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We study the solutions of a system of three coupled excitable cells with D3 symmetry. The
system has two parameters, one controls the local dynamics of each cell and the other the
strength of the coupling. We find and describe self-sustained collective oscillations. Periodic
solutions appear in global bifurcations, typically after the collapse of fixed points heteroclinically
connected. The symmetries of these periodic solutions are the same as the ones expected in
periodic solutions which appear in local (Hopf) bifurcations.

1. Introduction

Many systems in nature present what is known as
excitability. A system is said to be excitable when-
ever it presents a stationary solution towards which
the system can evolve, after a perturbation, in two
qualitatively different ways: either through a short
trip in phase space, or through a large excursion in
phase space, provided that the perturbation over-
comes a given threshold. The canonical example
of a natural system displaying excitable behavior is
the neuron [Murray, 1989; Hodgin & Huxley, 1952],
although many other systems are known to present
this property. For example, recently it was pro-
posed that a semiconductor laser with optical feed-
back presents excitable dynamics [Giudicci et al.,
1997].

In this work, we analyze the collective behav-
ior of a small set of coupled excitable systems. For
coupled oscillators, the theory of local bifurcations
in the presence of symmetries allows us to classify

with group theoretical tools the collective dynam-
ical regimes that arise, in Hopf bifurcations, pro-
vided that the coupling is symmetric [Golubitsky,
et al., 1988]. In our case, we follow the spirit of these
works in order to explain the collective features that
arise when excitable systems are symmetrically cou-
pled, typically after global bifurcations. We will
show that self-sustained oscillations can arise, and
that the existence of symmetric invariant subspaces
of the phase space allows the system to undergo
global bifurcations inheriting the symmetry of the
subspaces. The symmetries of the periodic solutions
are the same as the ones expected in Hopf (local)
bifurcations, thus, we show that solutions that can
be obtained using symmetry and Hopf bifurcation
also appear in excitable systems.

The manuscript is organized as follows: in
Sec. 2 we present our model, in Sec. 3 we build
our coupled set. Section 4 contains the description
and analysis of the solutions that we found, and we
close with Sec. 5, containing our conclusions.
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2. Models for Excitability

2.1. Excitability and Andronov
bifurcation

As mentioned in the introduction, a system is said
to be excitable when it satisfies the following con-
ditions [Murray, 1989]:

• It has a stable fixed point.
• Initial conditions over a given threshold return

to the fixed point after a long (nonlocal) trip in
phase space, while conditions below this thresh-
old return to the fixed point in a short (local)
trip.
• For initial conditions over the threshold, the

response is stimulus independent.

In order to build a model presenting the dy-
namical features mentioned above one can request
the existence of:

• a stable fixed point;
• an unstable fixed point (the threshold being a

measure of the distance in phase space between
the stable fixed point and the unstable one);
• an attractive connection between the saddle and

the stable fixed point (a trajectory close to this
connection will be the excited return trip).

If the global connection is highly attractive, the
dynamics of the system collapses to a set with the
topology of S1, with two fixed points, one stable
and one unstable, where the unstable manifold of
the unstable fixed point feeds the stable fixed point.
This scheme is shown in Fig. 1. In summary, the
dynamical ingredients are (a) a local condition: the
system is close to a saddle-node bifurcation, and
(b) a global condition: the two branches of the
unstable manifold of the saddle, feed the node.

This scenario is present in the parameter
space neighborhood of the Andronov bifurcation
[Andronov et al., 1973], and the simplest ordinary
differential equation displaying it is:

θ̇ = µ− cos(θ) , θ ∈ S1 . (1)

The bifurcation diagram for the Andronov bi-
furcation is shown in Fig. 1. For µ = 1, both fixed
points collide in a nonhyperbolic fixed point, and a
periodic orbit appears for µ > 1.

Periodic orbits arising in an Andronov bifurca-
tion have two characteristics that distinguish them

Fig. 1. (a) Bifurcation diagram for Andronov bifurcation, solid line corresponds to stable fixed point and dashed line to
unstable. (b) Excitable system represented by Eq. (1) with µ < 1. (c) Nonhyperbolic fixed point and homoclinic connection
for µ = 1 d. Periodic orbit for µ > 1.
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from periodic orbits arising in Hopf bifurcations,
namely

• They appear with nonzero amplitude. That is:

lim
λ→λ0

A 6= 0 (2)

where A is the amplitude, λ the parameter and
λ0 the bifurcation point.
• They appear with infinite period. That is:

lim
λ→λ0

T =∞ (3)

Even more, the orbit stays during a very long
time (as long as we want if we are close enough to
the bifurcation point) close to the point where the
fixed points collapsed.

2.2. Three symmetrically
coupled cells

The aim of this work is to study the dynamics of
three excitable cells. We want these cells to be indis-
tinguishable as well as the coupling between them.
In Fig. 2 we represent each excitable system (“cell”)
by a circle, and the coupling by segments joining
them. This coupling results in a system with D3

or S3 symmetry. (S3 and D3 are isomorphic groups
that can be seen from the picture from the fact that
the coupling of three cells to first neighbors is equiv-
alent to coupling all with all. That is not true of
course for more than three cells, just as for n > 3
Dn is not isomorphic to Sn.)

Fig. 2. Three coupled cells with D3 symmetry.

