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Abstract
We investigate entanglement and coherence in an XXZ spin s pair immersed in a non-uniform
transverse magnetic field. The ground state and thermal entanglement phase diagrams are
analyzed in detail in both the ferromagnetic and antiferromagnetic cases. It is shown that a non-
uniform field can control the energy levels and the entanglement of the corresponding
eigenstates, making it possible to entangle the system for any value of the exchange couplings,
both at zero and finite temperatures. Moreover, the limit temperature for entanglement is shown
to depend only on the difference -∣ ∣h h1 2 between the fields applied at each spin, leading for
>T 0 to a separability stripe in the ( )h h,1 2 field plane such that the system becomes entangled

above a threshold value of -∣ ∣h h1 2 . These results are demonstrated to be rigorously valid for
any spin s. On the other hand, the relative entropy of coherence in the standard basis, which
coincides with the ground state entanglement entropy at T=0 for any s, becomes non-zero for
any value of the fields at >T 0, decreasing uniformly for sufficiently high T. A special critical
point arising at T=0 for non-uniform fields in the ferromagnetic case is also discussed.

Keywords: quantum entanglement, quantum coherence, spin systems, non-uniform fields

(Some figures may appear in colour only in the online journal)

1. Introduction

The theory of quantum entanglement has provided a useful
and novel perspective for the analysis of correlations and
quantum phase transitions in interacting many body systems
[1–5]. At the same time, it is essential for determining the
capability of such systems for performing different quantum
information tasks [6–8]. More recently, a general theory of
quantum resources, similar to that of entanglement but based
on the degree of coherence of a quantum system with respect
to a given reference basis, was proposed [9–12]. Thus,
entanglement and coherence provide a means to capture the
degree of quantumness of a given quantum system.

In particular, spin systems constitute paradigmatic exam-
ples of strongly interacting many body systems which enable to
study in detail the previous issues, providing at the same time a
convenient scalable scenario for the implementation of quantum

information protocols. Interest on spin systems has been recently
enhanced by the significant advances in control techniques
of quantum systems, which have permitted the simulation of
interacting spin models with different type of couplings by
means of trapped ions, Josephson junctions or cold atoms in
optical lattices [13–18].

Accordingly, interacting spin systems have been the
object of several relevant studies. Entanglement and discord-
type correlations [19–22] in spin pairs and chains with
Heisenberg couplings under uniform fields were intensively
investigated, specially for spin 1/2 systems [3, 23–34]. The
effects of non-uniform fields have also received attention,
mostly for spin 1/2 systems [35–42], although some results
for higher spins in non-uniform fields are also available
[43–45].

The aim of this work is to analyze in detail the effects of
a non-uniform magnetic field on the entanglement and
coherence of a spin s pair interacting through an XXZ cou-
pling, both at zero and finite temperature. We examine the
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interplay between the non-uniform magnetic field and temp-
erature and their role to control quantum correlations. We also
study the critical behavior and the development of different
phases as the spin increases, when the field, temperature, and
coupling anisotropy are varied. Analytical rigorous results are
also provided. In particular, the T=0 phase diagram will be
characterized by ground states of definite magnetization M,
all reachable through non-uniform fields for any value of the
couplings, with entanglement decreasing with increasing ∣ ∣M .
Special critical points will be discussed. On the other hand,
the limit temperature for entanglement will be shown to
depend, for any value of s, only on the difference between the
fields applied at each spin, leading to a thermal phase diagram
characterized by a separability stripe in field space. Finally,
we will analyze the relative entropy of coherence [10] in
the standard basis, which coincides here exactly with the
entanglement entropy at T=0 but departs from entanglement
as T increases.

The model and results are presented in sections 2–4,
starting with the basic spin 1/2 case and considering then the
s=1 and the general spin s cases. Conclusions are finally
given in section 5.

2. Model and the spin 1/2 case

We consider a spin s pair interacting through an XXZ-type
coupling, immersed in a transverse magnetic field h not
necessarily uniform. The Hamiltonian can be written as

= - - + + +( ) ( )H h s h s J s s s s J s s , 1z z x x y y
z

z z
1 1 2 2 1 2 1 2 1 2

where msi (m = x y z, , ) denote the (dimensionless) spin
operators at site i and J, Jz the exchange couplings, with J Jz

the anisotropy ratio. This Hamiltonian commutes with the
total spin along the z axis, = +S s sz

z z
1 2 , having then eigen-

states with definite magnetization M along z. Without loss of
generality, we will set in what follows >J 0, as its sign can
be changed by a local rotation of angle π around the z axis of
one of the spins, which will not affect the energy spectrum
nor the entanglement of its eigenstates. The ferromagnetic
(FM) case <J 0, <J 0z is then equivalent to >J 0, <J 0z .

We also remark that a Hamiltonian with an additional
Dzyaloshinskii-Moriya coupling along z [46], ¢ =H

+ å -+ +( )H D s s s si i
x

i
y

i
y

i
x

1 1 , can be transformed back exactly

into a Hamiltonian (1) with  ¢ = +J J J D2 2 , by means
of a rotation of angle f = - ( )D Jtan 1 around the z axis at the
second spin [47]. Hence, its spectrum and entanglement
properties will also coincide exactly with those of equation (1)
for  ¢J J .

