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ABSTRACT

Aims. In this paper, we analyze the collisional evolution of the Main Belt and NEA population taking into account the major dynamical
features present in both populations.
Methods. To do this, we divide the asteroid belt into three semimajor axis zones, whose boundaries are given by the ν6 secular
resonance, and the 3:1, 5:2 and 2:1 mean motion resonances with Jupiter, treating them as strong sources of dynamical removal. We
also consider the action of the Yarkovsky effect and diffusive resonances as mechanisms of mass depletion. This treatment allows us to
calculate the direct collisional injection into the powerful resonances, to study the collisional exchange of mass between the different
regions of the Main Belt and to analyze the provenance of the NEA objects.
Results. Our model is in agreement with the major observational constraints associated with the Main Belt and NEA populations,
such as their size distributions, the collisional history of Vesta, the number of large asteroid families and the cosmic-ray exposure
(CRE) ages of meteorites. We find that none of the dynamical and collisional mechanisms included in our treatment are able to mix
material between the three studied main belt regions, since more than 99% of the final mass of every ring of our model of the Main
Belt is represented by primordial material. In addition, our results supports that the Yarkovsky effect is the most important process
that removes material from the asteroid Main Belt, rather than collisional injection into the major resonances. With regards to the
provenance of the NEAs, our work shows that ∼94% of the NEA population comes from the region inside the 5:2 mean motion
resonance.
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1. Introduction

The Main Belt of asteroids is a vast region located between
Mars and Jupiter, roughly from 2 to 3.4 AU from the Sun. The
near-Earth asteroids (NEAs) represent another important popu-
lation. NEAs have perihelion distances q ≤ 1.3 AU and aphe-
lion distances Q ≥ 0.983 AU (Rabinowitz et al. 1994). They
are customary divided into three subcategories including the
Atens (a < 1 AU, Q ≥ 0.983 AU) and Apollos (a ≥ 1 AU,
q ≤ 1.0167 AU), which are on Earth-crossing orbits, and the
Amors (1.0167 AU < q ≤ 1.3 AU), which are on nearly-Earth-
crossing orbits. Figure 1 shows the distribution of Main Belt as-
teroids and NEAs with respect to semimajor axis, eccentricity
and inclination.

The Main Belt asteroids and NEAs do not represent indepen-
dent populations; on the contrary, they are intimately connected
by evolutionary processes and dynamical transport mechanisms
associated to orbital resonances. While the existence of reso-
nances in the Main Belt has been known since many years, most
works aimed at studying the collisional evolution of the small
bodies in such region has not accounted for them. Since the work
of Williams (1969) and further studies developed by Wetherill
(1979) and Wisdom (1983, 1985a, 1985b), it is widely accepted
that the resonant regions present in the asteroid Main Belt are ef-
fective escape routes from there. In fact, detailed numerical sim-
ulations performed by Gladman et al. (1997) have shown that
those objects falling into some resonance inside 2.5 AU could
become NEAs and then meteorites in only a few million of years,

being the most common end state of these objects an impact onto
the Sun. They have also shown that those bodies reaching one
of the resonant regions outside 2.5 AU become Jupiter-crossers
and are subsequently removed from the Solar System by close
encounters with Jupiter. The intense collisional activity present
in the asteroid Main Belt continuously breaks up large asteroids,
injecting a large quantity of material into the resonant regions,
a mechanism that represents a source of mass depletion in the
Main Belt.

In the early 2000s, Penco et al. (2002) included the so-called
Yarkovsky effect into numerical models of the asteroid colli-
sional evolution. The Yarkovsky effect, a radiation force, mod-
ifies the orbital parameters of asteroids giving rise to a mech-
anism that can deliver them into resonances and thus remove
them from the Main Belt. Besides, this effect is size dependent
and owing to that, its action coupled with the presence of reso-
nant regions not only can be another important source of steady
mass depletion in the Main Belt, but can also affect their size
distribution. There are strong evidences associated with the size
distribution of the NEA population which might suggest that
Yarkovsky effect is the most important process that drives as-
teroids into resonances and primarily into the NEA source reso-
nances, rather than direct collisional injection (Morbidelli et al.
2002; Morbidelli & Vokrouhlický 2003).

The arguments presented so far allow us to infer that the size
distribution of NEAs is fundamentally determined by the Main
Belt population from which they come and the collisional and
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Fig. 1. The distribution of Main Belt asteroids, Mars-crossers and NEAs
with respect to semimajor axis, eccentricity and inclination. The Main
Belt asteroids are plotted as small dots while the Mars-crossers are rep-
resented as larger black points. The solid curves delimit the NEA re-
gion. The Atens, Apollos and Amors are shown as triangles, circles
and squares, respectively. In fact, while the dashed vertical line deter-
mines the boundary between the Aten and Apollo regions, the dashed
curve represents the separation between the Apollo and Amor popula-
tions. The 3:1, 5:2 and 2:1 mean motion resonances with Jupiter are
labeled in both figures. On the other hand, the ν6 secular resonance is
just shown on the top panel since its position depends on the orbital
inclination and only weakly on the eccentricity. (Data obtained from
http://ssd.jpl.nasa.gov/dat/ELEMENTS.NUMBR.)

dynamical mechanisms which are responsible for their trans-
port. Thus, a complete model of the asteroid Main Belt and
NEAs must follow the simultaneous evolution of both popu-
lations. Besides, a suitable code must be able to include colli-
sional and dynamical processes, since without dynamical mech-
anisms acting, the NEA population would never be generated
and, without collisional evolution, there would be no fresh col-
lisional fragments and the bodies removed from the Main Belt
could not be continuously replenished.

Recently, Bottke et al. (2005a), O’Brien & Greenberg (2005)
and Bottke et al. (2005b) developed works aimed at analyzing
the evolution of the Main Belt and NEA populations. Bottke
et al. (2005a) developed a collisional evolution model aimed at
studying the Main Belt comminution from the end of accretion
among D < 1000 km bodies to the present day. These authors
find that the Main Belt size distribution is predominately a fos-
sil produced in the first years of collisional evolution, when the
Main Belt population was once far more massive than the cur-
rent population. The work presented by Bottke et al. (2005a)
has allowed to analyze some questions related to the shape of
the initial Main Belt size distribution, stability of Main Belt and

NEA populations, the collisional history of Vesta, asteroid dis-
ruption frequency, asteroid spin rates and the estimated size of
the primordial Main Belt. On the other hand, the study devel-
oped by O’Brien & Greenberg (2005) models the evolution of
the Main Belt asteroids, the near-Earth asteroids (NEAs) and the
trans-Neptunian objects (TNOs). In particular, these authors per-
form a self-consistent numerical code for modeling the simulta-
neous evolution of the Main Belt and NEA populations, con-
sidering collisional processes and dynamical mechanisms such
as the Yarkovsky effect and orbital resonances. This numerical
algorithm is able to satisfy the major observational constraints
associated with these small-body populations, such as their size
distributions, the collisional history of Vesta, the number of large
asteroid families and the cosmic-ray exposure (CRE) ages of me-
teorites. Later, Bottke et al. (2005b) performed a study aimed at
linking the collisional history of the asteroid Main Belt to its dy-
namical excitation and depletion. This work combines dynami-
cal results from Petit et al. (2001) with the collisional evolution
code created by Bottke et al. (2005a). The results are consistent
with the Main Belt’s size-frequency distribution, the number of
currently observable asteroid families produced by collisional
disruption events involving parent bodies larger than 100 km, the
collisional history of Vesta and the lunar and terrestrial impactor
flux over the last 3 Gyr. Moreover, this model allows also to
study the NEA population, which is used to explore some ques-
tions about the small craters formed on Mercury, the Moon and
Mars.

