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Abstract. We present criteria for determining irreducibility of reciprocal polynomials over
the field of rational numbers. We also obtain some combinatorial results concerning the irre-
ducibility of reciprocal polynomials. As a consequence of our approach, we are able to deal
with other problems such as factorization properties of Chebyshev polynomials of the first and
second kind and with the classical problems of computing minimal polynomials of algebraic
values of trigonometric functions.

1. INTRODUCTION. The study of irreducibility of polynomials in Q[t] is a well
established research area requiring different concepts and tools from many fields. In
the opinion of these authors it is a very nice and instructive subject.

There are many criteria for studying irreducibility based on distinct characteris-
tics of the polynomials—for instance, criteria based on the prime factors dividing the
coefficients as in Eisenstein’s criterion and, more generally, as in Newton’s polygon.
There are also criteria based on the size of the coefficients, whose proofs require tools
of complex analysis, such as Perron’s criterion and related results. In fact, there is
an extensive literature about this subject. The notes written by Michael Filaseta [5]
provide a very readable and interesting source of information about these facts.

In the classical book Irrational Numbers by Ivan Niven [10], we find another cri-
terion for irreducibility over Q, although it is not explicitly stated as such. It arises
in a context where Niven proves (a result due to Derrick Lehmer) that the numbers
cos(2π/n) and sin(2π/n) are algebraic over Q. In fact, he first computes the minimal
polynomials over Q of the numbers 2 cos(2π/n) by appealing to the fact that cyclo-
tomic polynomials are reciprocal polynomials. By means of the change of variables
x = t + 1/t , he shows that the cyclotomic polynomial �n (which is irreducible over
Q[t] and has cos(2π/n) + i sin(2π/n) as a root) is transformed into an irreducible
polynomial in Q[x] (whose degree is half the degree of �n) having 2 cos(2π/n) as
a root. To finish, Niven shows that the numbers sin(2π/n) are algebraic over Q by
expressing sin(2π/n) in terms of cos(2π/m) for a certain integer m.

This paper intends to take advantage of Niven’s approach to study problems related
to factorization of reciprocal polynomials. We now define precisely all the needed
notation. Our definition of reciprocal polynomial involves the more general notion of
reversal polynomial.

Definition. Given a polynomial f ∈ Q[t], the reversal polynomial of f is defined as
the following polynomial of Q[t]:

frev(t) = tdeg f f (1/t). (1)

Informally said, the reversal polynomial frev has the same coefficients as f but in
reverse order. The interesting feature of (1) is that it is independent of the way f is
expressed. As an easy example, if f = t2 − t + 2 then its reversal polynomial is
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frev = t2
(

1/t2 − 1/t + 2
)

= 1 − t + 2t2.

When f is a polynomial having 0 as a root, the degree of frev and f do not coincide.
For instance, for any monomial f = tn , its reversal polynomial is frev = 1. In Section
2 many properties of frev are precisely stated.

Reversal polynomials are well known and arise in many instances. An interesting
application of this notion to the division algorithm in Q[t] can be found in [14].

As stated before, reciprocal polynomials are the main object of this paper. They can
be seen as “fixed points” of the reversal operation defined in (1).

Definition. A polynomial f ∈ Q[t] is a reciprocal polynomial if

frev(t) = f (t). (2)

One can find other names for referring to this type of polynomial: self-reciprocal,
palindromic, etc. Our choice is a consequence of being introduced to this notion thanks
to Edward Barbeau’s wonderful book Polynomials [1]. An example of a reciprocal
polynomial is f = t6 − 2t5 + 5t4 − t3 + 5t2 − 2t + 1. We might say that cyclotomic
polynomials �n for n > 1 are the best known examples of reciprocal polynomials with
rational coefficients.

The change of variables x = t + 1/t is the key to the usual method for computing
(or at least, simplifying the search for) the roots of a reciprocal polynomial. Given any
reciprocal polynomial f ∈ Q[t] of degree 2n, by making this change of variables, we
obtain a polynomial in Q[x] of degree n. The roots of this polynomial are of the form
α + 1/α with α a root of f . Assuming that the n roots of the polynomial in x are able
to be computed, we then recover the roots of f by solving n quadratic equations.

We will consider this change of variables as inducing a mapping which we call
reciprocal mapping and which we define below.

Definition. The reciprocal mapping R assigns to each reciprocal polynomial f ∈ Q[t]
of even degree the unique polynomial p = R( f ) ∈ Q[x] satisfying the equation

f (t) = tdeg p p(t + 1/t).

Conversely, we observe that for every p ∈ Q[x] the polynomial f = R−1(p), just
defined, is reciprocal of even degree.

Example 1. Consider the reciprocal polynomial �11 = ∑10
i=0 t i , the eleventh cyclo-

tomic polynomial. Writing

�11 = t5

(
1 +

5∑
k=1

(
t k + 1

t k

))

it is possible to express each term t k + 1/t k as a linear combination of powers of
x = t + 1/t as follows:

t2 + 1/t2 = (t + 1/t)2 − 2,

t3 + 1/t3 = (t + 1/t)3 − 3(t + 1/t),
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t4 + 1/t4 = (t + 1/t)4 − 4(t + 1/t)2 + 2,

t5 + 1/t5 = (t + 1/t)5 − 5(t + 1/t)3 + 5(t + 1/t).