We first review the =s 1 2 case, providing a complete
study with analytical results and including coherence in the
standard basis, which allows one to understand more easily
the general spin s case, considered in the next subsections.
Entanglement and discord-type correlations under non
homogeneous fields in a spin 1/2 pair were studied in [35, 39]
for an XX-type coupling, in [36] for an isotropic coupling, in
[37, 40] for an XXZ coupling and in [41] for an XYZ coupling.

2.1. The spin 1/2 pair

Using qubit notation, the eigenstates of the Hamiltonian (1)
for =s 1 2 are the separable aligned states ñ º   ñ∣ ∣00
and ñ º   ñ∣ ∣11 , with magnetization = M 1 and energies

= + +  ( ) ( )E h h J
1

2

1

4
, 2z1 1 2

and the entangled M=0 states aY ñ = ñ +
∣ ∣cos 01

a ñ∣sin 10 , with energies

=  D - D = - + ( ) ( )E J h h J
1

2

1

4
, , 3z0 1 2

2 2

and a =
- Dtan h h

J
1 2 . The concurrence [48] of these states

is given by

aY ñ = = D
(∣ ) ∣ ∣ ( )C Jsin 2 , 4

and is a decreasing function of -∣ ∣h h J1 2 . Their entangle-
ment entropy, r r= -S Tr logi i2 with ri the reduced state of
one of the spins, can then be obtained as

å= - =
n

n n
=


 - ( )S p p plog , , 5C

2
1 1

2

2

and is an increasing function of C. In the uniform case
=h h1 2, Y ñ∣ become the Bell states ñ ñ∣ ∣01 10

2
and

Y = Y ñ = (∣ ) (∣ )S C 1.
Through a non-uniform field it is then possible to tune

the entanglement of the M=0 eigenstates, decreasing it by
applying a field difference. On the other hand, such difference
also decreases the energy -E0 of Y ñ-∣ and increases that of
Y ñ+∣ , without affecting that of the aligned eigenstates if the
average field is kept constant, enabling to have the entangled
state Y ñ-∣ as a non-degenerate ground state (GS) for any value
of J or Jz. A similar effect can be obtained by increasing Jz,
which increases the gap between the entangled and the
aligned states, in this case without affecting their concurrence.

Equations (2)–(3) then lead to the phase diagrams of
figure 1. For clarity we have considered the whole field plane,
although the diagrams are obviously symmetric under
reflection from the =h h1 2 line (and spectrum and entangle-
ment also from the = -h h1 2 line). The GS will be either the
entangled state Y ñ-∣ (red sector) or one of the aligned states
( ñ∣00 if + >h h 01 2 or ñ∣11 if + <h h 01 2 , white sectors),
with Y ñ-∣ a non-degenerate GS ( <-

E E0 1) if and only if

+ < + + -∣ ∣ ( ) ( )h h J J h h . 6z1 2
2

1 2
2

This equation is equivalent to the following conditions:

- - < + >( )( ) ( ) ( )h h h h h, 0, , 7J J J J
1 2 2 2 4 1 2 1 2

z z z
2

+ + < + < -( )( ) ( ) ( )h h h h h, 0, , 8J J J J
1 2 2 2 4 1 2 1 2

z z z
2

which show that the borders of the entangled sector are dis-
placed hyperbola branches.

In the AFM case >J 0z , the diagram has the form of the
top left panel. Here the GS is entangled at zero field and if one
of the fields is sufficiently weak ( <∣ ∣h J 2z1 ) the GS remains
entangled for any value of the other field. However, in the FM
case <J 0z two distinct diagrams can arise (top and bottom

2
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right panels), separated by the limit diagram of the bottom left
panel ( = -J Jz ). If - < <J J 0z (top right), the system is
still entangled at zero field but now if one of the fields is
sufficiently weak ( <∣ ∣ ∣ ∣h J 2z1 , dashed vertical lines) entan-
glement is confined to a finite interval of the other field.
Control of just one field then allows one to switch entangle-
ment on and off for any value of the other field.

On the other hand, if < -J Jz , the GS is aligned for any
uniform non-zero field, and Y ñ-∣ becomes GS only above a

threshold value of the field difference, - > -∣ ∣h h J Jz1 2
2 2

(equation (6)), within the limits determined by equations (6)–
(8). These limits imply that the sign of the field at each site
must be different, as seen in the bottom right panel. Hence,
GS entanglement is in this case switched on (rather than

Figure 1. Ground state phase diagram for the spin 1/2 pair. Top: antiferromagnetic (AFM) case =J Jz (left) and ferromagnetic (FM)-type
case = -J J 2z (right). Bottom: FM cases = -J Jz (left) and = -J Jz

3
2

(right).

Figure 2. Concurrence of the GS as a function of the magnetic fields for the cases of figure 1. Top: =J Jz (left) and-J 2 (right). Bottom:
= -J Jz (left) and - J3

2
(right).