Here, we present a new multi-population code for collisional
evolution that takes into account the main dynamical features
present in the asteroid Main Belt and NEA region. Among the
works of Bottke et al. (2005a), O’Brien & Greenberg (2005) and
Bottke et al. (2005b), the second one is the most similar to that
shown in this paper, though there are some relevant differences
in the populations of the model, collisional input parameters and
in the treatment of the dynamical evolution. In fact, the most no-
table difference between those papers and our work is that our
model proposes to divide the asteroid belt into three semima-
jor axis zones whose boundaries are given by the ν6, 3:1, 5:2
and 2:1 powerful resonances, which has allowed us to develop
a more rigorous study of the Main Belt and NEA populations.
We believe our model improves those presented by Bottke et al.
(2005a), O’Brien & Greenberg (2005) and Bottke et al. (2005b),
allowing us to analyze some questions related with the mixing of
material in the asteroid belt, the provenance of the NEA objects
and the collisional injection into the powerful resonances.

In Sect. 2 the collisional model is described, while the most
important dynamical mechanisms taken into account in our al-
gorithm are presented in Sect. 3. In Sect. 4 we describe the full
numerical model, while Sect. 5 shows the most important results
derived from the collisional and dynamical evolution of the as-
teroid Main Belt and NEA population. Conclusions are given in
the last section.

2. Collisional mechanisms

In this section, we present the main features of our algo-
rithm aimed at describing the outcome of a collision between
two bodies.

2.1. Collisional parameters – definitions

As it is usual, a catastrophic collision is defined as the one where
the largest piece resulting from it contains 50% or less of the
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initial target mass, whereas the rest of the collisions are consid-
ered cratering events.

The impact velocity V and the shattering impact specific en-
ergy QS are two fundamental quantities determining, for a given
body, if the collision must be studied in the catastrophic regime
or in the cratering regime. QS is the amount of energy per unit
target mass needed to catastrophically fragment a body, such that
the largest resulting fragment has half the mass of the original
target, regardless of reaccumulation of fragments. While early
works of Dohnanyi (1969), Williams & Wetherill (1994) and
Tanaka et al. (1996) assumed that all asteroids had the same im-
pact strength per unit mass (namely, QS would be a constant),
since more recent numerical models as well as laboratory stud-
ies it is now accepted that QS is size-dependent. Farinella et al.
(1982), Housen & Holsapple (1990), Ryan (1992), Holsapple
(1993), Housen & Holsapple (1999) and Benz & Asphaug
(1999) have shown that for small bodies, with diameters <∼1 km,
the material properties control the impact strength in such a way
that it decreases with increasing size. On another hand, Davis
et al. (1985), Housen & Holsapple (1990), Love & Ahrens
(1996), Melosh & Ryan (1997), and Benz & Asphaug (1999)
showed that for large asteroids, with diameters >∼1 km, grav-
ity dominates the impact strength which increases with increas-
ing size. Some authors (Durda et al. 1998) have used QD (the
amount of energy per unit mass needed to fragment a body and
disperse half of its mass) rather than QS, as primary input pa-
rameter in their collisional evolution models. For small bodies,
the gravitational binding energy is negligible and owing to that
QS and QD have the same value. For larger bodies, QD must
be larger than QS, since gravity is important and can therefore
impede the dispersal of fragments. In Sect. 4.3, we will discuss
some aspects of QS and QD, specifying the most convenient in-
put parameters for our collisional evolution model.

On the other hand, the relative kinetic energy in a collision
between two bodies of masses M1 and M2 is given by

Erel =
1
2

M1M2

M1 + M2
V2

rel, (1)

where Vrel is the relative impact velocity.
According to these definitions and assuming that the energy

is equi-partitioned between the two colliding bodies (Hartmann
1988), for body i fragmentation occurs if Erel > 2QS,iMi
(Greenberg et al. 1978; Petit & Farinella 1993), while below this
threshold, cratering happens. Thus, if two objects collide, the
last relation allows us to determine if both of them will be catas-
trophically fragmented, if one will be cratered and the other will
be catastrophically fragmented or if both will be cratered after
the collision.

In the next subsections, we will describe our treatment of
a collision in the catastrophic regime as well as in the cratering
regime. Besides, for any of the three mentioned outcomes, we
also study the escape and reaccumulation processes of the re-
sulting fragments, carrying out a previous determination of the
escape velocity.

2.2. Catastrophic fragmentation

In order to model the distribution of the fragments resulting
from a catastrophic fragmentation event, we develop a model
based on Petit & Farinella’s (1993) algorithm. These authors use
a single-slope power law to describe the fragment distribution
from a catastrophic event. O’Brien & Greenberg’s (2005) col-
lisional algorithm is also based on Petit & Farinella’s (1993)

method but introduces a two-slope power law to model the dis-
tribution of fragments resulting from a catastrophic fragmenta-
tion, which is a more realistic description according to laboratory
experiments and hydrocode models. But, O’Brien & Greenberg
(2005) show that using a two-slope power law rather than a less
realistic single-slope power law obtains a worse fit in the simu-
lations, which probably indicates a limitation of the collisional
model rather than suggesting that asteroids are catastrophically
fragmented following a single-slope power law. From these re-
sults, we decide to use a single-slope power law to describe the
distribution of fragments resulting from a catastrophic event.

If a body of mass Mi is catastrophically fragmented, the mass
of the largest resulting fragment will be given by Mmax,i = Mi fl,i,
where fl,i is

fl,i =
1
2

(
QS,iMi

Erel/2

)1.24

, (2)

according to the experimental results obtained by Fujiwara et al.
(1977).

We define Ni(≥m) as the number of fragments of body i with
a mass larger than m. Ni(≥m) has a discontinuity at m = Mmax,i
since there is just one fragment of mass Mmax,i resulting from the
catastrophic fragmentation of body i. So, ifΘ(x) is the Heaviside
step function (namely, Θ(x) = 0 for x < 0 and Θ(x) = 1 for x ≥
0), Ni(≥m) can be written as

Ni(≥m) = Bim
−biΘ(Mmax,i − m), (3)

where bi is the characteristic exponent. Besides, as
Ni(≥Mmax,i) = 1, so from the last equation, we find
Bi = (Mmax,i)bi . In order to calculate the characteristic ex-
ponent bi, we derive the cumulative mass distribution Mi(≤m)
which represents the total mass of fragments of body i with
a mass smaller than m. In fact, Mi(≤m) can be calculated as

Mi(≤m) =
∫ m

0
mni(m)dm, (4)

where ni(m)dm = −dNi(≥m) defines the differential fragment
size distribution. According to Eq. (3), ni(m)dm will be given by

ni(m)dm = {biBim
−bi−1Θ(Mmax,i − m)

+Bim
−biδ(m − Mmax,i)}dm, (5)

where δ(x) = dΘ(x)/dx is the Dirac delta function. Then, insert-
ing it in Eq. (4) and using that Bi = (Mmax,i)bi , so Mi(≤m) will be
written as