With these equalities, it turns out that

�11 = t5 p(t + 1/t) with p = R(�11) = x5 + x4 − 4x3 − 3x2 + 3x + 1.

Taking this known idea as a starting point, the main goal of our article is to pro-
vide an unified framework in which many different problems arising in the context of
reciprocal polynomials may be considered.

Our reciprocal mapping has many interesting features which enable us to turn the
usual change of variables into a systematic treatment. We will refer to the underlying
method as the reciprocal substitution method and its details are explained in Section
3. The fact is that this method gives not only some information about the roots of a
reciprocal polynomial, but it also provides information about its factorization. Thus,
factorizations properties of reciprocal polynomials of even degree are translated into
factorization properties of their images and vice versa.

By means of the reciprocal substitution method we are able to provide some criteria
for determining the irreducibility of reciprocal polynomials in Q[t] (see Theorem 11).

Theorem. Let f ∈ Z[t] be a primitive reciprocal polynomial of even degree and
assume that the image polynomial p ∈ Q[x] is irreducible.

1. If | f (1)| or | f (−1)| are not perfect squares, then f is irreducible in Q[t].
2. If f (1) and the middle coefficient of f have different signs, then f is irreducible

in Q[t].
3. If the middle coefficient of f is 0 or ±1, then f is irreducible in Q[t].

We remark that many of the well-known criteria for determining irreducibility of
integer polynomials cannot be used to determine irreducibility of reciprocal polyno-
mials.

Our criterion permits us to show that the polynomials

g2p(t) = (t + 1)2p − t2p − 1

t

are irreducible over Q when p is an odd prime number (see Example 14). We learned
about this family from Filaseta’s notes [5]. The difference in our analysis from that of
[5] is that we do not make use of the Newton polygon of g2p with respect to p. We
simply appeal to Eisenstein’s criterion to show the irreducibility of the image of g2p.

From a combinatorial point of view, it is interesting to estimate the “proportion” of
reciprocal polynomials with a given factorization pattern. It is known that “almost all”
polynomials with integer coefficients are irreducible over Q (see, e.g., [5]). By means
of the reciprocal substitution method, combinatorial versions for reciprocal polynomi-
als are deduced from their counterparts in Q[x]. In fact, the following theorem holds
(see Section 6).

Theorem. Almost all reciprocal polynomials with integer coefficients are irreducible
over Q.

To prove this result we take advantage of the properties of the reciprocal mapping.
Mainly, this involves a matrix representation of R which enables us to obtain bounds
on the coefficients of R( f ) for any reciprocal f of degree 2n.
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Our approach also leads us to address problems related to the complete factorization
over Q of the Chebyshev polynomials of first and second kind. Finally, we deal with the
computation of the minimal polynomials of the numbers cos(2π/n) and sin(2π/n) and
derived facts. There are many references dealing with this kind of problem beginning
with the works of Lehmer, Niven, and others (see [2] and [15]).

2. FACTORIZATION PROPERTIES OF RECIPROCAL POLYNOMIALS. We
begin this section with a number of consequences which are derived from the definition
of reversal polynomial given in (1).

• If α is a nonzero complex root of f , then 1/α is a root of frev.
• Let k be the multiplicity of 0 as a root of f . Then the degree of frev is equal to

deg f − k. If f (0) �= 0, then ( frev)rev = f .
• ( f g)rev = frev grev.
• If f (0) �= 0, then f is irreducible in Q[t] if and only if frev is irreducible in Q[t].

Assume now that f ∈ Q[t] is a reciprocal polynomial of odd degree. From the
properties of reversal polynomials, it is immediate that −1 is a root of f and that
f factors as (t + 1)g with g ∈ Q[t] a reciprocal polynomial of even degree. Thus it
makes sense to restrict our attention to the set of reciprocal polynomials with rational
coefficients and even degree. Throughout the text we will use the following notation:

R := { f ∈ Q[t] : f reciprocal and of even degree}.

Leaving aside �1 = t − 1 and �2 = t + 1, we see that any cyclotomic polynomial �n

belongs to R for n ≥ 3.
The following proposition provides an equivalent definition of reciprocal polyno-

mial.

Proposition 2. A polynomial f ∈ Q[t] is reciprocal if and only if it satisfies the fol-
lowing two properties.

1. If 1 is a root of f , then its multiplicity is even.

2. If α is a root of f of multiplicity r , then 1/α is a root of multiplicity r .

In the sequel we will use indistinctly both characterizations.
We list now some useful properties concerning the factorization of reciprocal poly-

nomials.

Lemma 3. The following assertions hold:

• The product of reciprocal polynomials is reciprocal.
• If f = gh and f and g are reciprocal, then h is also reciprocal.

In spite of its simplicity our following lemma is crucial.

Lemma 4. Let f ∈ Q[t] be such that f (0) �= 0. Then f frev ∈ R.

Proof. This is a consequence of the properties of −rev listed at the beginning of
this section. Since f (0) �= 0, then f frev has degree equal to 2 deg f and ( f frev)rev

= f frev.
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Our next proposition will characterize the factorization pattern of a reciprocal poly-
nomial in Q[t]. We first observe that if f is any reciprocal polynomial in Q[t], Propo-
sition 2 says that if 1 were a root of f , then it would have even multiplicity, say r . This
would imply that (t − 1)r is reciprocal and hence that f factors as f = (t − 1)r g(t)
with g ∈ Q[t] reciprocal. This reasoning permits us to leave aside the case in which
f (1) = 0.