3
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destroyed) by field application, provided it has opposite signs
at each spin. In addition, a GS transition between the aligned
states ñ∣11 and ñ∣00 takes place at the line = -h h1 2 for

- < -∣ ∣h h J Jz1 2
2 2 , with the GS degenerate in this inter-

val along this line.
The GS concurrence for the same cases of figure 1 is

depicted on figure 2. As seen in the top panels, the maximum
C=1 is reached for = =h h h1 2 provided > -J Jz and

< +∣ ∣h J J

2
z . For < -J Jz , the maximum value is =C

<∣ ∣J J 1z , attained at the edges = - =  -h h J Jz1 2
1

2
2 2

of the entangled sector.

2.1.1. Thermal entanglement. Let us now consider a finite
temperature T. As T increases from 0, an entangled GS will
become mixed with other excited states, leading to a decrease
of the entanglement which will vanish beyond a limit
temperature. However, if the GS is separable, the thermal
state can become entangled for >T 0 (below some limit
temperature) due to the presence of entangled excited states,
implying that the entanglement phase diagram for >T 0 may
differ from that at T=0 even for low T.

In the present case the thermal state r = b- -Z e H
12

1 , with
= b-Z eTr H the partition function and b = kT1 , has in the

standard basis the form

r =

+

+

-

-

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

p

q w

w q
p

0 0 0

0 0

0 0
0 0 0

, 912

where = b


- - p Z e E1 1, = b b b


- D -
D

D( )q Z e cosh sinhJ h h1 4
2 2

z 1 2

and = - b b-
D

Dw Z e sinhJ J1 4
2

z . Its concurrence [48] is then
given by

= -

= -b b b

+ -

-
D

D -⎡⎣ ⎤⎦
[∣ ∣ ]

( )

C w p p

Z e e

2 Max ,0

2 Max sinh , 0 . 10J J J1 4
2

4z z

Thus, for >T 0 r12 is entangled if and only if

b
D

D
>b ( )J

e sinh
2

1. 11J 2z

Equation (11) implies a limit temperature for entangle-
ment that will depend on Jz, J and -∣ ∣h h1 2 only. It also
implies a threshold value of Jz for entanglement at any >T 0,

>
D

= -D +
D
-b bD - D

( )J kT
J

kT
J

e
2 ln

sinh
4 ln

1
. 12z

2

Hence, it is always possible to entangle the thermal state by
increasing Jz, since it will effectively cool down the system to
the state Y ñ-∣ , as previously stated.

The same effect occurs if the field difference -∣ ∣h h1 2 is
increased. The left hand side of equation (11) is an increasing
function of Δ and hence of -∣ ∣h h1 2 for any >T 0 and Jz, so
that at any >T 0 there will also exist a threshold value hc of
the field difference -∣ ∣h h1 2 above which the thermal state
will become entangled:

- >∣ ∣ ( ) ( )h h h T J J, , . 13c z1 2

Equation (13) gives rise to a separability stripe
-∣ ∣ ( )h h h T J J, ,c z1 2 , as depicted in figure 3. Here

= D -( )h T J J J, ,c z c
2 2 , with D = b- -( )kTf e2c

kT

J
J1 2 2z

and -f 1 the inverse of the increasing function =( )f x
x xsinh ( >x 0).
Equation (13) implies that the thermal entanglement

phase diagram in the field plane differs from the T=0 phase
diagram even for small temperatures >T 0, as it is
determined just by the field difference -∣ ∣h h1 2 . Entangle-
ment will be turned on in T=0 separable sectors outside the
stripe as soon as T becomes finite. In particular, for > -J Jz ,
equation (12) shows that in contrast with the T=0 case, the
whole h h,1 2 plane becomes entangled for < <T T0 c, with

( )T J J,c z determined by

=b b ( )e sinh 1, 14J J2
2

c z c

such that =( )h T J J, , 0c z if < ( )T T J J,c z . The separability
stripe arises then for > ( )T T J J,c z . For  -J Jz , T 0c

while if Jz = 0, = »kT J Jarcsinh 1 0.567c
1

2
.

However, for < -J Jz a separability stripe will be

present for all >T 0, with  -( )h T J J J J, ,c z z
2 2 for

Figure 3. Thermal entanglement phase diagram for the spin 1/2 pair at =kT J 2. Left: AFM case =J Jz . Right: FM case = -J J 2z . Red
sectors indicate entanglement. The whole plane remains entangled for < <kT J0 0.91 if =J Jz and < <kT J0 0.335 if = -J J 2z . Above
these temperatures, a separability stripe -∣ ∣ ( )h h h T J J, ,c z1 2 arises. For < -J Jz the separability stripe arises for any >T 0.