Thus, our study will have two main ingredients:
(a) excitability, a property of each of the cells we are
coupling, and (b) symmetry, due to both the indis-
tinguishibility of the three cells and the coupling
between them.

It is known [Golubitsky et al., 1988; Solari
et al., 1996] that symmetries impose a strong re-
striction in the generic solutions resulting from a
bifurcation problem. The main idea is that when a
solution with a given symmetry (which is described
in terms of a subgroup Σ of the total group of sym-
metry Γ) bifurcates, the bifurcating solutions gener-
ically lose not all, but some of its symmetries.

These ideas have been studied for the case of
stationary and Hopf bifurcations with symmetryDn

[Golubitsky et al., 1988]. In the case of Hopf bifur-
cations, symmetry is not just broken in space coor-
dinates, but in spatiotemporal coordinates, switch-
ing from a continuous symmetry (t→ t+ δt ∀t, δt),
corresponding to stationary solution, to a discrete
symmetry (t→ t+T ∀t, for a given T ). So when we
look for the different symmetries of the solutions we
will refer to spatial symmetries (invariance to oper-
ations in space) and spatiotemporal symmetries (in-
variance to only combined operation in space and
time). We will summarize the known results for
Hopf bifurcations in the presence of D3 symmetry:

If a stationary solution P (t) = (P0, P0, P0),
with maximum symmetry, bifurcates to a periodic
orbit in a Hopf bifurcation then, generically the
symmetry of the solution will be:

A. Spatial Symmetry:
xi = xj. This corresponds to two oscillators
in phase, and is invariant under the spatial
operation

xi → xj

xj → xi
(4)

We will refer to solutions with this symmetry as
solutions of Type B.

B. Spatiotemporal symmetry:
x1(t) = x2(t − (T/3)) = x3(t − (T/3)) where T
is the period of the solution. This corresponds
to a rotating wave and is invariant under the
operation:

x1 → x2

x2 → x3

x3 → x1

t→ t− T

3

(5)
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We will call this solution Rotating Wave or
Type A solution.

xi(t) = xj(t − (T/2)), xk(t) = xk(t − (T/2)),
where T is the period of the solution. These
solutions correspond to two oscillators half a pe-
riod out of phase. The period of the third oscil-
lator, in order to be invariant to the half period
time translation, has to have period T/2. This
solution is invariant under the operation:

xi → xj

xj → xi

xk → xk

t→ t− T

2

(6)

3. Three Coupled Excitable Cells

3.1. Building the system

We saw in the introduction that the system:

θ̇ = µ− cos(θ) (7)

where θ ∈ S1 and µ < 1, was the simplest system
that included the two main ingredients to obtain
excitable behavior, provided that the system was
close to a saddle-node bifurcation.

We want to see what happens when we couple
three of these excitable cells. To establish the cou-
pling we extend the system described by Eq. (7)
to a two-dimensional system with an invariant cir-
cle with the condition that the dynamics restricted
to this invariant circle is given by Eq. (7). We do
that in order to define the coupling in terms of the
Cartesian variables.

The system:

ẋ = −y(µ− x) + x(1− (x2 + y2))

ẏ = x(µ− x) + y(1− (x2 + y2))
(8)

after the transformation:

rṙ = xẋ+ yẏ

ẏx− ẋy = r2θ̇
(9)

is, written in polar coordinates:

ṙ = r(1− r2)

θ̇ = µ− cos(θ)
(10)

so that the system described by Eqs. (8) is the
planar system that satisfies: (a) the dynamics re-
stricted to the circle of radius 1 is the one given by
Eq. (7) and (b) this circle is an attracting set.

We now write the coupling adding the con-
straint that the three tori stays as an invariant set
in the presence of the coupling, so we can study the
dynamics of the system through the angular vari-
ables alone. That is, ṙi|(ri=1) = 0, i = 1, 2, 3.

Moreover, we want the coupling to satisfy the
following conditions:

• Symmetry: The symmetry of the system in the
presence of the coupling, remains D3.
• Linearity: The coupling is linear in the

Cartesian coordinates.
• Relative differences: The coupling is propor-

tional to the relative differences between each of
the cells. In particular two cells are uncoupled
when they are in the same state.

The general expression for a coupling satisfying
these three conditions is [Golubitsky et al., 1988]:

d(xi, yi)

dt
= F (xi, yi, µ) +K(ε, λ)

· (2xi − xj − xk, 2yi − yj − yk) (11)

where F (xi, yi) represents the local dynamics of
each cell and the second term to the coupling satis-
fying the last three conditions.

We choose as a coupling matrix:

K(ε) =

(
−ε 0
0 ε

)

As an example, for cell number 1, Eq. (11) can be
written as:

dx1

dt
= f(x1, y1, µ)− ε(x1 − x2)− ε(x1 − x3)

dy1

dt
= g(x1, y1, µ) + ε(y1 − y2) + ε(y1 − y3)

(12)

after this, the physical meaning of the coefficients of
the matrix K(ε) becomes clear. They give a mea-
sure of the strength of the coupling. If the coeffi-
cient is negative (as is the case for the coupling of
the x̂ coordinates), the coupling is restitutive. If
the coefficient is positive this will work increasing
the difference between the values of the dynamical
variables of the different cells.