Proposition 5. Let f ∈ Q[t] be an arbitrary reciprocal polynomial with f (1) �= 0 and
let g be an irreducible factor in Q[t] of f . If g is nonreciprocal, then f = g grev h with
h ∈ Q[t] reciprocal.

Proof. Let g ∈ Q[t] be an irreducible nonreciprocal factor of f . In particular, g is
neither the polynomial t − 1 nor the polynomial t + 1. We have that grev is also irre-
ducible in Q[t]. For every root α of g we know that 1/α is a root of grev. Since f is
reciprocal, 1/α is also a root of f . Hence it turns out that grev is also an irreducible
factor of f (coprime with g) and thus ggrev is a factor of f . Lemma 4 implies that ggrev

belongs to R and hence by Lemma 3 we obtain that f factors as ggrevh with h ∈ Q[t]
reciprocal.

The factor ggrev in Proposition 5 is related to what is usually known as the nonre-
ciprocal part of f . See for instance the paper [6].

We now introduce the notion of irreducibility in the set R which will be important
in our setting.

Definition. We say that f ∈ R is irreducible in R if it does not factor as a product of
two nonconstant polynomials in R.

Under this definition, we see that t2 − 2t + 1 is irreducible in R but not in Q[t].
Hence irreducibility over R does not imply irreducibility over Q[t]. On the contrary,
it is clear that any polynomial f ∈ R that is irreducible in Q[t] is also irreducible in
R. For our combinatorial results it is useful to introduce the following notations:

Irred(R) = { f ∈ R : f is irreducible over R},
Red(R) = { f ∈ R : f is reducible over R}.

As a consequence of Proposition 5, we are able to characterize completely the fac-
torization over Q of an irreducible element f ∈ R.

Corollary 6. Let f ∈ Irred(R). Either f is irreducible in Q[t] or f = aggrev with
g ∈ Q[t] irreducible and a ∈ Q∗.

Corollary 6 implies that Irred(R) splits as R1 ∪ R2 where

R1 ={ f ∈ Irred(R) : f is irreducible over Q},
R2 ={ f ∈ Irred(R) : f = aggrev, a ∈ Q∗, g irreducible over Q}.

We observe that if f ∈ Irred(R) and f (1) = 0, then f = a(t − 1)(−t + 1) and thus
f belongs to R2.

January 2017] IRREDUCIBLE RECIPROCAL POLYNOMIALS 41



Remark. In case f ∈ R2 has integer coefficients, as a consequence of Gauss’s lemma,
we may assume that f = aggrev with a ∈ Z and g ∈ Z[t]. In particular, if f is prim-
itive, then f = ±ggrev with g a primitive polynomial. This is important for studying
irreducibility over Q as we may always assume that f is primitive.

3. THE RECIPROCAL SUBSTITUTION METHOD. We now briefly recall the
well-known method for computing the roots of a reciprocal polynomial. Given f ∈ R
of degree 2n, by means of the change of variables x = t + 1/t , we obtain a polynomial
in Q[x] of degree n, whose roots are of the form α + 1/α, with α a root of f . Assuming
that the n roots of the polynomial in x are able to be computed, we then recover the
roots of f by solving n quadratic equations. This is the typical method for computing
the roots of reciprocal polynomials.

In this section we explain the details of what we call the reciprocal substitution
method. This sort of idea is already known in a finite field context (see [9]).

Let f ∈ R be a polynomial of degree 2n. In dense form, f may be expressed as
follows:

f (t) = a0tn +
n∑

k=1

ak(t
n+k + tn−k)

with a0, . . . , an in Q. By induction on k, it can be shown that t k + 1/t k can be
expressed in terms of x by a unique monic polynomial fk ∈ Z[x] of degree k. These
polynomials can be recursively computed by means of the following recurrence:

fn(x) = x fn−1(x) − fn−2(x), f0(x) = 2, f1(x) = x . (3)

The first terms of recurrence (3) are the polynomials:

f2(x) = x2 − 2, f3(x) = x3 − 3x, f4(x) = x4 − 4x2 + 2, f5(x) = x5 − 5x3 + 5x .

Therefore, since any f ∈ R is uniquely written as

f (t) = a0tn + tn
n∑

k=1

ak fk

(
t + 1

t

)
,

we deduce that

p = a0 +
n∑

k=1

ak fk ∈ Q[x]

is the only polynomial satisfying the functional equation

f (t) = tdeg f/2 p(x(t)) with x(t) = t + 1

t
. (4)

This provides an effective way of computing the polynomial p ∈ Q[x] for every f ∈
R. Thus we have a mapping R from R onto Q[x] defined as follows:

R : R → Q[x]

f 	→ a0 + a1 f1 + · · · + an fn.
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In particular, observe that for every k ∈ N we have that

R(t2k + 1) = fk .

In [1], Barbeau introduces the terminology reciprocal equation substitution when
referring to (4). Inspired by this terminology, we will say that the sequence ( fn)n∈N is
the reciprocal substitution sequence and that R is the reciprocal mapping.