Mi(≤m) =
biM

bi
max,i

1 − bi
m1−bi {1 − Θ(m − Mmax,i)}

+
Mmax,i

1 − bi
Θ(m − Mmax,i). (6)

From this equation, it is possible to derive a relation between fl,i,
given by Eq. (2), and the characteristic exponent bi. Actually,
the mass conservation implies Mi(≤Mmax,i) = Mi; then, from
Eq. (6), we derive the condition

Mi =
Mmax,i

1 − bi
, (7)

and, since Mmax,i = Mi fl,i, so

bi = 1 − fl,i. (8)

Thus, if fl,i is calculated by Eq. (2), bi can be derived from the
last equation. With this, every parameter present in Eq. (3) is
determined and so, such law can be used in order to calculate
the distribution of the fragments resulting from a catastrophic
event.
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2.3. Cratering impacts

Below the catastrophic fragmentation threshold (Erel < 2QS,iMi),
a crater is formed. Again, we use Petit & Farinella’s (1993) algo-
rithm in order to calculate the distribution of fragments resulting
from a cratering event. Imposing continuity for Mcrat,i = Mi/100,
the mass Mcrat,i excavated from the crater can be calculated from
the following relations

Mcrat,i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αErel if Erel ≤ β,

9α
200QS,iα − 1

Erel +
Mi

10
1 − 20QS,iα

1 − 200QS,iα
if Erel > β,

(9)

where β = Mi/100α. The parameter α, known as crater excava-
tion coefficient, depends on the material properties and ranges
from about 4 × 10−4 to 10−5 s2 m−2 for soft and hard materials
respectively (Stoeffler et al. 1975; Dobrovolskis & Burns 1984).
As Eq. (9) indicates, the model proposed by Petit & Farinella
(1993) assumes a linear dependence of Mcrat,i on Erel in such
a way that for craters smaller than 1% of the target mass, Mcrat,i is
proportional to Erel while for larger craters, the coefficients of the
linear relation are chosen such that the largest possible crater has
a mass of 1/10 that of the target, which is in agreement with the
studies developed by Nolan et al. (1996).

For cratering impacts, the surviving cratered body has
a mass Mi − Mcrat,i. As in the case of a catastrophic fragmen-
tation event, we also assume a single-slope power law for the
fragment size distribution resulting from a cratering impact. It
is important to take into account that the derived expressions to
treat a catastrophic impact can be used in order to study a crater-
ing event, replacing the target mass Mi by Mcrat,i. Thus, the mass
of the largest fragment ejected from the crater will be fl,i Mcrat,i,
where fl,i = 0.2 since according to Melosh (1989), bi = 0.8 for
any cratering event.

2.4. Escape and reaccumulation of fragments

After calculating the distribution of fragments associated with
every one of bodies that participate in a collision, it is necessary
to determine the final fate of the fragments ejected from each
one of them. If the fragment relative velocity is larger than the
escape velocity Vesc from the two colliding bodies, it will escape,
while those slower than Vesc will be reaccumulated on the largest
remnant. The following points must be considered:

– To adopt a Fragment Velocity Distribution.
– To determine the Escape Velocity of the Fragments.

According to Campo Bagatin et al. (1994b), it is possible to
adopt two different models in order to study the escape of frag-
ments and reaccumulation:

1. A “Cumulative Model”, in which there is no relation be-
tween mass and velocity of fragments. This model just as-
sumes that the fraction of the fragment mass ejected from
body i with speeds larger than a value V is given by

f (≥V) =
Mi(≥V)

Mi
=

(
V

Vmin

)−k

, (10)

where Vmin is a lower cutoff for the velocity of fragments.
Gault et al. (1963) observed such a relationship, with a value
of k of about 9/4.

2. As Petit & Farinella (1993) proposed, a “Mass-Velocity
Model”. According to experimental results (Nakamura &
Fujiwara 1991; Nakamura et al. 1992; Giblin et al. 1994;

Giblin 1998), this model assumes that there is a correlation
between the ejection velocity and the mass of the fragments.
One can express the mass-velocity distribution as

V = Cim
−ri , (11)

where Ci is a constant coefficient and ri is a given exponent.

It is possible to find a relationship between the cumulative ve-
locity distribution exponent k and the exponent ri in the mass-
velocity model. For this, from Eq. (11), we write m(V) as

m(V) =

(
V
Ci

)−1/ri

. (12)

Inserting it in the cumulative mass distribution given by Eq. (6)
and considering masses smaller than Mmax,i, we have that

Mi(≥V) =
biM

bi
max,i

1 − bi
m(V)1−bi

=
biM

bi
max,i

1 − bi

(
V
Ci

)−(1−bi)/ri

· (13)

Equations (10) and (13) allow us to see that

ri =
1 − bi

k
, (14)

where bi is obtained from Eq. (8) for a catastrophic collision or
it is equal to 0.8 for a cratering event.

Here, we follow the method of Petit & Farinella (1993)
to calculate the velocity distribution of fragments. The mass-
velocity distribution can be written as

V = Cim
−ri for M̄i ≤ m ≤ Mmax,i,

V = Vmax for m < M̄i, (15)

where, imposing continuity, M̄i = (Vmax/Ci)−1/ri . Vmax is as-
sumed to be the maximum value for the velocity of the frag-
ments. The inclusion of this high velocity cutoff is motivated by
a physical reason: a fragment can not be ejected with a velocity
larger than the sound speed in the material, which is assumed
to be of 3000 m s−1 (O’Brien & Greenberg 2005). While this
value would seem to be too large (Vokrouhlický et al. 2006),
in Sect. 5.4, we will discuss the dependence of our simulations
on this input parameter. On the other hand, the constant coeffi-
cient Ci can be calculated from an energy conservation equation.
Assuming that the relative kinetic energy Erel of the collision
is partitioned equally between the target and the projectile, so
body i will receive an energy Ei = Erel/2 at impact. From this,
we define Efr,i = fkeEi as the kinetic energy of the fragments
resulting from such body. fke is an inelasticity parameter deter-
mining which fraction of the energy received by a body is parti-
tioned into kinetic energy of the fragments. In Sect. 4.3, we will
discuss some aspects of this parameter. On the other hand, while
Efr,i = fkeEi, it can be also written following the mass-velocity
model proposed. In fact,

Efr,i = lim
ε→0

∫ Mmax,i−ε

M̄i

V2

2
mni(m)dm +

V2
max

2
M(≤M̄i)

+λi

V2
l f ,i

2
Mmax,i, (16)

where ni(m)dm = −dNi(≥m) is given by Eq. (5), and the last term
is the kinetic energy of the largest fragment resulting from body i
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in a collision. The experimental studies performed by Fujiwara
& Tsukamoto (1980) and Nakamura & Fujiwara (1991), indicate
that the largest fragment resulting from a catastrophic fragmen-
tation event has a negligible kinetic energy in the reference frame
of the center of mass. On the other hand, in a cratering event, the
largest fragment of mass Mmax,i = fl,i Mcrat,i (with fl,i = 0.2) has
a velocity Vl f ,i given by

Vl f ,i = Ci M
−ri
max,i. (17)

So, in order to take into account this difference, we insert the
corresponding term in the energy conservation equation multi-
plied by a factor λi, where λi will be 0 for a catastrophic event
and 1 for a cratering event.