We now rewrite the coupling in terms of the
angular variables, using the constraint ṙ1|(r1=1) =
ṙ2|(r2=1) = ṙ3|(r3=1) = 0 and obtain the equation
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for the phases:

θ̇1 = µ− cos(θ1) + 2ε · (2 sin(2 · θ1)

− sin(θ1 + θ2)− sin(θ1 + θ3))

θ̇2 = µ− cos(θ2) + 2ε · (2 sin(2 · θ2)

− sin(θ2 + θ1)− sin(θ2 + θ3))

θ̇3 = µ− cos(θ3) + 2ε · (2 sin(2 · θ3)

− sin(θ3 + θ1) sin(θ3 + θ2))

(13)

We will study the system and its different solu-
tions in parameter space. Before searching for the
different solutions we want to make the following
remarks.

• Invariant Manifolds. The manifold θ1 = θ2 =
θ3 is a one-dimensional manifold with the topol-
ogy of S1. The invariance of the manifold implies
that if a given point p̂ belongs to the manifold, its
orbit will also belong to the manifold, or in other
words, if the three cells are originally in phase
they will be for ever in phase.

The three manifolds θi = θj with (i, j) =
(1, 2), (1, 3) or (2, 3), are invariant two-tori.
Each of them corresponds to two cells in phase.
The intersection of these three manifolds is one-
dimensional, θ1 = θ2 = θ3.

By equivariance, anything that happens in
one of the two-tori, happens in the other two.
• Excitability and individual behavior of

each cell. Each individual cell (uncoupled from
the others), for µ < 1, has an excitable behavior,
which implies it does not oscillate. For µ > 1
a periodic orbit appears in an Andronov bifur-
cation. The two main characteristics of this pe-
riodic solution are that it appears with infinite
period and nonzero amplitude. It is important
to remember the properties of one cell, to under-
stand the emerging properties of the system.
• Coordinate System. We will use two differ-

ent representations to study the problem. The
first one corresponds to the identification of each
angular variable with one Cartesian axis. The
second representation, has the advantage that
symmetry operations are more easily visualized,
and has the disadvantage that the quotients are
harder to visualize. We define those coordinates
in the following way [Ashwin et al., 1990]. A
real variable Θ which corresponds to the aver-
age phase, that is: Θ = (θ1 + θ2 + θ3)/3, and a

complex variable φ = θ1 + e
i2π
3 θ2 + e

i4π
3 θ3. The

invariant manifolds in this coordinate system are
shown in Table 1. The action of the symmetry
group corresponds to (Fig. 3):
— Rotation of 2π/3 around the Θ axis, the cycle

(312).
— Complex conjugation (φ → φ) the permuta-

tion (23).

The axis Θ̂ corresponds to the diagonal of the
cube given by the direction (1, 1, 1) and is in-
variant under all the symmetry operations of D3
(Fig. 3).

4. Results

4.1. Three quiescent cells

Let us first analyze the fixed points of our system.
Each individual cell has two fixed points:

• θ = − arccos(µ)→ (stable)
• θ = arccos(µ)→ (unstable)

Table 1. Invariant manifolds in the symmetric
representation.

Manifold Coordinates Dimension

θ1 = θ2 Arg(φ) = e
i4π
3 2

θ1 = θ3 Arg(φ) = e
i2π
3 2

θ2 = θ3 Im(φ) = 0 2

θ1 = θ2 = θ3 φ = 0 1

Fig. 3. Invariant circle θ1 = θ2 = θ3 corresponds to the Θ
axis in the symmetric representation. Points marked with
dots are identified by the quotient.
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Therefore, θ1 = θ2 = θ3 = − arccos(µ) and
θ1 = θ2 = θ3 = arccos(µ) are fixed points for the
system of three coupled cells.

We will call these points P1 and P2 respec-
tively. From now on, we will identify numbers with
different fixed points that will appear in parameter

space. The fixed point P2 will always be unstable
which can be seen from the fact that the eigenvalue
in the (1, 1, 1) direction is

√
1− µ2 which is pos-

itive. We want to study the stability of P1. In
order to do that we compute Df(P1, ε, µ), where f
is the vector field describing the three coupled cells
[Eqs. (13)]. The diagonal form of Df(P1, ε, µ) is:

Df(P1) =

−
√

1− µ2 0 0

0 3ε(2µ2 − 1)−
√

1− µ2 0

0 0 3ε(2µ2 − 1)−
√

1− µ2


where the first eigenvalue is associated with the
(1, 1, 1) direction, and the remaining two, to the
degenerated orthogonal plane.

We can see that the eigenvalue associated to
the (1, 1, 1) direction does not depend on ε, which
we could expect since in this subspace, the cells are
in phase and therefore they are uncoupled. In the
same way we do not need any computation to real-
ize that this direction is always stable, as each cell
has a stable fixed point in θ = − arccos(µ), and the
restriction of the dynamics to this subspace is just
the overlap of the local dynamics for each of the os-
cillators. When restricted to the (1, 1, 1) direction,
there are three identical and uncoupled oscillators.

The remaining eigenvalues change sign (there-
fore the fixed point loses stability in the plane nor-
mal to (1, 1, 1)) when:

ε =

√
1− µ2

3(2µ2 − 1)
(14)

We see, as verified in the numerical analysis,
that for ε > 0, when ε is small, the fixed point
is stable. In the case of µ > (1/

√
2), for ε large

enough, it loses stability. Why do we need the con-
dition µ > (1/

√
2) for the system to lose stability?