The following properties of the reciprocal mapping R are immediately deduced
from (4).

Proposition 7. R satisfies the following properties.

1. R is a bijective mapping.
2. R( f g) = R( f )R(g) for any f, g ∈ R.

We finally show that there exists a matrix context in which we may understand the
reciprocal mapping R. Although R is not a linear mapping since R is not a Q-vector
space, when restricted to the elements of R of degree 2n we are able to give a matrix
representation for R. This is a nice characterization which will enable us to obtain
information about the number of irreducible reciprocal polynomials.

We fix a natural number n. Every f ∈ R having degree 2n can be coded as a coef-
ficient vector of n + 1 coordinates which we denote by [ f ]:

[ f ] = (an, an−1, . . . , a0) ∈ Qn+1, an �= 0.

Consider the (n + 1) × (n + 1)-matrix Rn whose entry ai j is the coefficient of xn−i+1

in the polynomial fn− j+1, except for the entry an+1,n+1 which is equal to 1 (instead
of 2). Under this consideration we reach the conclusion that

[R( f )]t = Rn[ f ]t , (5)

where [R( f )] is the coefficient vector of R( f ) with respect to the monomial basis
{xn, . . . , x2, x, 1}.

The matrix Rn is a lower triangular integer matrix. It is also a unimodular matrix
and thus its inverse R−1

n is also an integer matrix.
For instance if n = 5, the matrix R5 turns out to be

R5 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0

−5 0 1 0 0 0
0 −4 0 1 0 0
5 0 −3 0 1 0
0 2 0 −2 0 1

⎞
⎟⎟⎟⎟⎟⎠ .

Recalling Example 1 from the Introduction, the coefficient vector of the cyclotomic
polynomial �11 is [�11] = (1, 1, 1, 1, 1, 1) and hence the coefficient vector of R(�11)

is obtained by computing the product

[R( f )]t = R5(1, 1, 1, 1, 1, 1)t = (1, 1, −4, −3, 3, 1)t ,

which yields R( f ) = x5 + x4 − 4x3 − 3x2 + 3x + 1.
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4. IRREDUCIBILITY CRITERIA OVER Q. We begin this section by giving a
refinement of the irreducibility criterion presented in Niven’s book. As a matter of
fact, our criterion is a criterion for irreducibility in R and thus we complete the char-
acterization given in Corollary 6.

Proposition 8. Let f ∈ R. Then f is irreducible in R if and only if R( f ) is irre-
ducible in Q[x].

Proof. Let f = f1 f2 be a factorization in R such that 2 ≤ deg fi < deg f for
i = 1, 2. Then R( f ) = R( f1)R( f2) is a factorization in Q[x] such that 1 ≤ deg R( fi) <

deg f/2.
Reciprocally, if R( f ) factors in Q[x], the properties of R imply that f factors in

R.

The statement of Proposition 8 establishes the relationship between irreducibility in
R and in Q[x]. We can reformulate this statement in terms of the reciprocal mapping.
Denoting by Irred(Q) and by Red(Q) the set of irreducible and reducible elements of
Q[x], respectively, we have that

R(Irred(R)) = Irred(Q) and R(Red(R)) = Red(Q). (6)

Example 9. Let f ∈ Z[t] be a monic reciprocal polynomial of degree 4 such that
R( f ) has no rational roots. Following Proposition 8 and Corollary 6 we deduce its
irreducibility over Q except when f = t4 − (b2 + 2)t2 + 1, with b ∈ Z. In this case
we have the factorization f = −ggrev, where g = t2 + bt − 1.

The next example shows that, in general, we cannot determine the irreducibility of
f in Q[t] from that of R( f ) in Q[x].

Example 10. If f = t6 − 3t5 − 3t4 + 11t3 − 3t2 − 3t + 1, then R( f ) = x3 − 3x2

− 6x + 17. The irreducibility of R( f ) over Q is readily seen and hence f is irre-
ducible over R. However, f is not irreducible over Q since it factors as (t3 − 3t + 1)

(t3 − 3t2 + 1). As stated by Corollary 6, we see that f = ggrev with g = t3 − 3t + 1
an irreducible element of Q[t].

At this point we are ready to state our irreducibility criteria for reciprocal polyno-
mials.

Theorem 11. Let f ∈ R be a primitive polynomial and assume that R( f ) is irre-
ducible in Q[x].

1. If | f (1)| or | f (−1)| are not perfect squares, then f is irreducible in Q[t].
2. If f (1) and the middle coefficient of f have different signs, then f is irreducible

in Q[t].
3. If the middle coefficient of f is 0 or ±1, then f is irreducible in Q[t].

Proof. Since R( f ) is irreducible, we have that f is irreducible in R by Proposition
8. Corollary 6 implies that either f is irreducible in Q or, considering that f is prim-
itive, that it factors as f = ±ggrev with g ∈ Z[t] an irreducible polynomial over Q.
Assume that f is not irreducible over Q. We will show that this assumption leads to a
contradiction.
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Since g(1) = grev(1), then | f (1)| = |g(1)|2, contradicting the fact that | f (1)| is not
a perfect square. Similarly, from g(−1) = ±grev(−1) we would have that | f (−1)|
= |g(−1)|2. This shows that 1. is satisfied.