Equation (16) is an integral of m. Since the integrand is writ-
ten in terms of δ(m−Mmax,i) by Eq. (5), if one wants to solve this
integral over the range (M̄i,Mmax,i), it is necessary to introduce
epsilon and take the limit for epsilon to zero. Once V is written
in terms of m (Eq. (15)), such integral can be evaluated. Thus

Efr,i = λiC
2
i

M1−2ri
max,i

2
+

V2
max

2
bi

1 − bi
Mbi

max,i M̄i
1−bi

+
C2

i

2

biM
bi
max,i

1 − bi − 2ri
[M1−bi−2ri

max,i − M̄i
1−bi−2ri ]

= Cki
i bi

Mbi
max,iV

2−ki
max

2

[
1

1 − bi
− 1

1 − bi − 2ri

]

+C2
i

M1−2ri
max,i

2

[
λi +

bi

1 − bi − 2ri

]
· (18)

From this, the constant coefficient Ci is given by the solution of
the equation

aCki
i + b − C2

i = 0, (19)

where a and b are given by

a = M2ri+bi−1
max,i V2−ki

max

⎡⎢⎢⎢⎢⎢⎣ 2biri

[(1 − 2ri − bi)λi + bi](1 − bi)

⎤⎥⎥⎥⎥⎥⎦
b = 2M2ri−1

max,i

⎡⎢⎢⎢⎢⎢⎣ 1 − bi − 2ri

(1 − 2ri − bi)λi + bi

⎤⎥⎥⎥⎥⎥⎦Efr,i, (20)

and Efr,i is assumed to be fkeEi.
Once the fragment velocity distribution has been found for

each of the bodies that participate in a collision, it is necessary to
calculate the effective escape velocity Vesc from the gravitational
field of the two colliding bodies. For this, we use the method
developed by Petit & Farinella (1993) with the corrections made
by O’Brien & Greenberg (2005). Thus, we calculate the escape
velocity Vesc using the energy balance equation, which can be
written as

1
2

M∗V2
esc +Wtot = Wfr,1 +Wfr,2 +Wh, (21)

where M∗ = M1 −Mmax,1 +M2 −Mmax,2 if both bodies are catas-
trophically fragmented, M∗ = Mcrat,1 + M2 − Mmax,2 if body 1
is cratered and body 2 is catastrophically fragmented and M∗ =
Mcrat,1 + Mcrat,2 if both bodies are cratered. The term Wtot is the
total gravitational potential energy of the two colliding bodies
just before fragmentation event, which is given by

Wtot = −
3GM5/3

1

5Q
− 3GM5/3

2

5Q
− GM1M2

QM1/3
1 + QM1/3

2

, (22)

where the parameter Q is

Q =

(
4πρ

3

)−1/3

, (23)

and ρ is the density of the objects. On the other hand, the
terms Wfr,i represent the gravitational potential energy of the
fragments of body i resulting from the collision. If body i is
catastrophically fragmented, Wfr,i will be given by

Wfr,i = −3
5

G
Q

∫ m=∞

m=0
m5/3ni(m)dm

= −3G
Q

M5/3
max,i

5 − 3bi
, (24)

while if body i is cratered, Wfr,i will adopt the following
expression

Wfr,i = −3
5

G
Q

∫ m=∞

m=0
m5/3ni(m)dm − 3G(Mi − Mcrat,i)5/3

5Q

= −G
Q

M5/3
max,i

3
5 − 3bi

− 3G(Mi − Mcrat,i)5/3

5Q
· (25)

The term Wh is an estimate of the gravitational potential energy
of the fragments when these are separated by a distance of the
order of the Hill’s radius of the total colliding mass in the grav-
itational field of the central mass Mo and orbital distance Ro. If
both bodies are catastrophically fragmented, Wh is given by

Wh = −3G(M1 + M2)5/3

5
(3Mo)1/3

Ro
, (26)

where Mo is the mass of the Sun and Ro is the orbital radius
where the collision occurs. On the other hand, according to
O’Brien & Greenberg (2005), if body 1 is cratered and body 2 is
catastrophically fragmented, the term Wh must be written as

Wh = −3G(M2 + Mcrat,1)(M1 − Mcrat,1)2/3

2
(3Mo)1/3

Ro
, (27)

while if both bodies are cratered, the term Wh has the form

Wh = −3G(M1 + M2 − Mcrat,1 − Mcrat,2)2/3

2

×(Mcrat,1 + Mcrat,2)
(3Mo)1/3

Ro
· (28)

Once the different W terms are calculated, it is possible to find
the escape velocity Vesc from the corresponding energy bal-
ance equation. From this, in Sect. 4.5 we describe the treatment
proposed in our algorithm in order to study the escape and reac-
cumulation processes of the ejected fragments.

3. Dynamical mechanisms

The population of Main Belt asteroids is determined fundamen-
tally by collisional processes. But, as we have already said, col-
lisions are not the only process that can play an important role
in the quantitative determination of the Main Belt size distribu-
tion. In fact, there are several dynamical mechanisms which can
have a relevant influence on the evolution of these small bodies.
The orbital resonances between asteroids and the planets as well
as the Yarkovsky effect play a dominant role in removing mate-
rial from the Main Belt. Besides, these dynamical mechanisms
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Table 1. Summary of the dynamical properties of the bodies injected
into the ν6, 3:1 and 5:2 powerful resonances studied by different authors.
The median lifetimes (Half-Life) of bodies initially in each of those res-
onances and the median times required to cross the orbit of the Earth
(Tcr Earth) have been derived by Gladman et al. (1997). Bottke et al.
(2002) determined the median times spent in the NEA region (TNEA) for
bodies coming from the different resonant regions. On the other hand,
the typical end states were analyzed by Gladman et al. (1997) who fol-
lowed the orbital histories of more than one hundred particles injected
into each resonance for up to ∼100 Myr. Finally, the mean collision
probabilities with Earth (Pcol Earth), integrated over the lifetime in the
Earth-crossing region, were derived by Morbidelli & Gladman (1998).

ν6 3:1 5:2
Time scales (Myr)

Half-Life 2.3 ∼2.4 ∼0.6
Tcr Earth 0.5 ∼1.2 ∼0.4
TNEA 6.54 2.16 0.4

End states (%)
Impact sun 79.1 ∼71.5 ∼7.1
Hyperbolic orbit 11.8 ∼27.4 ∼90.9
Survivors 1.8 0.7 0

Collision probability
Pcol Earth ∼10−2 2 × 10−3 2.5 × 10−4

lead to a connection between the Main Belt and NEA popula-
tion. These arguments lead us to think that any model trying
to analyze the evolution of the small bodies in the Inner Solar
System must include such dynamical mechanisms. The purpose
of this section is to give a brief description about the most im-
portant properties of the orbital resonances in the Main Belt and
the Yarkovsky effect.

3.1. Orbital resonances

It is now widely accepted that the orbital resonances in the as-
teroid Main Belt provide effective “escape routes” from there.
Morbidelli et al. (2002) suggest to distinguish between “power-
ful resonances” and “diffusive resonances”.