In order to explain this issue we have to come back
to the idea of a two-dimensional system relaxing on
S1, and the relations [Fig. 4(a)]:

δx = − sin(θ)δθ δy = cos(θ)δθ (15)

If we perturb the system close to θ = −(π/2),
and we force it to remain in the circle, we will have
perturbed it almost in the direction x̂, and in case
we perturb it close to θ = 0 with the same con-
straint, we will have perturbed it almost in the ŷ
direction.

Considering that the fixed point corresponds
to θ = − arccos(µ), we can see that µ > (1/

√
2)

corresponds to |θ| < (π/2) and then, by what we
just saw, we will be studying stability in the ŷ
direction.

The degenerated eigenvalues of Df(P1, ε, µ)
can be split into two different terms:

−
√

1− µ2 → Local Dynamics

3ε(2µ2 − 1)→ Coupling
(16)

The couple matrix we chose was:

K(ε) =

(
−ε 0
0 ε

)

That is, the coupling was stable (restitutive) in
the “x̂” direction and unstable in the “ŷ” direction.
Then, as we can see in Fig. 4, when µ > (1/

√
2) the

Fig. 4. (a) Geometric relation between δθ, δx and δy. (b) If
µ < (1/

√
2) both local dynamics of each cell and the coupling

between them contribute to re-establishing a cell to its equi-
librium position. (c) If µ > (1/

√
2) there is a competition

between local dynamics and the coupling.
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stable local dynamics competes with the coupling,
which destabilizes the system. For ε large enough,
that is, when coupling is strong enough to be the
most important term, the fixed point loses stability.
If µ < (1/

√
2) there is no mechanism contributing

to destabilize the fixed point and then, it is always
stable.

Let us now study in more detail how this fixed
point will lose stability. In order to do that we com-
pute the center manifold (of a vector field depending
on one parameter) and the dynamics restricted to
the intersection of the center manifold at a neigh-
borhood of the fixed point.

We have to write our vector field splitting it in
two groups of coordinates whose tangent spaces cor-
respond respectively to the center and stable man-
ifolds of the linearized vector field [Wiggins, 1990].
That is we have to rewrite it in the following way:

ẋ = Ax+ f(x, y, λ)

λ̇ = 0

ẏ = By + g(x, y, λ)

(17)

where A has all pure imaginary eigenvalues, and the
eigenvalues of B have all negative real components.
Notice that λ is a rescaling of the control parameter
so that the bifurcation point corresponds to λ = 0.

When we split our vector field at the bifurcation
point:

ε =

√
1− µ2

3(2µ2 − 1)
(18)

in directions which are tangent to the stable man-
ifold (1, 1, 1) and to the center manifold (orthogo-
nal plane) we naturally find the symmetrical coor-
dinates (Θ, φ) that we defined before.

The fixed point P1 corresponds to (Θ =
− arccos(µ), φ = 0). The stable manifold is the

Θ̂ axis and the plane Θ = − arccos(µ) is tan-
gent to the center manifold. That is, the center
manifold will locally be the graph of a function:
Θ = h(φ, λ(ε, µ)).

We want to find the first nonzero terms in a
Taylor series for this function. Doing so with the
(Θ, φ) coordinates:

Θ̇ = −
√

1− µ2Θ +
1

2
µΘ2

+

(
µ

9
+

2

3
(a(µ) + b(µ)λ)

)
(v2 + w2) (19)

v̇ = λv +

(
µ

6
+

3

2
(a(µ) + b(µ)λ)

)
(v2 − w2)

+ (µ+ 6(a(µ) + b(µ)λ))Θ · v
ẇ = λw + (µ+ 6(a(µ) + b(µ)λ))Θ · w

−
(
µ

3
+ 3(a(µ) + b(µ)λ)

)
vw

a(µ) =
2µ(1− µ2)

3(2µ2 − 1)
b(µ) =

2µ
√

1− µ2

3(2µ2 − 1)
(20)

where v = Re(φ), w = Im(φ) and λ = 3(2µ2 −
1)(ε − (−

√
1− µ2/3(2µ2 − 1)) is a rescaling of the

parameter so the bifurcation point corresponds to
λ = 0.

We want to remark that the terms λv and λw
are nonlinear in the (Θ, v, w, λ) variables.

We propose a second-order polynomic expres-
sion for h(v, w, λ)

h(v, w, λ) = a1v
2 + a2w

2 + a3λ
2

+ a4vw + a4λv + a6λw (21)

and solve the quasilinear partial derivative equation
for which h(v, w, λ) has to be a solution.

∇h(v, w, λ) · [(3ε(2µ2 − 1)−
√

1− µ2)(v, w)

+ f(h(v, wλ), v, w, λ)]
√

1− µ2 · h(v, w, λ)

− g(h(v, w, λ), v, w, λ) = 0 (22)

If we want second-order terms to be the same
on both sides, we have:

a1 = a2 =

µ

9
+

2

3
a(µ)√

1− µ2
= c(µ) . (23)

So the center manifold turns out to be locally
a parabola whose slope does not depend on the
parameter λ.