In the case of 2., if f (1) > 0 it turns out that f = ggrev. Writing g = antn

+ an−1tn−1 + · · · + a1t + a0 we observe that the middle coefficient of f is equal
to a2

0 + a2
1 + · · · + a2

n−1 + a2
n . This is not possible as long as this coefficient takes

negative values. A similar argument may be used if f (1) < 0.
Assertion 3 is a direct consequence of the expression for the middle coefficient

given in the proof of 2.

In what follows we give many examples which exhibit the interest of our method.

Example 12. Consider the polynomial f = t8 + 6t7 + 2t6 + 22t5 − 8t4 + 22t3

+ 2t2 + 6t + 1. We have that R( f ) = x4 + 6x3 − 2x2 + 4x − 10. By Eisenstein’s
criterion, R( f ) is irreducible over Q[x]. According to Theorem 11 we conclude that
f is irreducible over Q.

Example 13. Let f ∈ R with coefficients 0 and 1. If R( f ) is irreducible in Q[x], then
we immediately conclude that f is irreducible in Q[t].

Example 14. We consider the following sequence of polynomials in Q[t] for n ≥ 2:

gn(t) = (t + 1)n − tn − 1

t
.

First we make some general remarks about the polynomials gn . Each gn has degree
n − 2. After expressing gn in dense form

gn(t) =
(

n

1

)
tn−2 +

(
n

2

)
tn−3 + · · · +

(
n

n − 2

)
t +

(
n

n − 1

)
,

and appealing to binomial identities, it is immediate that gn is a reciprocal polynomial.
When n is even, the polynomial gn belongs to R. Setting m := (n − 2)/2, we have
that

R(gn) =
(

n

1

)
fm +

(
n

2

)
fm−1 + · · · +

(
n

n/2 − 1

)
f1 +

(
n

n/2

)
,

where f1, . . . , fm are the first m polynomials of the reciprocal substitution sequence.
Let n = 2p with p an odd prime number. Hence we have

R(g2p) =
(

2p

1

)
f p−1 +

(
2p

2

)
f p−2 + · · · +

(
2p

p − 1

)
f1 +

(
2p

p

)
.

Using the fact that(
2p

j

)
≡ 0 (mod p), j = 1, . . . , p − 1,

(
2p

mod p

)
�≡ 0 (mod p),

by Eisenstein’s criterion we see that R(g2p)rev is irreducible over Q and hence R(g2p)

is irreducible over Q. Since g2p(1) = 22p − 2 is not a perfect square, our criterion
shows that g2p is irreducible over Q.
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Example 15. Proposition 8 together with Proposition 5 bring the following interesting
fact. Let f ∈ Q[t] be any irreducible polynomial distinct from t . Then frev is also
irreducible and thus the polynomial f frev ∈ R (whose degree is twice the degree of
f ) is irreducible in R. Then the polynomial R( f frev) is an irreducible polynomial in
Q of degree equal to the degree of f . Continuing this process, we obtain a sequence of
irreducible polynomials in Q[t] of degree equal to the degree of f and with coefficients
arbitrarily large. This process gives a sort of irreducible polynomial generator.

5. NUMERICAL BEHAVIOR OF THE RECIPROCAL MAPPING. For our
combinatorial results we need some insight on how the size of the coefficients of R( f )

grows with respect to that of f . Similarly, we address the problem of relating the
size of the coefficients of a given polynomial g and the product ggrev. In this way we
will obtain some interesting results concerning the reciprocal substitution sequence
( fn)n∈N.

Two expressions for the size of f will play a role in our approach. Given
f = ∑n

k=0 ak xk ∈ Q[x], the 1-norm || f ||1 and the max-norm || f ||∞ of f are, respec-
tively, the numbers

|| f ||1 = ∑n
i=0 |ai |,

|| f ||∞ = max{|ai | : i = 0, 1, . . . , n}.

For the reciprocal substitution sequence, we consider the associated integer sequence
(|| fn||1)n∈N of 1-norms. The first terms of this sequence are

|| f0||1 = 2, || f1||1 = 1, || f2||1 = 3, || f3||1 = 4, || f4||1 = 7, || f5||1 = 11.

This shows a coincidence with the sequence of Lucas numbers. We recall that the
sequence of Lucas numbers Ln is defined as follows:

Ln = Ln−1 + Ln−2 and L0 = 2, L1 = 1.

The recurrence (3) defining the reciprocal substitution sequence gives rise to the
following recurrence for || fn||1:

|| fn||1 = || fn−1||1 + || fn−2||1, || f0||1 = 2, || f1||1 = 1, (7)

therefore proving the equality between the sequences.

Proposition 16. The integer sequence (|| fn||1)n∈N is the sequence of Lucas numbers.

With the previous result at hand we next analyze the behavior of || f ||∞ under the
mapping R. To obtain an upper bound on ||R( f )||∞ for any f ∈ R of degree 2n and
having max-norm || f ||∞ ≤ B, it will be convenient to appeal to the matrix represen-
tation Rn of R defined in (5).

According to the usual setting for matrix norms, the max-norm of Rn as an operator
is the number

||Rn||∞ = max
1≤i≤n+1

n+1∑
j=1

|ai j |.
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Our matrix representation allows us to compute R( f ) by computing the product
Rn[ f ]t and thus we have that

||R( f )||∞ ≤ ||Rn||∞|| f ||∞.