The powerful resonances are characterized by the existence
of associated well-defined gaps in the Main Belt asteroid dis-
tribution. The ν6 secular resonance which determines the inner
edge of the asteroid belt, and the mean motion resonances with
Jupiter 3:1, 5:2 and 2:1 at 2.5, 2.8 and 3.27 AU from the Sun re-
spectively, represent the most important resonances of this class
(see Fig. 1). Gladman et al. (1997) studied a large number of
test bodies in these resonant regions and found that the ν6 sec-
ular resonance and 3:1 mean motion resonance with Jupiter are
important sources of NEAs, while the rest of the major reso-
nances are not very effective in producing NEAs, although they
can produce changes of the orbital elements of objects enter-
ing into them, delivering such objects to cross Jupiter’s orbit.
In fact, the results obtained by Gladman et al. (1997) indicate
that while the majority of the powerful resonances are important
sources of mass depletion in the Main Belt, only ν6 and 3:1 res-
onances are efficient NEA sources. Some of the most important
numerical results derived by Gladman et al. (1997), Morbidelli
& Gladman (1998) and Bottke et al. (2002) concerning the ν6,
3:1 and 5:2 resonances, are summarized in Table 1.

On the other hand, the dynamical structure of the 2:1 res-
onance is somewhat complicated. The numerical simulations
developed by Gladman et al. (1997) suggest that the median
lifetime of bodies initially in the 2:1 resonance is larger than

100 Myr. But, the work of Brož et al. (2005), which reexamines
the origin, evolution and survivability of objects in the 2:1 pop-
ulation, suggests that the Yarkovsky effect (see next section)
continuously resupplies bodies to this resonance and keeps the
unstable population in an approximately steady state, obtaining
lifetimes ranging from a few million years to ∼100 Myr with
a median lifetime of around 10 Myr. Thus, the 2:1 resonance is
capable of perturbing the asteroid motion on timescales compa-
rable to those of the other powerful resonances (see Table 1).

On the contrary, the diffusive resonances have no associated
deep gaps in the Main Belt asteroid distribution. There are hun-
dreds of these weak resonances that densely cross the Main Belt.
They are represented by:

– high order mean motion resonances with Jupiter,
– three-body resonances with Jupiter and Saturn (Murray et al.

1998; Nesvorný & Morbidelli 1998, 1999), and
– mean motion resonances with Mars (Morbidelli & Nesvorný

1999).

The existence of these diffusive resonances leads many Main
Belt asteroids to present a chaotic behavior (Nesvorný et al.
2002), even though the effect of this chaoticity results to be very
weak. These thin resonances can produce slow changes of the
orbital parameters of objects, leading them to evolve into planet-
crossing orbits. Particularly in the inner ring of the asteroid belt,
the diffusive resonances can explain the existence of one dis-
tinctive population of small bodies known as the Mars-crosser
population (see Fig. 1). According to Migliorini et al. (1998),
Mars-crossers are defined as those bodies with q > 1.3 AU and
a combination of (a, e, i) values such that they cross the orbit
of Mars during a secular oscillation cycle of their eccentricity.
While the main population of Mars-crossers, called Intermediate
Source Mars-Crossers (IMC), is situated below the ν6 resonance,
there are other small groups with high inclination. Michel et al.
(2000) developed numerical simulations of the dynamical evo-
lution of objects on Mars-crossing orbits. These works show
that asteroids belonging to IMC group can become NEAs over
a time scale of several tens of millions of years. Later on, Bottke
et al. (2002) integrated thousands of test particles from different
NEA source regions in order to compute the orbital and abso-
lute magnitude distribution of this population. The quantitative
result of this work determines that IMC population must be con-
sidered as an important source of NEAs, together with the ν6 and
3:1 resonances.

In Table 2, we have summarized some of the most important
dynamical results derived by Bottke et al. (2002) with regards to
the different NEA source regions studied by them. It is possible
to argue that the ν6 secular resonance, the intermediate-source
Mars-crossing (IMC) population and the 3:1 mean motion res-
onances with Jupiter are the primary NEA sources, while the
Outer Main Belt (OB) and the Jupiter-family comets (JFC) are
only secondary sources.

3.2. Yarkovsky effect

The Yarkovsky effect is the result of a radiation mechanism
which can cause relevant changes in the orbital parameters of
the Solar System rotating bodies because of the asymmetry be-
tween the direction of absorption of sunlight and the direction of
re-emission of thermal radiation. There are two variants of this
mechanism for a rotating body moving around the Sun:

– the diurnal effect due to the rotation motion around its axis,
– the seasonal effect due to the orbital motion.
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Table 2. Some of the most important dynamical results derived by Bottke et al. (2002) for bodies coming from the different NEA source regions.
The sources studied by these authors were the ν6 and 3:1 resonances, the intermediate source Mars-crossing (IMC) population (namely, Mars-
crossers below the ν6), the Outer Main Belt (OB) and the Jupiter-family comets. NNEA(H < 18) represents the steady-state number of NEAs
with an H magnitude smaller than 18, which is roughly 1 km in size. On the other hand, τ (Myr−1) gives the number of bodies injected into the
NEA region per million years while TNEA(Myr) is the mean dynamical lifetime spent in the NEA region.

ν6 IMC 3:1 OB JFC Total
NNEA(H < 18) 360 ± 90 240 ± 40 220 ± 90 79 ± 12 61 ± 43 960 ± 120
τ (Myr−1) 55 ± 18 65 ± 15 100 ± 50 570 ± 120 – 790 ± 200
TNEA(Myr) 6.54 3.75 2.16 0.14 – –

The magnitude of both effects depends on the obliquity. While
the diurnal effect vanishes at 90◦ obliquity, the seasonal one van-
ishes at zero obliquity. Besides, the diurnal effect reaches its
maximum value at zero obliquity while the seasonal one is max-
imum at 90◦ obliquity. It is important to take into account that
the seasonal effect always produces a semimajor axis decrease,
while the diurnal can cause an increase when the rotation is pro-
grade or a decrease when the rotation is retrograde.

On the other hand, the Yarkovsky effect is size dependent.
Actually, this mechanism affects the orbital parameters of small
asteroids, under the kilometer size range, while large asteroids
are mostly unaffected. Because of this dependence with the size,
the Yarkovsky effect can potentially affect the Main Belt size dis-
tribution. Besides, it is important to take into account that since
this mechanism is the result of a radiation force, its efficiency
drops with increasing semimajor axis from the Sun.

Several interesting works were developed in the last decade
in order to study this radiation mechanism. Farinella et al. (1998)
derived a unified model of the Yarkovsky effect in both the di-
urnal effect and also for the seasonal one, obtaining explicit ex-
pressions for the semimajor axis drift rates. Penco et al. (2002)
included the Yarkovsky effect into the numerical models of the
collisional evolution of the asteroid Main Belt. Later, Morbidelli
& Vokrouhlický (2003) developed simulations in order to study
the role of the Yarkovsky effect in the origin of near-Earth as-
teroids. This work argues that the Yarkovsky effect is the ma-
jor mechanism by which asteroids are continuously supplied to
powerful and diffusive resonances and the NEA population is
maintained in steady state. These conclusions lead us to think
that this radiation mechanism together with the resonant escape
routes can be an important source of steady mass depletion in
the Main Belt.

There are several mechanisms that can modify the effective-
ness of the Yarkovsky effect. In fact, the Yarkovsky-O’Keefe-
Radzievskii-Paddack effect, or YORP effect, and the collisional
re-orientations of the spin axes of the asteroids can produce
changes of the obliquity states of such objects, leading them
to random walk in semimajor axis rather than a continuous
drift. Moreover, the detailed numerical simulations performed
by Morbidelli & Vokrouhlický (2003) show the importance of
the YORP effect for understanding why the NEA magnitude dis-
tribution is only moderately steeper than the Main Belt magni-
tude distribution.