4
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 +T 0 . The thermal phase diagram in the field plane is then
characterized, for any value of Jz, by a separability stripe
whose width increases with increasing T, and vanishes for

> -J Jz if < ( )T T J J,c z .
The thermal concurrence is shown in figure 4. It is

verified that it is strictly zero just within the separability stripe
(13), becoming small but non-zero in the T=0 separable
regions outside it (dark blue in figure 4). Nonetheless, such
reentry of entanglement for >T 0 can become quite notice-
able in some cases, as seen in the top panel of figure 5. It is
also verified that through non-uniform fields it becomes
possible to preserve entanglement up to temperatures higher
than those in the uniform case (which lies at the center of the
separability stripe), as also seen in figure 5.

2.1.2. Coherence. We now analyze the coherence of the
thermal state (9) with respect to the standard product basis

ñ ñ ñ ñ{∣ ∣ ∣ ∣ }00 , 01 , 10 , 11 . This quantity can be measured through
the relative entropy of coherence [10], defined as

r r r r r= = -( ) ( ∣∣ ) ( ) ( ) ( )C S S S , 15h 12 12 12
diag

12
diag

12

where r r r= -( )S Tr log2 is the von Neumann entropy and

r12
diag its diagonal part in the previous basis. It is a measure of the
strength of the off-diagonal elements in this basis, and would
obviously vanish if J=0. It will be here driven just by the
coefficient w in (9). A series expansion of (15) for ∣ ∣w q

in (9) leads in fact to r »
-
+ -

+ -
( ) ( )

C wh
q q

q q12
log 22 . The exact

expression is r = -å -n n n n n=( ) ( )C q q p plog logh 12 2
0

2
0 ,

where = b


- - 
p Z e E0 1 0 .

In the zero temperature limit, r( )S 12 vanishes while
r( )S 12

diag and hence r( )Ch 12 become the entanglement entropy
S of the GS, equation (5), since the standard basis is here the
Schmidt basis for Y ñ-∣ . However, for >T 0, r( )Ch 12 becomes
everywhere non-zero due to the non-vanishing weight of the
entangled states Y ñ∣ , as seen in figures 5 and 6. In fact, for
 [ ]kT J J h hmax , , ,z 1 2 , a series expansion leads to the

asymptotic expression

r » +

-
+ + + -

⎡
⎣⎢

⎤
⎦⎥

( )( )

[( ) ] ( )
( )

( )

C

h h J h h

kT

1

3

48
, 16

h
J

kT

J

kT12
1

16 ln 2

2

4

1 2
2 2

1 2
2

2

z

showing that it ultimately decreases uniformly as ( )J kT 2 in
this limit. It then exhibits a reentry for >T 0 in all T=0
separable sectors, as seen in figures 5 and 6.

As previously mentioned, by applying sufficiently strong
opposite fields at each site it is possible to effectively ‘cool
down’ the thermal state r12 at any >T 0, bringing it as close
as desired to the entangled state Y ñáY- -∣ ∣. This behavior is
shown in the right panel of figure 5. It is seen that the
entanglement of formation S, obtained from the thermal
concurrence C by the same expression (5) [48], and the
relative entropy of coherence, initially different and depen-
dent on Jz, merge for increasing values of -∣ ∣h h1 2 ,
approaching a common Jz-independent limit which is the
entanglement entropy S of the pure state Y ñ-∣ . The vanishing

Figure 4. Concurrence as a function of the magnetic fields h1 and h2 at finite temperature. Top panels: AFM case =J Jz (left) and FM case
= -J J 2z (right) at temperature =kT J 2. Bottom panels: Same diagrams for the FM cases = -J Jz (left) and = -J Jz

3
2

(right) at =kT J0.05 .
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Figure 6. Relative entropy of coherence in the standard basis as a function of the transverse non-uniform fields h1 and h2 at finite
temperatures, for the same cases of figure 4. Top panels: AFM case =J Jz (left) and FM case = -J J 2z (right) for =kT J 2. Bottom
panels: FM cases = -J Jz (left) and = -J Jz

3
2

(right) for =kT J0.1 .

Figure 5. Left: concurrence (upper panel) and relative entropy of coherence in the standard basis (lower panel) as a function of temperature
for = -J J 2z at = =h h 01 2 (a), = =h h J0.31 2 (b) and = - =h h J1 2 (c). The reentry of entanglement for >T 0 in case (b) is clearly
seen, with the limit temperature for entanglement independent of the field if =h h1 2 (cases a,b) and increasing with increasing values of

-∣ ∣h h1 2 (case c), as follows from equation (11). In contrast, the coherence remains non-zero ∀T, decreasing uniformly as ( )J kT 2 for high T
(equation (16)) and approaching the entanglement entropy (5) for T 0. Right: entanglement of formation S (solid lines) and relative
entropy of coherence (dashed lines) as a function of the field difference d = -∣ ∣h h h1 2 at fixed temperature =kT J 2 for =J J 1z (a,e),
-1 2 (b,f), −1 (c,g) and -3 2 (d,h), at = -h h1 2. As d∣ ∣h increases, all curves coalesce and become independent of Jz, approaching the
entanglement entropy of the GS Y ñ-∣ determined by equation (4).
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difference between S and Ch for high -∣ ∣h h1 2 is a clear
signature that r12 has become essentially pure.