We now obtain an upper bound on the max-norm of Rn taking into account Proposition
16. The following inequality holds for n ∈ N:

||Rn||∞ = max
1≤i≤n+1

n+1∑
j=1

|ai j | ≤
n+1∑
j=1

n+1∑
i=1

|ai j | = 1 +
n∑

j=1

|| f j ||1 = 1 +
n∑

j=1

L j .

As a consequence of a classical identity involving Lucas numbers which asserts that∑n
j=0 L j = Ln+2 − 1, we can conclude that

||R( f )||∞ ≤ ||Rn||∞|| f ||∞ ≤ Ln+2 B.

In this way we have shown the following result.

Proposition 17. Let f ∈ R have degree 2n and || f ||∞ = B. Then

||R( f )||∞ ≤ Ln+2 B.

We still have to state one result concerning the max-norm of the polynomial g given
by Corollary 6. Our next proposition provides information in that direction. It can be
seen as an effective version of this corollary.

Proposition 18. Let f ∈ R2 with integer coefficients have degree 2n and max-
norm || f ||∞ ≤ B. Then the irreducible polynomial g ∈ Z[t] of degree n such that
f = aggrev with a ∈ Z has max-norm ||g||∞ at most

√
B.

Proof. Let g = antn + · · · + a1t + a0 (with an �= 0) and suppose that ||g||∞ = |ai | for
some 0 ≤ i ≤ n. The middle coefficient of f is equal to a(a2

0 + a2
1 + · · · + a2

n) and
this implies that

||g||2∞ = |ai |2 ≤
n∑

i=0

|ai |2 ≤ || f ||∞ ≤ B.

6. THE NUMBER OF IRREDUCIBLE AND REDUCIBLE RECIPROCAL
POLYNOMIALS. In this section we obtain some upper bounds for the numbers of
elements in Red(R) and Irred(R) in a sense to be clarified. The interesting feature of
this treatment is that reciprocal polynomials may have nonreciprocal factors. However,
we will show that the number of such polynomials is small.

We must remark that there is a well-established tradition of searching for results in
this vein. Again, Filaseta’s notes are a good reference for this item.

Let n be a fixed natural number. Every polynomial of degree n with integer coeffi-
cients may be represented as a point (an, an−1, . . . , a1, a0) of the (n + 1)-dimensional
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lattice Zn+1. For a positive B we consider those lattice points lying in the (n + 1)-cube
[−B, B]n+1:

Sn(B) :=
{

f ∈ Z[t] : deg f = n, || f ||∞ ≤ B
}
.

Thus Sn(B) is the set of polynomials of degree n with integer coefficients in the interval
[−B, B]. It is immediate that the number |Sn(B)| is equal to 2B(2B + 1)n for an
integer B.

There is a sort of classical result concerning the number of reducible polynomials
in Sn(B). In fact, it turns out that the following bound holds:

|Red(Q) ∩ Sn(B)| �n Bn log2 B, (8)

where the notation �n means that there is a constant depending only on n involved in
the upper bound. This bound apparently first appears in the classical book of George
Pólya and Gabor Szegö [11] as Exercise 266 from Part VIII. We first learned about
this result from Filaseta’s notes [5, Theorem 5.1.1]. Subsequent improvements of (8)
were successively obtained in the papers [3], [8], and [4]. For our needs it is enough to
consider the upper bound stated in (8).

The upper bound given by (8) also provides an upper bound for the proportion:∣∣Red(Q) ∩ Sn(B)
∣∣∣∣Sn(B)

∣∣ �n
Bn log2 B

2B(2B + 1)n
(B ∈ N). (9)

This proportion tends to 0 as B tends to infinity. In Pólya–Szegö’s words, “the proba-
bility that a polynomial with integral coefficients of given degree is reducible is equal
to 0.” This also usually leads to saying that almost all polynomials in Z are irreducible
over Q.

Our goal is to make use of this result in order to obtain some estimates about the
number of reducible and irreducible reciprocal polynomials.

We consider the set Red(R) ∩ S2n(B), that is to say, the set of reducible reciprocal
integer polynomials of degree 2n and max-norm at most B. Our first result is an upper
bound for the number |Red(R) ∩ S2n(B)|.
Theorem 19. Let B a positive integer. Then

|Red(R) ∩ S2n(B)| �n Bn log2 B.

Proof. From (6) and from Proposition 17 we have that

R
(
Red(R) ∩ S2n(B)

)
⊂ Red(Q) ∩ Sn(B ′),

where B ′ = Ln+2 B and thus

|Red(R) ∩ S2n(B)| ≤ |Red(Q) ∩ Sn(B ′)|.
Applying (8) to the right-hand side of the previous inequality, we deduce that

|Red(R) ∩ S2n(B)| �n (Ln+2 B)n(log(Ln+2 B))2.

This implies the statement of this proposition up to a multiplicative constant.
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Recalling that any f ∈ R of degree 2n is given by a coefficient vector
[ f ] = (an, an−1, . . . , a1, a0) ∈ Qn+1, with an �= 0, we have that

|R ∩ S2n(B)| = 2B
(
2B + 1

)n
for B ∈ N,

and then from Theorem 19 we obtain the proportion

|Red(R) ∩ S2n(B)|
|R ∩ S2n(B)| �n

Bn(log B)2

2B
(
2B + 1

)n , (10)

which tends to 0 for B tending to infinity. Inspired by the usual terminology, we say
that almost all polynomials in R with integer coefficients are irreducible in R.