Let us now compute the dynamics restricted to
the center manifold.

v̇ = λv +

(
µ

6
+

2

3
(a(µ) + λb(µ))(v2 − w2)

+O(‖(λ, v, w)‖3)

)
ẇ = λw − 2

(
µ

6
+

2

3
(a(µ) + λb(µ))vw

+O(‖(λ, v, w)‖3)

)
(24)
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or in its complex form:

φ̇ = λ · φ+

(
µ

6
+

2

3
(a(µ) + λb(µ))φ̂2

)
. (25)

The dynamics in the intersection of the cen-
ter manifold and the invariant two-tori (θ2 = θ3),
which, as we saw before corresponds to w = 0 is,

v̇ = λv +

(
µ

6
+

2

3
(a(µ) + λb(µ))v2

)
. (26)

The stationary solutions are the two fixed
points:

v = 0

v =
−λ(

µ

6
+

2

3
(a(µ) + λb(µ))

) (27)

When λ < 0 the fixed point v = 0 is stable
while the other is unstable.

When λ = 0 the unstable fixed point crosses
the origin, changing stability, so that when λ > 0,
v = 0 is unstable and the other is stable as we
can see in Fig. 5. This bifurcation is known as
transcritical.

In the other two intersections of the center man-
ifold with an invariant manifold θ1 = θ2 (w =

√
3v)

and θ1 = θ3 (w = −
√

3v) a transcritical bifurcation
occurs, that is a fixed point crossing the origin and
changing the stability with it. Solving Eq. (24) we
can see that those four fixed points (the origin and
the three crossing in each invariant two-tori) are all
the solutions in a neighborhood of the origin.

Summarizing, P1 loses stability at λ = 0 in a
degenerate way in the plane normal to the (1,1,1)

(a) (b)

Fig. 5. Triple transcritical bifurcation. (a) Symmetric representation. (b) Representation in one of the invariant two-tori in
Cartesian coordinates.
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direction, and the three fixed points crossing simul-
taneously the origin in each invariant two-tori, in
a triple transcritical bifurcation, gain the stabil-
ity that the origin is losing. This is represented in
Fig. 5. We will refer to the fixed points that cross
the origin in the triple transcritical as P31, P32 and
P33, or simply P3 to refer to a representative in one
of the invariant two-tori.

4.2. Bifurcation diagram

In Fig. 6 we display the bifurcation diagram in the
half-plane ε, µ, (ε > 0). In Region I of the param-
eter space, the only stable solution is P1.

In each plane we have three unstable fixed
points: P2, P3 and P4 as shown in Fig. 7. The
fixed point P2, which we computed before, corre-
sponds to θ1 = θ2 = θ3 = arccos(µ). The fixed
point P3, which we now find numerically, is the
one that will later on cross the origin in the triple
transcritical that we described before. The rest of
the fixed points to which we will be referring to are
found numerically.

When we cross the curve ψ for example for
µ = 0.8 and go towards the Region II of the pa-
rameter space, two fixed points appear in each in-
variant two-tori θi = θj, a node and a saddle which
we respectively call P5 and P6 (Fig. 8).

Fig. 6. Bifurcation diagram in the plane (ε, µ).
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Fig. 7. Fixed Points in Region I. Representation in one of
the invariant two-tori.

Thus the ψ curve indicates a saddle-node bi-
furcation, in which the fixed points P5 and P6 are
born. Those fixed points appear in a region in which
the invariant two-tori locally attracts, so the node
will not just be an attractor when restricted to the
invariant manifold but will be an attractor when
seen in S3.

The α curve corresponds to the local triple tran-
scritical bifurcation which we described above, in
which P31, P32 and P33 cross the origin and P1
loses stability (Fig. 5).

When we cross the α curve from Region II to
Region III, we have, as we saw, six fixed points in
each invariant two-tori, θi = θj. We are interested
in the following connection between stable and un-
stable manifolds of different fixed points. The fixed
point P6 (a saddle), is feeding P3, which is an at-
tractor when restricted to the two-tori. The unsta-
ble manifold of P3, which is locally normal to the
invariant two-tori, feeds the conjugate of P5, that
is, the equivalent to it in one of the other invariant
two-tori. This is repeated in the three tori so that
fixed points are connected as seen in Fig. 9.

Now we want to fix µ and go to the lower ε to
find the curve ψ. The fixed points P5 and P6 come
together as we get closer to the ψ curve. When we

Fig. 8. Fixed Points in Region II. Representation in one of
the invariant two-tori.

are just on it, they will have collapsed in a unique
nonhyperbolic fixed point that we call P .

This nonhyperbolic fixed point P is feeding P3
in its generalized (nonlinear) invariant manifold, as
the saddle that just collapsed with P did, and at
the same time is being fed by the conjugated of P3
in the other invariant manifold, as happened with
the node that just collapsed in P .

We then have the following connections which
are shown in Fig. 10. The fixed point P1 in the first
two-tori (I) feeds P31 in the same two-tori (I). This
one, through its invariant manifold feeds point P2

in the second two-tori (II), which is connected with
P32 in two-tori (II). Again the unstable manifold
of this last fixed point is the stable manifold of P3

in the third two-tori (III) which feeds P33 in the
(III) two-tori, which finally, and closing the loop, is
feeding the fixed point P1 of the first (I) two-tori.