3. The spin-1 pair

We now consider the s=1 case. The behavior is essentially
similar to that for =s 1 2, the main difference being the
appearing of an intermediate = M 1 magnetization step in
the T=0 diagrams, between the entangled M=0 GS and
the aligned separable = M 2 states. This effect leads to an
entanglement step since the = M 1 GS is less entangled
than the M=0 GS.

Using now the notation ñ∣m m,1 2 for the states of the
standard basis, with mi the eigenvalues of si

z, the GS of the
spin 1 XXZ pair can be one of the =∣ ∣M 2 aligned states
Y ñ =   ñ∣ ∣ 1, 12 , one of the =∣ ∣M 1 states, which will be
of the form

a aY ñ =  ñ +  ñ  ∣ ∣ ∣ ( )cos 1, 0 sin 0, 1 , 171

with a =  - +h h
tan 1

2 4

2

and h = -h h

J
1 2 , and one of the

M=0 states, of the form

g g gY ñ = - ñ + ñ + - ñ+ -∣ ∣ ∣ ∣ ( )1, 1 00 1, 1 . 180 0

All coefficients are independent of +h h1 2, but those of Y ñ∣ 0

depend now on Jz. For Jz = 0 they can be still written down
concisely: g g h h= - ++ 20

2 , g g hg g= +- + +1 0 .

Their energies are

= + +

= - +




+ -



 ( )
( )

( )

E h h J

E J

,

, 19

z

h h h h

2 1 2

1 2
2

2

2
1 2 1 2

= - + - =( ) ( ) ( )E J h h J2 0 . 20z0
2

1 2
2

The border of the T=0 entangled region, determined by that
between the =∣ ∣M 2 and =∣ ∣M 1 GS, = E E2 1, is then
given again by equations (6)–(8) with J J2 , J J2z z. The
GS phase diagrams have then the same forms as those of
figure 1 except for the previous rescaling and the magneti-
zation step. The Jz = 0 case is shown in figure 7.

As entanglement measure valid for both zero and finite
temperature, we will now use the negativity [49, 50], a well-
known entanglement monotone which is computable in any
mixed state, since an explicit expression for the concurrence
or entanglement of formation of a general mixed state of two
qutrits (spin 1 pair) or in general two qudits with d 3 is no
longer available. The negativity is minus the sum of the
negative eigenvalues of the partial transpose [51, 52] r12

t2 of
r12:

r r= -( ) ( ∣ ∣ ) ( )N Tr 1 2. 2112 12
t2

A non-zero negativity implies entanglement, whereas for
mixed states, the converse is not necessarily true (except
for two qubit states [51, 52] or special states), vanishing for
bound entangled states. Nonetheless it is normally used as an
indicator of useful entanglement.

Figure 7. Top: ground state phase diagram (left) and negativity (right) for the spin 1 pair with Jz = 0 as a function of the applied fields at each
spin. Colored sectors on the left indicate entanglement. Bottom: the negativity (left) and relative entropy of coherence (right) of the thermal
state of the spin 1 pair at temperature kT = J as a function of the applied fields.
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For pure states it reduces to a special entanglement
entropy [31], being a function of the one-spin reduced state
r1 (or r2, isospectral with r1 for a pure state): =N

r -[( ) ]Tr 11

2 1
2 . It is then non-zero if and only if the state

is entangled. Its maximum value for a spin s pair is N=s.
We then obtain Y ñ =(∣ )N 02 ,

aY ñ = =
h

 
+

(∣ ) ∣ ( )∣ ( )N sin 2 , 221
1

2

1

4 2

g g g g gY ñ = + ++ - + -(∣ ) [∣ ∣ ∣ ∣(∣ ∣ ∣ ∣)] ( )N 230
1

2 0

= =
h h n h

h

+ å + + +

+
n= ( ) ( )

( )
( )

J 0 . 24z
1 2 1 2

2 2

2

2

They are decreasing functions of h = -h h

J
1 2 , reaching for

h = 0 the value 1

2
for =∣ ∣M 1 (maximum value for Schmidt

rank 2) and »+ 0.9581 2 2

4
for M=0. The negativity of the

M=0 GS depends now on Jz, reaching the maximum N=1
for Jz = 1.

It is verified in figure 7 that the T=0 phase diagram and
entanglement for Jz = 0 is similar to that for =s 1 2 except for
the = M 1 magnetization and negativity steps. Remarkably,
the finite temperature negativity diagram is again characterized
by a separability stripe -∣ ∣ ( )h h h T J J, ,c z1 2 for >T Tc,
with the boundary of the non-zero negativity sector independent
of +h h1 2 (as demonstrated in the next section). At Jz = 0 the
stripe emerges for > »kT kT J0.864c (root of the critical
equation b b+ =( ) ( )J J3 2 cosh 2 cosh 2 2c c ), with the
whole field plane entangled for <T Tc. It should be also
mentioned that the T=0 negativity step gives rise to a nega-
tivity ‘valley’ for low finite T due to the convexity of N, as will
be seen in the next section.