In order to quantify the removal rate of bodies due to the ac-
tion of these radiation forces and orbital resonances, Sect. 4.4
shows a simplified mathematical description of these mecha-
nisms. Later, Sect. 4.5 describes how these dynamical processes
can be included in our numerical algorithm.

4. Collisional and dynamical evolution model

In this section we present the full model we use to study
the simultaneous evolution of the asteroid Main Belt and
NEA population.

4.1. Populations of the model

As we have already said, the most important resonances of the
powerful class are the ν6 secular resonance and the mean motion
resonances with Jupiter 3:1, 5:2 and 2:1 at about 2.5, 2.8 and
3.27 AU from the Sun, respectively. Taking into account that
less than 1 percent of the Main Belt population is located be-
tween 3.27 and 3.4 AU, we have decided to assume that 2:1 reso-
nance marks the outer edge of the asteroid belt. In order to study
the flux of asteroids into these resonances as a result of the colli-
sional injection and the Yarkovsky effect, and analyze the mixing
of material between the different regions of the asteroid belt, our
model divides the Main Belt into three semimajor axis zones:

– the Inner Ring (IR), between the ν6 and 3:1 resonances, from
about 2 to 2.5 AU,

– the Middle Ring (MR), between the 3:1 and 5:2 resonances,
from about 2.5 to 2.823 AU, and

– the Outer Ring (OR), between the 5:2 and 2:1 resonances,
from about 2.823 to 3.27 AU.

The width of every ring is determined by the resonance bor-
ders. The boundaries of the 3:1 and 5:2 resonances depend on
the orbital eccentricity while the semimajor axis of the center of
the ν6 secular resonance depends on the orbital inclination, but
only weakly on the eccentricity (Morbidelli & Henrard 1991).
To define the boundaries of the ν6 and 3:1 resonances, we fol-
low Morbidelli & Vokrouhlický (2003). They have shown that
the boundaries can be approximated by

a = 2.508 +
e

29.615
for e ≤ 0.15936,

a = 2.485 +
e

5.615
for e > 0.15936, (29)

for the right side of the 3:1 resonance,

a = 2.492 − e
108.85

for e ≤ 0.1734,

a = 2.51 − e
8.85

for e > 0.1734, (30)

for the left side of the 3:1 resonance, and

a = 2.12 + 6.003 (sin i)2.256, (31)

for the right side of the ν6 resonance. In order to take into ac-
count the diffusive neighborhood of these resonances to correctly
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Fig. 2. a) The distribution of the asteroids with respect to proper semi-
major axis and eccentricity, in the vicinity of the 5:2 mean motion res-
onance with Jupiter. The right and left boundaries of this resonance ap-
proximated by Eqs. (32) and (33) respectively, are represented by the
solid curves. The shifted boundaries defined in order to evaluate the
effective flux of asteroids into this resonant region are labeled by
the dashed curves. b) The number of asteroids as a function of distance
from the left border of the 5:2 resonance. The curve shows that the den-
sity of objects grows until ∼0.017 AU from the resonance, remaining
more or less constant over the next 0.03 AU.

evaluate the effective flux of asteroids into them, Morbidelli &
Vokrouhlický (2003) shifted the boundaries of the 3:1 resonance
by 0.015 AU away from the borders given by Eqs. (29) and (30),
while they also drifted the ν6 resonance boundary, given by
Eq. (31), outward by 0.09 AU.

To define the effective boundaries of the 5:2 resonance, we
performed a similar analysis. Using the catalog of the synthetic
proper elements (Knežević & Milani 2003), it is possible to see
a well-defined gap associated with the 5:2 resonance, which is
illustrated in Fig. 2a. The boundaries of this resonance can be
approximated as

a = 2.825 +
e

20
for e ≤ 0.16,

a = 2.817 +
e

10
for e > 0.16, (32)

for the right side, and

a = 2.822 − e
19.5

for e ≤ 0.17,

a = 2.838 − e
7

for e > 0.17, (33)

for the left side. We must extend the boundaries of the 5:2 res-
onance because of the chaotic diffusion in the vicinity of its
borders. We observed that the density of asteroids grows until

Table 3. Mean values for the intrinsic collision probability 〈Pic〉 and the
impact velocity 〈V〉 for the different populations of our model.

Populations 〈Pic〉 〈V〉
(10−18 km−2 yr−1) (km s−1)

Main Belt-Main Belt
IR-IR 9.8 3.7
IR-MR 8.6 4.4
IR-OR 1.4 4.4
MR-MR 1.7 4.3
MR-OR 3.5 4
OR-OR 2.74 3.3

Main Belt-NEA
IR-NEA 6.2 9.9
MR-NEA 2.7 9.3
OR-NEA 1.5 8.1

NEA-NEA
NEA-NEA 7.2 14.5

∼0.015–0.017 AU from the resonance and then is more or less
constant over the next 0.03 AU (see Fig. 2b). In order to mea-
sure the effective flux of asteroids falling into the 5:2 resonance,
we shift the boundaries of this region 0.017 AU away from the
borders given by the Eqs. (32) and (33).

In the following, these shifted boundaries will be the bound-
aries of the ν6, 3:1 and 5:2 resonances with which we are going
to develop our work.

4.2. Collision velocities and probabilities

Mean values for the impact velocity 〈V〉 and the intrinsic colli-
sion probability 〈Pic〉, are fundamental quantities for any colli-
sional evolution study. We calculate 〈V〉 and 〈Pic〉 for collisions
between asteroids of the Main Belt in every ring and between
rings as well as for collisions between NEAs and between NEAs
and Main Belt objects in every ring. For this, we use the numer-
ical approach developed by Marzari et al. (1996), based in the
numerical integration of 3000 real asteroids from the three pop-
ulations, subject to the perturbations of Jupiter and Saturn. The
timespan of the numerical integration was of 104 yr, and the
integration was performed with the simplectic code EVORB
(Fernández et al. 2002). The results are shown in Table 3.

4.3. Asteroid strength

O’Brien & Greenberg (2005) showed that the general shape of
the final evolved asteroid population is determined primarily by
QD, but variations in QS and fke can affect such final population
even if QD is held the same. According to these arguments we
choose QS and fke as input parameters of our collisional model.

The QS law chosen from this study is shown in Fig. 3a, which
can be calculated from an expression of the form

QS = C1D−λ1(1 + (C2D)λ2 ), (34)

where C1, C2, λ1, and λ2 are constant coefficients whose val-
ues are 2.85, 1.8, 0.695 and 2.22, respectively. As the reader can
see in Fig. 3a, this QS law is in a good agreement with the es-
timates of the impact strength of asteroids proposed by differ-
ent authors (Farinella et al. 1982; Davis et al. 1985; Housen &
Holsapple 1990; Housen 1991; Holsapple 1994; Ryan & Melosh
1998; Benz & Asphaug 1999).

