case (see Fig. 6a). This difference arises because structure B has
more 2D characteristics. Consequently, since the TM mode is more sensitive to
lateral variations of the conductivity distribution than the TE mode, the TM model
obtained fitting the xy components gives a better estimation of the maximum
conductor thickness. Nevertheless, an underestimation of this thickness still occurs.
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Figure 6
(a) Cross section of Model B at y=0, together with the equivalent 2D models (dashed contours—2D TM model obtained adjusting the 3D xy-component
responses; dotted contours—2D TE model obtained adjusting the 3D yx-component responses). (b) 3D apparent resistivity (rxy and ryx) and phase (fxy

and fyx) curves from the corresponding impedance tensor components, at y=0, for different values of x. The responses of a 2D model with the same cross
section are also shown. (c) 2D TM model fits of the 3D xy components. Results for the 2D TE model are similar. (d) Comparison of 3D modulus and phase

of Tx, with 2D TE forward responses of the TM and TE models.
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The fittings obtained for rxy and fxy from the two equivalent 2D models are as
good as the ones obtained in the case of the profile y=0 of model A, while the fits
of ryx and fyx are better in this case, especially at the greater periods. Once more,
only the fits obtained from the TM model are plotted (Fig. 6c), because the results
for the TE model are similar. Now, the errors are:

RMSPE (rxy) RMSE (fxy) RMSPE (ryx) RMSE (fyx)

16% 16°0.23% 0.92°TM model
3.5°TE model 17% 13°1.0%

The best fitting of Tx (Fig. 6d) results from the TE model, for the same
reasons as in the former case (Fig. 4d).

According to the results published by WANNAMAKER et al. (1984), the xy
components of the 3D response of geometrically regular, elongate prismatic con-
ductors, along centrally located transverse profiles, are essentially the same as the
TM components of the response of 2D bodies with identical cross sections.
Therefore, an accurate modeling of such profiles can be made using 2D, TM
algorithms. For the model considered here, the 3D and 2D xy components are
not coincident, especially over the body; thereafter, the TM model obtained
differs from the actual cross section. This result is partly a consequence of the
smooth geometry, since the galvanic effects produced by boundary charges are
considerably stronger near the lateral, vertical sides of a prism, than on the sides
of the smooth conductor in model B. The differences are also due to a less
effective strike length in this model. In addition, this body is buried more than the
old plate model, which continues the response upward somewhat. Response decay
from 3D upward continuation is faster than 2D decay.

Profile y=8 km—For this model, over the border of the conductor, the
response is almost coincident with that of a 2D structure with the same x-z cross
section (Fig. 7b). The exception is the component of the tipper Ty, which would
be equal to 0 in a strictly 2D case (Fig. 7c).

Model C

The types of structures which include a superficial 3D conductive body embed-
ded in a 2D medium have been widely studied and there are several methods
which allow consideration of the distortions introduced in the response curves.
Generally, the main objective of these methods is not the description of the



2D
and

3D
M

agnetotelluric
M

odeling
399

V
ol.

157,
2000

Fig. 7.



P
atricia

M
artinelli

et
al.

400
P

ure
appl.

geophys.,

Figure 7
(a) Cross section of Model B at y=8 km, together with the equivalent 2D models (dashed contours—2D TM model obtained adjusting the 3D
xy-component responses; dotted contours—2D TE model obtained adjusting the 3D yx-component responses). (b) 3D apparent resistivity (rxy and ryx) and
phase (fxy and fyx) curves from the corresponding impedance tensor components, at y=8 km, for different values of x. The responses of a 2D model with

the same cross section are also shown. (c) Comparison of 3D modulus and phase of Tx, with 2D TE forward responses of the TM and TE models.
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shallow body but a better knowledge of the underlying 2D structure (e.g., GROOM

and BAILEY, 1989).
The RF-3D code is applied here to model the response of a shallow conductive

body with smooth contours and the results are again compared with the response
of a 2D model with the same cross section (Figs. 8a and b).

From Figure 8b, it is seen that the distortion introduced by the shallow 3D
conductor is maximum over the center of the structure. In addition, this distortion
is smaller than that obtained for the 2D shallow conductor with the same cross
section. It is important to point out that the phases tend to the values correspond-
ing to the TM mode of the 2D model, for periods exceeding approximately 30 s.

A resistive body was also tested, but for this geometry it had a very small
response.

In a previous paper, the effects produced by the presence of a vertically
anisotropic layer on different 2D configurations were analyzed (OSELLA and
MARTINELLI, 1993). The studies indicated that in the case of structures with
alternating conductive and resistive layers, these effects decrease strongly as the
depth of the anisotropic layer increases. A similar behavior was observed after
analyzing different 3D configurations. In particular, for model C and also for a 2D
model of the same cross section, only the vertical anisotropy of the first layer can
be detected. The magnitude of the observed effect is maximum at x=0 (Fig. 8c)
and quickly decreases as x increases.

In 2D cases, vertical anisotropy only distorts the TM response because the
vertical electric field is zero in the TE mode. For 3D structures, both the xy and yx
components of the response are affected, because the vertical electric field is always
non-zero.

At the greater frequencies, since the electric field is nearly horizontal, no effect
is observed. Anisotropy becomes important when frequencies are low enough such
that skin depth reaches the depth of the buried body. Thereafter, current can
actually flow down the anisotropy and connect to the deeper structure before it is
dissipated.

Conclusions

The electromagnetic responses due to smooth, elongated conductive bodies
underlying a 2D structure are analyzed using the RF-3D code. Two models
considered are Model A, with the direction of maximum elongation perpendicular
to the strike direction of the 2D structure, and Model B, with the body aligned with
the shallow structure. The main results can be summarized as follows.

For both models (A and B), when equivalent 2D, TM and TE models are
obtained adjusting, respectively, the xy or the yx-components of the 3D response,
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Figure 8
(a) Cross section of Model C at y=0. (b) 3D apparent resistivity (rxy and ryx) phase (fxy and fyx) curves from the corresponding components of the
impedance tensor, at y=0, for different values of x. The responses of a 2D model with the same cross section are also shown. (c) Effect of vertical anisotropy

in the first layer, at x=0. a=sh/s6 is the measure of anisotropy inside layer 1.
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a good fit is always obtained for the xy component. The fitting of the yx
component is poor, especially at the larger periods; the worst results correspond
to the case of model A.

For model A, the TM and TE model responses are similar, and they both
underestimate the thickness of the conductor by about 30%. For model B, which
is more 2D-like, the TM model gives the best approximation to the actual
structure. Nevertheless, in this model, conductor thickness also appears underval-
ued by 24%.

For geometrically regular, elongate, prismatic conductors, accurate cross sec-
tions can be inferred from 2D, TM modeling of the xy components of the 3D
response, along centrally located, transverse profiles. Subsequently, the major
differences obtained in this study between the resulting TM models and the actual
cross sections, particularly in the case of model B, are partly a consequence of
the smooth geometry. This is because the galvanic effects produced by boundary
charges are substantially stronger near the vertical sides of a prism than on the
smooth, tapered sides of the conductors considered here. The differences are also
due to a less effective strike length in the models. In addition, these bodies are
buried more than the old plate model, which continues the responses upward
somewhat. Response decay from 3D upward continuations is faster than 2D
decay.

It can be added that different tests have been performed assuming resistive
bodies, however they produced very small responses. Vertical anisotropy of the
bodies, either those resistive or conductive, also had no effect on the response.

For a smooth superficial body over a 2D regional structure (Model C), only
the vertical anisotropy of the first layer can be detected, as a shift (properly an
overestimation) of the apparent resistivity curves at the longer periods.
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