The relative entropy of coherence in the standard basis
behaves in the same way as before. It approaches the GS
entanglement entropy for T 0, while for kT J J, ,z

∣ ∣ ∣ ∣h h,1 2 , it decreases uniformly at leading order, becoming,
for Jz = 0,

r »

´ - + + + -⎡⎣ ⎤⎦
( )( )

( )( ) ( )
( )

C

1 . 25

h
J

kT

J h h h h

kT

12
4

9 ln 2

2

55 15 9

12

2
1 2

2
1 2

2

2

4. The spin s case

4.1. Ground state phase diagram and entanglement

Let us finally consider the main features of the general spin s
XXZ pair in a non-uniform field. The GS phase diagram
remains similar to the previous cases, but now with s2 mag-
netization steps, from M=0 up to = M s2 . These steps
originate s2 steps in the T=0 entanglement and negativity,
since they decrease with increasing ∣ ∣M . This behavior can be
seen in the top panels of figure 8 for an s=2 pair.

The border of the entangled region in the field plane is
determined by that between the aligned GS with =∣ ∣M s2 and
the entangled GS with = -∣ ∣M s2 1. Remarkably, it is the
same as that for =s 1 2, equation (6), with the rescaling

J sJ2 , J sJ2z z:

+ < + + -∣ ∣ ( ) ( )h h sJ s J h h2 4 . 26z1 2
2 2

1 2
2

The border are then the hyperbolas (7)–(8) with the previous
scaling and give rise to the same possibilities depicted in
figure 1, with the additional inner magnetization steps.

Proof. Considering first +h h 01 2 , the energies of the
=M s2 aligned state ñ∣ss and the lowest = -M s2 1 state,

which is a aY ñ = - ñ + - ñ-∣ ∣ ∣s s s scos , 1 sin 1,s2 1 , with

a = - +h htan 1
s s2 4

2

2 and h = -h h

J
1 2 , are

= - + +( ) ( )E s h h s J , 27s z2 1 2
2

=- -

+ - - +

-
+

-( )
( )

( ) ( )

E s

s s J s J

2 1

1 . 28

s
h h

z
h h

2 1 2

2

2
2 2

1 2

1 2

The condition <-E Es s2 1 2 leads then to equation (26). If
+h h 01 2 , the result is similar with +h h1 2 replaced by

+∣ ∣h h1 2 and EM by -E M . ,

In figure 9 we plot an example for s=2 of the inter-
esting FM case < -J Jz , where the GS is fully aligned for
any uniform field = =h h h1 2 , as in the =s 1 2 case, with a
transition = -M s2 to =M s2 at h=0. However, it can
again be entangled with a non-uniform field, by applying
opposite fields at each spin. Equation (26) implies that in this
case GS entanglement will arise for

- > = - < -∣ ∣ ( ) ( )h h h s J J J J2 , 29c z z1 2
2 2

within the limits (hyperbolas) determined by equation (26),
which entail that no entangled GS will arise for fields of equal
sign if < -J Jz , as in the =s 1 2 case. Moreover, the edges
of the T=0 entangled sector,

= - =  ( )h h h 2, 30c1 2

are actually critical points in which +s4 1 distinct GS’s,
corresponding to all magnetizations = - ¼M s s2 , ,2 , coa-
lesce and become degenerate, as verified in the top left panel
of figure 9. At these points, their common energy is

= <
= - =  < - = - ¼ ( )( ) 31

E s J
h h h J J M s s

0
2, , 2 , ,2 ,

M z

c z

2

1 2

independent of J and M. Their entanglement decreases, how-
ever, with |M|, as seen in the top right panel through the
negativity. Along the line = -h h1 2 a GS transition from the
lowest non-degenerate M=0 state to the aligned states

= M s2 (degenerate along this line) occurs at =h1

- = h h 2c2 , although precisely at these points the GS
becomes +s4 1-fold degenerate. Actually the transition region
with intermediate GS magnetizations = ¼ -∣ ∣M s1, ,2 1 is
rather narrow in the h h,1 2 field plane, as seen in the top left
panel, collapsing at the critical points.

A final comment is that the maximum GS entanglement
of a spin s XXZ pair is reached at the M=0 GS and depends
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on Jz for >s 1 2. For < -J Jz it is reached at the previous
critical points (figure 9), while for > -J Jz it is reached along
the line =h h1 2 (figure 8). In the uniform AFM case = -J Jz ,
the M=0 eigenstate will be maximally entangled for

=h h1 2, leading to maximum negativity N=s, while for
- < <J J Jz , the M=0 negativity will be smaller and pro-
portional to s for large s, due to a gaussian profile of width
µ s of the expansion coefficients in the standard basis [53].

We also mention that some internal magnetization steps may
disappear for large >J Jz and small -∣ ∣h h1 2 .

4.2. Finite temperatures

As T increases, the T=0 negativity steps become initially
negativity valleys, as clearly seen in the bottom left panel of

Figure 8. Top: ground state phase diagram (left) and negativity (right) for a spin 2 pair with Jz = 0 as a function of the applied fields at each
spin. Colored sectors on the left indicate entanglement, with the number denoting the magnetization of the state. Bottom: the negativity of the
spin 2 pair at temperature =kT J0.1 (left) and =kT J1.6 (right).