On the other hand, fke is a poorly known parameter in colli-
sional processes. But, many authors suggest that it may vary with
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Fig. 3. a) Asteroid strength laws QS. The solid curve denotes the QS law
used in our work. The dashed lines represent the estimates proposed by
different authors. b) Asteroid strength laws QD. The solid curves denote
the QD laws generated from our QS law and the different functions fke

used in the populations of the model. The dashed lines represent the
estimates proposed by different authors.

size, with impact speed and probably with the material proper-
ties. Since the impact velocity varies for the different popula-
tions of our model (see Table 3) and the heliocentric distribution
of taxonomic classes (Mothé-Diniz et al. 2003) indicates differ-
ences in the asteroid composition of the Main Belt, we have de-
cided that fke varies for the different populations. Thus, accord-
ing to that made by O’Brien & Greenberg (2005), we express the
parameter fke as

fke = fke0

( D
1000 km

)γ
· (35)

Table 4 shows the values of fke0 and γ for the different popula-
tions of our model. Such values are according to that discussed
by O’Brien & Greenberg (2005), who indicate that γ is on the
order of 0.5 (always between 0 and 1) and fke0 , the value at
1000 km, is ∼0.05–0.3, which is consistent with estimates of fke
in large impacts (Davis et al. 1989). It is important to take into
account that the combination of QS and fke yields a given QD.
The QD laws generated from our QS law and the different func-
tions fke are shown in Fig. 3b. Such QD laws are in a good agree-
ment with those formulated by different authors (Farinella et al.
1982; Davis et al. 1985; Housen & Holsapple 1990; Holsapple
1994; Love & Ahrens 1996; Melosh & Ryan 1997; Durda et al.
1998; Ryan & Melosh 1998; Benz & Asphaug 1999), and are ac-
cording to the laboratory impact experiments which obtain val-
ues near 1500 J kg−1 for target diameters of ∼8 cm.

Table 4. Values for fke0 and γ for the different populations of our model.

Populations fke0 γ

Main Belt-Main Belt
IR-IR 0.05 0.5
IR-MR 0.1 0.2
IR-OR 0.1 0.3
MR-MR 0.3 0.5
MR-OR 0.3 0.2
OR-OR 0.35 0.5

Main Belt-NEA
IR-NEA 0.2 0.4
MR-NEA 0.2 0.4
OR-NEA 0.2 0.4

NEA-NEA
NEA-NEA 0.2 0.4

4.4. Asteroid removal due to the Yarkovsky effect and orbital
resonances

In order to calculate the removal rate of bodies from each of the
three rings of the asteroid Main Belt due to the action of the
Yarkovsky effect and orbital resonances, we use the expressions
derived by O’Brien & Greenberg (2005), which are based on the
analytical model outlined by Farinella et al. (1998). Here, we
give a brief mathematical description of this effect, separately
considering the treatments developed for the diurnal and sea-
sonal variants of this radiation mechanism (Sect. 3.2).

The diurnal variant is the simplest case of the Yarkovsky ef-
fect. This variant is due to the fact that a rotating body absorbing
radiation from the Sun rotates before that energy is re-emitted as
thermal infrared radiation, leading to a longitudinal asymmetry
between the direction of absorption of sunlight and the direc-
tion of re-emission. The discussion presented in Farinella et al.
(1998) suggests that the diurnal Yarkovsky effect is effective for
all bodies larger than about 3 microns while, for smaller bodies,
its effectiveness does not become important since the heating on
one side of the object begins to affect the other side.

Following Farinella et al. (1998), if FY is the along-track
component of the Yarkovsky force per unit mass of the body, the
semimajor axis change is given by

ȧ =
2FY

n
, (36)

where n = 2π/Porb is the orbital mean motion and, according to
Burns et al. (1979), FY can be expressed by the formula

FY =
2
ρR
εσT 4

c
∆T
T

f (ζ), (37)

where ρ is the density of the body (assumed to be 3500 kg m−3,
which is the density for basalt), R is its radius, ε is the surface
infrared emissivity (assumed to be 1), σ is the Stefan-Boltzmann
constant, c is the speed of light, T is the effective temperature of
the body, ∆T is the effective temperature difference and f (ζ) is
the obliquity function. The effective temperature of the body can
be calculated equating the incoming solar flux to the radiated
flux from the asteroid. From this,

πR2(1 − A)S = 4πR2εσT 4, (38)

where A is the albedo (assumed to be zero) and S is the solar flux
in the position of the body. S depends on the semimajor axis and
can be expressed by the formula

S = S 0

(a0

a

)2
, (39)
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Fig. 4. Our estimates of the diurnal a), seasonal b) and effective c) Yarkovsky semimajor axis drift rates ȧ and the asteroid removal rates d) as
a function of the diameter for bodies belonging to the Inner, Middle and Outer Rings of the asteroid Main Belt.

where S 0 = 1370 W m−2 is the solar constant and a0 and a are the
semimajor axes of the Earth and the body under consideration,
respectively. Finally, the average temperature gives

T =

{
(1 − A)S

4εσ

}1/4

· (40)

The effective temperature difference ∆T and the obliquity func-
tion f (ζ) adopt different expressions in the diurnal and seasonal
variants of this mechanism. From Peterson (1976), for the diur-
nal effect we have fd(ζ) = cos ζ and ∆Td can be calculated by
the formula

∆Td

T
=

2
3

Θd

1 + 2.03Θd + 2.04Θ2
d

· (41)

Θd is a thermal parameter defined by Farinella et al. (1998) and
represents the ratio of the thermal emission timescale to the ro-
tation timescale. This parameter is given by

Θd =

√
ρCK

2πεσT 3

√
ω, (42)

where K is the thermal conductivity, ρ is the density, C is the
specific heat (assumed to be 680 J kg−1 K−1, which is the value
corresponding to basalt and regolith) and ω = 2π/Prot is the
rotation frequency. According to O’Brien & Greenberg (2005),
we use Prot = 6 h for bodies larger than 0.15 km and Prot ∝ D
(Farinella et al. 1998) for smaller bodies. In same way, we model
the density ρ and the thermal conductivity K for bodies smaller
than 0.15 km using basalt parameters (ρrock = 3500 kg m−3 and
Krock = 2.65 W m−1 K−1) while for larger bodies, we use regolith

parameters (ρreg = 1500 kg m−3 and Kreg = 0.0015 W m−1 K−1),
with a smooth variation between them around 0.15 km (O’Brien
& Greenberg 2005). Figure 4a shows the semimajor axis mo-
bility due to the diurnal Yarkovsky effect as a function of the
diameter for bodies belonging to the Inner, Middle and Outer
Rings of the asteroid Main Belt. The obliquity is assumed to be
0◦ in order to consider its maximum effect (Sect. 3.2).

On the other hand, the seasonal Yarkovsky effect is due to the
fact that a body absorbing radiation from the Sun moves in its or-
bit before that energy is re-emitted as thermal infrared radiation,
leading to a latitudinal asymmetry between the direction of ab-
sorption of sunlight and the direction of re-emission. The mathe-
matical description of the seasonal Yarkovsky effect is somewhat
more complicated. However, from O’Brien & Greenberg (2005),
we approximate the seasonal effect considering it like a diurnal
one with frequency n (orbital mean motion) rather than w (rota-
tion frequency), assuming that for this variant fs(ζ) = − sin2 ζ,
and knowing that the seasonal asymmetry must be taken into
account for only a fraction of the orbit. Thus, the effective tem-
perature difference ∆Ts can be calculated by the expression

∆Ts

T
=

2
3

Θs

1 + 2.03Θs + 2.04Θ2
s

fa, (43)

where the thermal parameter Θs is given by

Θs =

√
ρCK

2πεσT 3

√
n, (44)

and the factor fa (assumed to be 2/π) takes into account the par-
tial asymmetry. The work developed by Farinella et al. (1998)
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indicates that the peak seasonal Yarkovsky effect occurs at diam-
eters of about 20 m. To calculate the seasonal force for smaller
bodies, it is necessary a mathematical description somewhat
more complicated. According to O’Brien & Greenberg (2005),
we model the seasonal Yarkovsky effect for bodies smaller than
20 m in diameter assuming that ȧs ∼ D3/2, which is in agree-
ment with that made by Farinella et al. (1998). Figure 4b shows
the semimajor axis mobility due to the seasonal Yarkovsky effect
as a function of the diameter for bodies belonging to the Inner,
Middle and Outer Rings of the asteroid Main Belt. The obliquity
is assumed to be 90◦ in order to consider its maximum effect
(Sect. 3.2).