We then have a heteroclinic connection divided
into six pieces, three living in the invariant tori
and the other three jumping from one to the other.
There is also a (conjugate) connection which goes
through the invariant two torus counterclockwise,
that is (I, III, II).

This heteroclinic connection is not structurally
stable, that is it does not live in an open set of
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Fig. 9. One-dimensional manifolds of the fixed points before the heteroclinic connection (Region III).

parameter space. Over the ψ curve it breaks be-
cause P splits into two fixed points, and below
it, because P disappears. We want to know how
the dynamics will be in Region IV of the param-
eter space, that is, what remains after the hetero-
clinic connection is broken due to the disappearance
of P .

Let us follow the trajectory of an initial con-
dition close to P3 of any of the invariant two-tori.
The trajectory will go to look for the point P in the
next invariant tori, but it will no longer be there,
so we will go on until P3 of this tori (to which we
are close, but obviously never due to its invariance).
When close to P3 we will be expelled in a similar
trip to an inexistent P . This process is repeated
three times until we arrive at a point close to where
we started. That is, we expect a recurrence as a
consequence of the broken heteroclinic cycle. We
numerically observe that we not only have this re-
currence (a well defined return map in an appro-
priate neighborhood of P3), but we find a periodic
orbit (fixed point in this return map).

This dynamics can be studied by building a
Poincaré Map as the composition of a local map and
a global map that can be approximated by an affine
map [Zimmerman & Natiello,1998; Wiggins, 1990].
The global map depends on some parameter and
solutions that exist in open sets of this parameter
space. This method can be used to prove the exis-
tence of periodic orbits for the generic case in which
a heteroclinic connection, like the one we described,
is broken.

At this point we want to make a remark re-
lated to the symmetry of this periodic solution.
From our discussion, we not only saw that there
was a recurrence, but that the orbit of a point q
before returning (recurrence) close to q visited its
conjugates.

Let us assume as an hypothesis that a point
q = (q1, q2, q3) evolves after a time τ to its con-
jugate q′ = γ · q = (q3, q1, q2), hypothesis that we
verify numerically and could be checked with sim-
ilar techniques to the ones we just mentioned to
prove the existence of the periodic orbit.
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Fig. 10. Heteroclinic connection. Symmetric representation.

We can then prove that there will be a periodic
orbit and that the symmetry of this orbit will be
of type A, that is, it will be a rotating wave. The
demonstration uses only symmetry arguments and
unicity of first-order O.D.E.

By hypothesis, there is a solution to our system
α(t) satisfying α(0) = q and α(τ) = q′.

By equivariance of the problem, another solu-
tion exists,

α′(t) = γ · α(t) (28)

satisfying

α′(0) = q′ α′(τ) = q′′ . (29)

Since our system is not time dependent, and so
it is time translational invariant, we have a solution
α̃ satisfying:

α̃(t) = α′(t− τ) (30)

α̃(τ) = q′ α̃(2τ) = q′′ . (31)

Using the unicity of solutions we can conclude
that:

α(t) = α̃(t) (32)

so α(2τ) = q′′. In the same way α(3τ) = q′′′ = q
(the cycle (312) has order 3), i.e. the solution α(t)
is periodical with period T = 3τ .

From Eqs. (28) and (30) we obtain:

γ · α(t) = α′(t) = α(t+ τ) = α

(
t+
T
3

)
(33)

i.e. α is a periodic solution of Type A. The temporal
action of translating time in a third of the period is
equivalent to the spatial action of the cycle (312).

A representation of the periodic orbit A and its
conjugate in phase space are shown in Fig. 11, and
the temporal series of Type A periodical orbit are
shown in Fig. 12.

It is also important to remark that the fixed
point P is nonhyperbolic. The problem of homo-
clinic bifurcations with nonhyperbolic fixed points
has been studied in [Deng, 1990].

If we keep lowering ε in the parameter space,
we will cross the curve α and find the inverse of the
triple transcritic bifurcation, P1 gains stability and
the periodic orbit disappears. (Notice that our trip



Dynamics of Three Coupled Excitable Cells with D3 Symmetry 1721

Fig. 11. Solutions in Zone IV. Fixed points P1, P2, P3 and the two periodic solutions Type A. The first graph shows all the
phase space, and the second one is in a neighborhood of the fixed points P3.

between the three tori ends when we get close to
P3 because there we are attracted by P1.)

Let us come back to Region IV (before crossing
the curve α) and let us now move, for a fixed ε in
the increasing µ direction. We then find the curve
β. This curve corresponds to the collapse of P3 and
P4 in a saddle-node bifurcation. This collapse hap-
pens in the presence of a global connection between
the saddle and the node (Fig. 13). We then expect
a periodic orbit from this Andronov bifurcation.

All this analysis has been restricted to one of
the invariant tori θi = θj. This periodic orbit will
then live in the tori and thus correspond to two in
phase oscillator orbit i.e. a Type B orbit, other pe-
riodic solutions were expected in Hopf Bifurcations
with D3 [Golubitsky et al., 1988].

This periodic orbit is the only attractor in each
of the invariant tori, but is not globally stable: ini-
tial conditions out of the tori still have the rotating
wave as limit set.
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Fig. 12. Temporal series of Type A periodic solution. Series correspond to: (1) sin(θ1), (2) 3 + sin(θ2), (3) 6 + sin(θ3).