Remark. We may argue that the hidden constant bound provided by Theorem 19
is a rough one. Our approach consists of imbedding the (n + 1)-dimensional cube
[−B, B]n+1 in the (n + 1)-dimensional cube [−Ln+2 B, Ln+2 B] and that encloses
counting more reducible polynomials than necessary. However, in terms of propor-
tions, what really matters is that it tends to 0 as B tends to infinity.

As a consequence of Corollary 6 we know that Irred(R) = R1 ∪ R2. Our goal is
to show that most of the irreducible polynomials in R are already irreducible in Q[t].
In other words, we will show that R2 has very few elements.

Let f be a polynomial in R2 ∩ S2n(B). First of all, we see that, appealing to our
irreducibility criterion (Theorem 11), we can discard the case B = 1. In this case R2 ∩
S2n(B) turns out to be empty. Thus we can assume that B is an integer greater than or
equal to 2.

Theorem 20. Let B be an integer greater than or equal to 2. Then

∣∣R2 ∩ S2n(B)
∣∣ ≤ 4B

√
B(2

√
B + 1)n.

Proof. By Proposition 18 we know that for f ∈ R2 ∩ S2n(B) there exists an irre-
ducible polynomial g ∈ Z[t] with max-norm ||g||∞ ≤ √

B such that f = aggrev for
some nonzero integer a ∈ [−B, B]. By Lemma 4 we have that

∣∣R2 ∩ S2n(B)
∣∣ ≤ 2B

∣∣{ggrev : g ∈ Irred(Q)} ∩ Sn(
√

B)
∣∣.

Since the following bound holds:

∣∣{ggrev : g ∈ Irred(Q)} ∩ Sn(
√

B)
∣∣ ≤ 2

√
B(2

√
B + 1)n

the statement of our theorem easily follows.

As an immediate consequence of Theorem 20, we deduce the following proportion:

∣∣R2 ∩ S2n(B)
∣∣∣∣R ∩ S2n(B)
∣∣ ≤ 2

√
B

(
2
√

B + 1

2B + 1

)n

≤ 2
√

B

(
√

B − 1/2)n
. (11)

This shows that the number of irreducible polynomials in R belonging to R2 is almost
irrelevant with respect to the number of reciprocal polynomials for n ≥ 2. (Recall
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that R2 is empty for B = 1.) Gathering proportions (10) and (11), we come to the
conclusion that most of the polynomials in R ∩ S2n(B) are irreducible over Q when B
tends to infinity.

Theorem 21. Almost all polynomials f ∈ R with integer coefficients are irreducible
over Q.

In summary, when we consider a polynomial in R we must expect that it is an
irreducible polynomial over Q. Thus it is important to have at our disposal criteria for
determining its irreducibility.

7. APPLICATIONS. In this section we apply the reciprocal substitution method and
our irreducibility criteria to study classical examples.

Factorization patterns of Chebyshev polynomials. As a consequence of our approach,
we can easily deal with many facts concerning factorization properties over Q of
Chebyshev polynomials Tn and Un of the first and second kind, respectively.

The reciprocal substitution sequence is related to the sequences Tn and Un . As a
matter of fact, they are related by the following identity:

Tn(x) = 1

2
fn(2x), and Un−1(x) = 1

n
f ′
n(2x) n ∈ N.

In this way, any property concerning the factorization of Tn and Un over the rationals
may be deduced from that of fn and f ′

n .
As we have already pointed out, the definition of the reciprocal mapping R implies

that fn = R(t2n + 1). Moreover, by induction on n it follows that

f ′
n =

{
n ( f1 + f3 + · · · + fn−1) n even

n (1 + f2 + · · · + fn−1) n odd

and hence we deduce that

f ′
n = n R

(
t2(n−1) + t2(n−2) + · · · + t2 + 1

)
.

The factorization of the polynomials t2n + 1 and t2(n−1) + t2(n−2) + · · · + t2 + 1 in Q[t]
is well known. They factor as a product of cyclotomic polynomials of even degree:

t2n + 1 =
∏
d|4n

d�2n

�d t2(n−1) + t2(n−2) + · · · + t2 + 1 =
∏
d|2n

d �=1,2

�d .

In particular, they factor as a product of irreducible elements in R. Thus, it is immedi-
ate that

fn =
∏
d|4n

d�2n

R(�d) and
1

n
f ′
n =

∏
d|2n

d �=1,2

R(�d) (12)

are the irreducible factorizations of fn and f ′
n over Q, respectively. From this fact many

well-known properties of the factorization of fn and f ′
n can be derived.
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Example 22. Since tm + 1 is irreducible over Q if and only if m is a power of 2, it
follows that fn is irreducible over Q if and only if n = 2k for k ∈ N. Therefore, this
provides another proof that the Chebyshev polynomial Tn is irreducible over Q if and
only if n = 2k .

In the same vein, we conclude that the Chebyshev polynomial of the second kind
Un−1 is never irreducible over Q for n ≥ 3, since f ′

n is never irreducible over Q for
n ≥ 3.