Figure 9. Top: ground state phase diagram (left) and negativity (right) for a spin 2 pair with = -J J1.2z as a function of the applied fields at
each spin. Colored sectors indicate an entangled GS, with the color and number identifying the distinct magnetizations. Bottom: the
negativity (left) and relative entropy of coherence (right) of the spin 2 pair for = -J J1.2z at temperature =kT J0.5 .
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figure 8, since convexity of N implies that its value for the
mixture of two entangled states will be smaller than the
average negativity of the states. These valleys are rapidly
smoothed out as T increases further. On the other hand, it is
also seen in figures 8 and 9 that entanglement diffuses outside
the T=0 entangled region as T increases, covering initially
the whole field plane for > -J Jz and the whole plane outside
the stripe -∣ ∣h h hc1 2 for < -J Jz , although the negativity
will be small in the T=0 aligned sectors.

A striking feature for finite temperatures is the persistence
of a separability stripe -∣ ∣ ( )h h h T J J, ,c z1 2 in the field
plane when considering the thermal entanglement, as seen in
the bottom right panel of figure 8 for Jz = 0, where the stripe
emerges for > =T T J k1.498c , and in the bottom left panel
of figure 9 for = -J J1.2z , where the stripe is present ∀ >T 0.
This result will now be shown to hold for arbitrary spin, fol-
lowing the arguments of [31] for XXZ systems in uniform fields.

Lemma 1. The limit condition for entanglement and non-zero
negativity of a spin s pair with an XXZ coupling in a non-
uniform transverse field at temperature >T 0, depends only
on the field difference -h h1 2. This result applies also to any
coupling independent of the field that commutes with the total
spin along z ( =[ ]H S, 0z ).

Proof. We first rewrite the Hamiltonian of a spin s pair in a
non-uniform field as

= -
+

+ -
-

- +( ) ( ) ( )H
h h

s s
h h

s s V
2 2

, 32z z z z1 2
1 2

1 2
1 2

where V denotes the (field independent) interaction between
the spins, assumed to satisfy =[ ]V S, 0z ( = +S s sz

z z
1 2 ). The

first term in (32) is the uniform field component and
commutes with the rest of the Hamiltonian. Consequently,
the thermal state for average field = +h h h

2
1 2 , r =( )h12

b- -Z eh
H1 , can be written as

r r= b b( ) ( ) ( )h e e0 , 33Z

Z
hS hS

12
2

12
2

h

z z0

where r ( )012 depends just on -h h1 2 and commutes with Sz.
Equation (33) implies that r ( )h12 will be separable, i.e., a

convex combination of product states [54], if and only if
r ( )012 is separable: If r r r= å Äa a

a a( ) q012 1 2 , with >aq 0
and rai local mixed states, then r r r= å Äa a

a a( ) ˜ ˜h q12 1 2 with
r rµa b a b˜ e ei

hs
i

hs2 2i
z

i
z

also local mixed states, so that it is
separable as well. Similarly, r ( )h12 separable implies r ( )012

separable (r rµa b a b- -˜e ei
hs

i
hs2 2i

z
i
z

). Hence, the limit condi-
tion for exact separability depends only on -h h1 2.

Let us now consider the negativity. The non-zero matrix
elements of r ( )h12 are rá - - ¢ ¢ñ∣ ( )∣m M m h M m m, ,12

rµ á - - ¢ ¢ñb ∣ ( )∣e m M m M m m, 0 ,hM
12 . Its partial transpose

will then have matrix elements rá ¢ - ¢ -∣ ( )∣m m h M m M, ,12
t2

ñm rµ á ¢ - ¢ - ñb ∣ ( )∣e m m M m M m, 0 ,hM
12
t2 , such that it can

also be written as

r r= b b( ) ( ) ( )h e e0 . 34t Z

Z
hS t hS

12
2

12
2

h

z z2 0 2

Although r ( )0t
12

2 will no longer commute with Sz, r ( )ht
12

2 will

be positive definite (i.e., with positive eigenvalues) if and
only if r ( )0t

12
2 is positive definite, since be hS 2z is positive

definite and Zh, Z0 are positive. This result demonstrates the
lemma for the negativity. More explicitly, the onset for non-
zero negativity occurs when the lowest eigenvalue of rt

12
2

becomes negative, implying a vanishing eigenvalue at the
onset, i.e., r =[ ]det 0t

12
2 . But equation (34) implies

r r=
+( )[ ( )] [ ( )]

( )
hdet det 0t Z

Z

s
t

12

2 1

12h

2 0
2

2 (as =STr 0z ), so that

the critical conditions at ¹h 0 and h=0 are equivalent. ,

In addition, for an XXZ coupling as well as for any
coupling invariant under permutation of the spins, the limit
condition will obviously depend only on the absolute value

-∣ ∣h h1 2 of the field difference, as those for ( )h h,1 2 and
( )h h,2 1 should be identical.