Fig. 13. Type B solution appears when crossing β curve in an Andronov bifurcation in one of the invariant two-tori.

How can we measure the stability of B? Fig-
ure 14 summarizes the situation, B exists when P3
and P4 collapse in the saddle-node corresponding to
β curve and P5 and P6 collapse in the saddle-node
corresponding to ψ curve. P3 and P4 collapse in
a region where the two-tori is locally unstable and
P5 and P6 in a region where it locally attracts. If
we are close (in parameter space) to the collapse of
P5 and P6, (ψ curve), the dynamics will be very
slow in the region where the orbit locally attracts,
and fast where it locally expels, so the orbit will be
globally stable. If we are close to the collapse of P3
and P4 (β curve), the dynamics will be slow in the
region where the orbit locally expels and fast where
it locally attracts and thus it will be globally unsta-
ble. We expect a curve in between ψ and β where
the B solution changes stability. This curve, which
we call δ is numerically calculated by computing
the stability of the fixed point associated with this

periodic orbit by a Poincaré map. In Fig. 15 tem-
poral series of Type B solution for parameter values
close to curves ψ and β are shown. Figure 16 shows
the coexistence in Region V of the stable A solution
with the unstable B solution.

How is the vector field globally reorganized af-
ter B changes stability? Our numerical explorations
suggest that close to the parameter set for which A
disappears, very close to the curve B, there is a
region of the parameter space in which a coexis-
tence takes place between those two solutions. This
suggests that B emits an unstable solution when it
changes stability that eventually collapses with A.
Above the τ curve, in the Region VII, B is stable
and A does not exist.

For µ large enough, Type A solutions can dou-
ble their period before disappearing in the collapse
with the unstable solution emitted by B. This pe-
riod doubling bifurcation is indicated by curve λ
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Fig. 14. Type B solution exists when P3–P4 and P5–P6 collapse in two saddle-node bifurcations. The first one (P3–P4)
occurs in a region of the invariant two-tori which is locally unstable, the second (P5–P6) in a region where it is locally stable.
Stability of B will result from the competition of these two saddle-nodes.

and the solution with double period is referred to
as 2A (Fig. 17). Again there is a small region in
parameter space (Region VIII) of coexistence be-
tween the solution 2A and the stable Type B peri-
odic orbit. For larger µ values, this period doubling
cascade happens before B changes stability and we
find, crossing the ξ curve, (Region X) a strange at-
tractor (Fig. 18), which will again coexist in a short
region of parameter space (Region XI) with the
stable Type B solution.

4.3. Three coupled oscillators

If we continue increasing µ, we cross, at µ = 1,
the κ curve (µ = 1). At this point, each of the
uncoupled cells goes through an Andronov bifurca-

tion, and start an oscillatory behavior rather than
an excitable one. Since the manifold θ1 = θ2 = θ3 is
invariant, and restricted to this manifold the three
cells are uncoupled, µ = 1 will be a bifurcation point
for the three cells system.

We will restrict our analysis to this invariant
circle. At µ = 1 the fixed points P1 and P2 collapse
in an Andronov bifurcation, in which a periodic or-
bit appears, which we call C.

Since we have the analytic expression for this
orbit (the circle φ = 0) we can compute analytically
the stability of the orbit.

The vector field at any point of the circle will be
tangent to it, which we can conclude from its invari-
ance. That is, the vector field will be f = s(Θ)Θ̂.

The differential of the vector field at a point
(Θ, φ = 0) is:

Df(Θ, φ = 0) =

 sin(Θ) 0 0
0 sin(Θ) + 3ε cos(Θ) 0
0 0 sin(Θ) + 3ε cos(Θ)


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(a)

(b)

Fig. 15. Temporal series of Type B periodic solution. (a) Close to the collapse of P3 and P4 (β curve) and (b) Close to the
collapse of P5 and P6 (ψ curve). Series correspond to: (1) sin(θ1), (2) 3 + sin(θ2) and (3) 6 + sin(θ3). The arrows represent
fixed point (a) P3 and (b) P5 close to the bifurcation point.

Then, the vector field can be written as:

Θ̇ = µ− cos(Θ)

u̇ = (sin(Θ) + 3ε cos(Θ))u+O(‖(u, v)‖2)

v̇ = (sin(Θ) + 3ε cos(Θ))v +O(‖(u, v)‖2)

(34)

or:

Θ̇ = µ− cos(Θ)

ṙ = (sin(Θ) + 3ε cos(Θ))r +O(r2)
(35)

where r = ‖(u, v)‖. We can write the second equa-
tion of [Eqs. (34)] in the following way:

dr

dt
= g(Θ)r ⇒ dr

dΘ
Θ̇ = g(Θ)r (36)

where g(Θ) = sin(Θ) + 3ε cos(Θ), substituting in
the first equation of [Eqs. (33)] we obtain:

dr

r
=

g(Θ)

µ− cos(Θ)
dΘ (37)

which we can integrate:

rf
ri

= e

∫ 2π

0

g(θ)
µ−cos(θ)

dθ
(38)

We can see that if after a cycle (Θ from 0 to
2π) the integral is negative, rf < ri the orbit at-
tracts, and if it is positive. rf > ri and the orbit
expels.