In summary, taking into account (12) our method solves completely problems like
the following.

• Factoring completely over Q the Chebyshev polynomials of first and second kind.
• Proving divisibility relations between different Tn and Um .
• Computing greatest common divisors such as (Tn, Tm), (Un, Um), and (Tn, Um).

Some of these results, were previously considered in [7], [12], and [13], although by
using other approaches. Our interest is to stress that our approach simplifies the search
for a solution to these problems. Instead of dealing with Tn and Un−1, it is easier to
deal with fn and f ′

n as images by R of products of cyclotomic polynomials.

The minimal polynomials of cos(2π/n) and sin(2π/n). In this section Cn and Sn

will denote the minimal polynomials over Q of 2 cos(2π/n) and 2 sin(2π/n), respec-
tively.

Let ξ := cos(2π/n) + i sin(2π/n) be a primitive nth root of unity and let �n be its
minimal polynomial over Q, i.e., the cyclotomic polynomial of order n. By Proposition
8, it turns out that

Cn = R(�n) ∈ Q[x] (13)

is the minimal polynomial over Q of 2 cos(2π/n) when n ≥ 3. From this it follows
easily that the minimal polynomial (up to a nonzero rational) of cos(2π/n) is equal to
Cn(2x). This is the proof one can find in Niven’s book [10, p. 38]. In the same proof
it is shown that the numbers sin(2π/n) are algebraic over Q by using trigonometric
identities and then the degrees of their minimal polynomials are computed.

In our context, to compute Sn we use the same idea for computing Cn . We simply
have to find an irreducible reciprocal polynomial having sin(2π/n) + i cos(2π/n) as
a root. Hence, Sn will be the image under R of this sought polynomial.

We consider the complex number

i ξ̄ = sin(2π/n) + i cos(2π/n).

Since i ξ̄ is a primitive root of unity for a suitable m, its minimal polynomial over Q will
be a certain cyclotomic polynomial. We denote by �n the minimal polynomial over Q
of i ξ̄ . To compute �n it is necessary to determine the order of i ξ̄ as a primitive root.

Proposition 23. Let n be a natural number. The minimal polynomial �n of i ξ̄ is com-
puted as follows.

1. If n is odd, then �n = �4n .
2. If n = 2m with odd m, then �n = �2n .
3. If n = 4m with odd m �= 1, then �n = � n

2
and for n = 4, �4 = �1.

4. If n = 8m with odd m, then �n = �n .
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As a consequence of Proposition 23 we can assure that Sn = R(�n) is the minimal
polynomial over Q of 2 sin(2π/n).

Proposition 24. Let n be a natural number. Then the minimal polynomial Sn of
2 sin(2π/n) is computed as follows.

1. If n is odd, then Sn = R(�4n).
2. If n = 2m with odd m, then Sn = R(�2n).
3. If n = 4m with odd m �= 1, then Sn = R(� n

2
) and for n = 4, S4 = R(�1).

4. If n = 8m with odd m, then Sn = R(�n).

This approach exploits the ideas of Niven [10] providing a complementary treat-
ment to the many existing references. For instance, compare with [2], where Sn is
computed for primes values of n.

8. CONCLUSIONS AND OPEN PROBLEMS. In this article we have intended
to show how the reciprocal substitution method might constitute a systematic way of
studying problems involving factorization of reciprocal polynomials over the rationals.
In this sense we have obtained two irreducibility criteria, combinatorial results on the
number of reducible and irreducible reciprocal polynomials, and have also shown how
to deal with some classical families of polynomials.

Observe that our approach could be used to design algorithms for factoring recip-
rocal polynomials. To the best of our knowledge, the “time-cost” of factoring primi-
tive polynomials f ∈ Z[t] of degree n with an efficient algorithm is of order C( f ) =
nu + nv log2 || f ||∞, with u ≥ v + 1 ≥ 3 (see, e.g., [14]). However, when the input is
a reciprocal polynomial, these algorithms do not take advantage of this fact. Next we
outline an algorithm for factoring primitive reciprocal polynomials in R.

1. Compute R( f ) as a matrix-vector product.
2. Factor the primitive polynomial R( f ) of degree n and ||R( f )||∞ ≤ Ln+2 B using

a standard algorithm.
3. Recover the irreducible integer factors in R by multiplying by R−1

n .

Roughly speaking, the outlined algorithm computes the irreducible factors in R with
time-cost of order nu + nv(log2 Ln+2 + log2 B). This procedure runs asymptotically 2u

times faster than directly factoring f with a standard algorithm. Observe that thanks
to the reciprocal mapping we factor polynomials of degree n instead of degree 2n.

This procedure gives at first the irreducible factorization of f in R. Thus it remains
to determine if the irreducible reciprocal factors of f belong to R1 or R2. Our count-
ing results show that the case is that they must belong to R1. Therefore, for most
polynomials the factorizations in R and Z[t] coincide.

For instance, in [6, Lemma 2] it is proved that a 0, 1-reciprocal polynomial has no
nonreciprocal factors. Hence, our algorithm provides the factorization in Z[t] of any
0, 1-reciprocal polynomial.

It remains open the detailed analysis of this algorithm from the points of view of
worst-case and average-case complexity.
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