Therefore, even though the negativity for the XXZ pair
does depend on the average field = +h h h

2
1 2 (through the

relative weights of the distinct eigenstates), as was seen in
previous figures, the limit temperature for non-zero negativity
at fixed exchange couplings, and the threshold values of Jz or
J for non-zero negativity at fixed temperature, will depend
just on -∣ ∣h h1 2 . In the h h,1 2 field plane, the set of zero
negativity states will then be stripes, i.e., typically a stripe

-∣ ∣h h hc1 2 . Of course, N can be exponentially small
outside the stripe, but not strictly zero.

The previous features of the relative entropy of coherence
remain also valid. The standard basis of states ñ∣m m,1 2 con-
tinues to be the Schmidt basis for definite magnetization
eigenstates, i.e. Y ñ = å - ñ∣ ∣c m M m,M m m , entailing that for
T 0 the coherence will approach the GS entanglement

entropy (for a non-degenerate GS) adopting qualitatively the
same form as the T=0 negativity. Nevertheless, as
T increases the T=0 steps will become rapidly smoothed out
in the coherence, without exhibiting minima or valleys. It will
also rapidly occupy the T=0 separable sectors, becoming in
particular prominent along the line = -h h1 2 for < -J Jz , as
seen in the bottom right panel of figure 9. On the other
hand, for sufficiently high temperatures it will approach
a uniform decay pattern for all s. A series expansion for
 ∣ ∣ ∣ ∣ ∣ ∣kT J J h h, , ,z 1 2 leads to

r
b

»
-

=
+⎜ ⎟⎛

⎝
⎞
⎠ ( )( )

[ ( ) ] ( )
35C

H H

d

s s J

kT

Tr

2 ln 2
1

9 ln 2
1

,h 12

2 2
diag

2 2

where the first result holds in a system of finite dimension d
and the last one is the leading asymptotic expression for a
spin s XXZ pair. It reproduces the leading term of previous
asymptotic results (16) and (25).

5. Conclusions

We have discussed in detail the entanglement and coherence of
the XXZ spin s pair in a transverse non-uniform field at both
zero and finite temperatures. The general spin s case exhibits
interesting features which can already be seen in the basic
=s 1 2 case. In the latter, while the T=0 diagram in the field

plane is characterized by an M=0 entangled region bounded

10

J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 095501 E Ríos et al



by hyperbola branches, reachable through non-uniform fields
even in the FM case < -J Jz , the thermal state is characterized
by a separability stripe -∣ ∣ ( )h h h T J J, ,c z1 2 in the h h,1 2

field plane for any >T 0, with the system becoming pure and
entangled for large values of -∣ ∣h h1 2 . Analytic expressions
were provided.

Remarkably, these features were shown to remain strictly
valid for any value of the spin s. The boundaries of the T=0
entangled sector are given by the same expressions with a
simple rescaling, while the conditions for non-zero thermal
entanglement and negativity were rigorously shown to
depend just on the field difference -∣ ∣h h1 2 for any s,
entailing that for >T 0 strict separability will still be
restricted to a stripe -∣ ∣ ( )h h h T J J, ,c z1 2 . The main dif-
ference with the spin 1/2 case is the emergence of s2 mag-
netization and entanglement steps at T=0, which lead to
deep valleys in the negativity at low temperatures but which
disappear as T increases. Another interesting aspect emerging
for non-uniform fields for increasing spin is the appearing of a
critical point along the line = -h h1 2, which determines the
onset of GS entanglement for < -J Jz and where all +s4 1
GS’s with magnetizations = - ¼M s s2 , ,2 coalesce.

The relative entropy of coherence in the standard basis
approaches the entanglement entropy for T 0, although for
>T 0 it stays non-zero for all fields. The exact asymptotic

expression for high T was derived, which shows that it ulti-
mately decays uniformly as +( ( ) )s s J kT1 2 for sufficiently
high temperatures.

In summary, the present results show that the XXZ pair in a
non-uniform field is an attractive simple system with potential
for quantum information applications. Its entangled eigenstates,
having definite magnetization, admit a variable degree of
entanglement which can be controlled by tuning the fields at
each spin. Moreover such tuning enables the selection of the
magnetization of the GS at T=0 for any anisotropy, while at
>T 0 it allows one to effectively cool down the system to an

entangled state. At T=0 entanglement itself can be detected
and approximately measured through the magnetization, since
it decreases with increasing |M| and vanishes just for maximum
|M|. The possibility of simulating XXZ systems with tunable
couplings and fields by different means enhances the interest in
this type of models. It would then be interesting to extend these
results to spin s XXZ chains and explore in detail their entan-
glement and coherence properties under non-uniform fields.
Preliminary results indicate that at least for small n, the general
behavior of an n-spin s chain in a general field does resemble
that of an effective spin pair with the same total maximum spin
(i.e., a spin ns 2 pair), although details depend on several
features such as boundary conditions, parity of n, etc (and in
the case of entanglement and coherence, of course on the type
of pair or partition analyzed), which are currently under
investigation.
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