Let us then analyze the sign of the integral:∫ 2π

0

sin(θ) + 3ε cos(θ)

µ− cos(θ)
dθ (39)

The first term is an odd function of θ, so it
will not contribute to the integral in one cycle. The
integral of the second term is positive. This can
be shown by just solving it, but we prefer to do
it in a way so we can illustrate the concepts re-
marked when we qualitatively analyzed the stability
of B.
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Fig. 16. Region V. Type A is stable, Type B unstable and the fixed points are P1 and P2.

Fig. 17. Region IX. Type B is unstable, 2A is stable and the fixed points are P1 and P2.

For each θ with cos(θ) > 0 (in the first or fourth
quadrant),

3ε cos(θ)

µ− cos(θ)
(40)

gives a positive contribution to the integral.
We can write this contribution as the prod-

uct of two terms: 3ε cos(θ) which is a part of the
normal component of the vector field, weighted by

1/(µ− cos(θ)) which is the inverse of the tangential
component of the vector field.

For each of those points of the first or fourth
quadrant, we have a conjugate by reflection in the
ŷ axis. At this point the cosine changes sign, so the
contribution of the normal component of the vec-
tor field is of the same modulus and opposite sign.
But for this point, cos(θ) < 0 and so the weight
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Fig. 18. Zone X, strange attractor.

is smaller, because the tangential component of the
vector field µ − cos(θ) is bigger than for its conju-
gate, i.e. we go faster through this point, and then
we go faster in the region where the orbit locally
attracts than where it locally expels. So, the inte-
gral in one cycle is positive, and then, for ε > 0 the
orbit C is unstable.

This bifurcation produces no changes in the dy-
namics outside of the invariant manifold. The solu-

tions outside θ1 = θ2 = θ3 are the same in Region X
and Region XIV, and in general, when crossing the
κ curve.

For µ > 1 and below the curve ψ, we can prove,
assuming no fixed points in the invariant tori, the
existence of B orbits.

Let us consider the map from the tori θi = θj
to the ring, with its borders identified as we see in
Fig. 19. We cut through the circle, θ1 = θ2 = θ3,

Fig. 19. Map from the tori to a ring with identified borders.
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Fig. 20. The invariant compact set corresponds to the region in between curves γ1 · γ2 and γ3 · γ4.

obtaining a cylinder that we map to the plane in
the following way:

(z, θ)→ (rmin + z, θ) (41)

where θ is the angular variable of the ring. The
periodic orbit C corresponds to the trajectory with
r = rmin or r = rmax which are, due to the quotient,
the same circle (Fig. 19).

The technique consists in finding a compact set
K in the interior of the ring, in which the dynam-
ics is invariant. The Poincaré–Bendixon theorem
[Hirsch & Smale, 1974] and the nonexistence of fixed
points, will guarantee the existence of a periodic
orbit.

The mapping was necessary because the
Poincaré–Bendixon theorem is valid for compact
sets included in R2. The invariant compact set is
obtained in the following way (Fig. 20). Consider a
point p1 close enough to rmin so that for its orbit,
the linear stability analysis of the orbit C is valid.
There is then a well defined return map, and due
to the instability of C, the image of p1 through this
map, will correspond to a point p2, that satisfies
‖p2‖ > ‖p1‖. We can do the same thing with a
point q1 close enough to rmax and with the same
arguments, q2 with ‖q2‖ < ‖q1‖ will be its image
after a cycle.

Let γ1 be the trajectory from p1 to p2 and let
γ2 be the segment joining p1 and p2. In the same
way, let γ3 be the orbit from q1 to q2 and γ4 the
segment from q1 to q2. The tangential component
of the vector field in rmin(rmax) is positive (because

C is a periodic orbit), that is, θ̇(rmin) > 0, and be-
cause the vector field is continuous, we can assume
that p1(q1) is close enough to rmin(rmax) in order for
θ̇ to be positive in γ2(γ4), That is, those segments
are transversal sections.

From all this it turns out that the region
bounded by γ1 · γ2 and γ3 · γ4 is invariant, because
we cannot cross γ1 because we would be crossing
flux lines, and we cannot cross γ2 because θ̇ > 0
in the segment. The same analysis is valid for γ3

and γ4.
We found an invariant compact set in the plane,

with no fixed points, so a periodic orbit must exist.
This periodic orbit is included in the invariant man-
ifold θi = θj and thus will be a Type B orbit.

5. Conclusions

In this work we report an exhaustive study of the
collective behavior of three excitable cells coupled
in such a way that the system displayed a D3 sym-
metry. We find periodic solutions in the param-
eter range where each cell cannot oscillate by it-
self. There are many studies [Muller et al., 1994]
of global behavior of extended systems with local
excitable behavior. The periodic orbits reported in
this work constitute a low dimensional example of
oscillating collective behavior with local excitable
dynamics.

All the periodic orbits that we found appeared
qualitatively in the same way: after the collapse
of two fixed points in a nonhyperbolic fixed point
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with a heteroclinic or homoclinic connection be-
tween them. For this reason, the orbits are born
with infinite period and nonzero amplitude. The
connections were in most cases possible due to the
existence of invariant subspaces that allows us to
explain the origin of the symmetries of the peri-
odic solutions. We found that the symmetry of
the periodic bifurcation appearing in global bifurca-
tions involving the breaking of heteroclinic connec-
tions are the same as those expected in Hopf (local)
bifurcations.
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