The effective Yarkovsky semimajor axis drift rate for each of
the three rings of the Main Belt is a combination for the seasonal
and diurnal effects. Taking into account that the mean absolute
values of the obliquity functions fd(ζ) and fs(ζ) are 1/2 and 2/3,
respectively, so the maximum and minimum absolute values of
effective ȧ are given by

|ȧ(D)|min = abs (〈| fs(ζ)|〉|ȧs(D, ζ = 90◦)|
−〈| fd(ζ)|〉|ȧd(D, ζ = 0◦)|)

|ȧ(D)|max = abs (〈| fs(ζ)|〉|ȧs(D, ζ = 90◦)|
+〈| fd(ζ)|〉|ȧd(D, ζ = 0◦)|), (45)

and then, the average absolute value of effective ȧ will be

〈ȧ(D)〉 = |ȧ(D)|min + |ȧ(D)|max

2
, (46)

(O’Brien & Greenberg 2005). Figure 4c shows the effective
Yarkovsky semimajor axis drift rates ȧ as a function of the diam-
eter for bodies belonging to the Inner, Middle and Outer Rings of
the asteroid Main Belt, which are consistent with that obtained
by O’Brien & Greenberg (2005) for the entire Main Belt.

Once 〈ȧ(D)〉 has been determined, the fraction of bodies of
diameter D removed per unit time can be calculated from the
expression

frem(D) =
〈ȧ(D)〉
∆a

Nres, (47)

where 〈ȧ(D)〉 is the effective Yarkovsky semimajor axis drift
rate, ∆a is the effective width of the considered region and Nres is
the number of resonances that can remove bodies of a given di-
ameter D from such region. The fraction of bodies removed per
unit time is not linearly proportional to 〈ȧ(D)〉 since Nres depends
on the diameter D. In fact, small bodies (D <∼ 0.1 km) have high
Yarkovsky drift rates and owing to that they can jump weak reso-
nances, being only removed by powerful resonances. Following
O’Brien & Greenberg (2005), we assume that the weak reso-
nances start to be effective for bodies around 0.1 km while all
of them become fully effective for bodies 10 km in diameter or
larger. Thus, we assume that Nres will be equal to the number
of powerful resonances in the considered region at D ≤ 0.1 km
while Nres will be equal to the number of powerful resonances
plus the approximate number of diffusive resonances at D ≥
10 km, considering a linear variation between them for interme-
diate diameters. To evaluate the number of strong resonances in
each ring, we take into account the possible escape routes from
such regions. ∆a/〈ȧ(D)〉 represents an estimate of the median
lifetime of a body of diameter D in a region with an effective
width ∆a, where the escape routes are located at the borders.
Since the Inner and Middle Rings of the asteroid belt are di-
vided by the ν6, 3:1 and 5:2 powerful resonances and besides,
we consider that there are no other strong resonances inside such

regions, the number of powerful resonances is assumed to be
1 for the Inner and Middle Rings. For the Outer Ring, whose
boundaries are given by the 5:2 and 2:1 powerful resonances,
we also consider the existence of the 7:3 strong resonance at
∼2.96 AU, and owing to that the number of powerful resonances
is assumed to be 2 for the Outer Ring. On the other hand, we
consider 16, 12 and 18 diffusive resonances for the Inner, Middle
and Outer Rings of the asteroid belt, respectively. It is important
to take into account that our model of the Yarkovsky effect and
the number of the orbital resonances associated with each ring
of the Main Belt must be consistent with the results obtained by
Morbidelli & Nesvorný (1999) and Bottke et al. (2002) with re-
gard to the dynamical removal rate for multi-kilometer bodies. In
fact, while Morbidelli & Nesvorný (1999) estimate the escape of
about 4 bodies larger than 5 km per million years from the Inner
Belt, Bottke et al. (2002) indicate that 790 ± 200 bodies larger
than 1 km are removed from the entire Main Belt per million
years. The Yarkovsky asteroid removal rates obtained from this
analysis for each of the three rings of the asteroid Main Belt are
shown in Fig. 4d.

But, as O’Brien & Greenberg (2005), we do not take into ac-
count the YORP effect nor collisional re-orientations of the spin
axes and owing to that, it is likely that the real removal rates
of asteroids from the different regions of the Main Belt differ
somewhat from our estimates, but they probably show similar
trends and are of the same order of magnitude. So, since the
asteroid removal rates obtained from our analysis are only an es-
timate, we decide to slightly vary them in order to obtain better
fits to the observed populations of the model and results con-
sistent with those found by Morbidelli & Nesvorný (1999) and
Bottke et al. (2002) with regard to the dynamical removal rate
for multi-kilometer bodies. Figure 5 shows the asteroid removal
rates used in our algorithm.

4.5. The full model

In order to simulate the collisional and dynamical evolution of
the asteroid Main Belt and NEA size distributions, our numerical
code evolves in time the number of bodies associated with each
of the three rings of the asteroid belt and NEA population. The
populations of objects reside in a set of 130 discrete logarithmic
size bins, whose central values range from D1 = 10−10 km to
D130 = 886.7 km in diameter in such a way that from one bin
to the next, the mass of the bodies changes by a factor of 2 and
the diameter changes by a factor of 21/3. We adopt a density
of 2.7 g cm−3.

While the NEA population always starts with zero bod-
ies, the total mass of the objects associated with each of
the three rings of the asteroid Main Belt is calculated from
the model of planetary nebulae mass distribution proposed by
Weidenschilling (1977). We adopt a surface density Σ of the neb-
ular disk of the form

Σ(a) = Σ0

(
a
a0

)−3/2

, (48)

where Σ0 is the value associated to an arbitrary radius a0. Thus,
the differential mass dM(a) contained in a belt of radius a and
width da will be given by

dM(a) = 2πaΣ(a)da

= 2πaΣ0

(
a
a0

)−3/2

da, (49)



1170 G. C. de Elía and A. Brunini: Collisional and dynamical evolution of the main belt and NEA population

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1e-04  0.001  0.01  0.1  1  10  100

F
ra

ct
io

n 
R

em
ov

ed
 p

er
 M

yr

Diameter (km)

Inner Ring

Removal Rate From Fig. 4(d)
Removal Rate Used in the Simulations

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1e-04  0.001  0.01  0.1  1  10  100

F
ra

ct
io

n 
R

em
ov

ed
 p

er
 M

yr

Diameter (km)

Middle Ring

Removal Rate From Fig. 4(d)
Removal Rate Used in the Simulations

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1e-04  0.001  0.01  0.1  1  10  100

F
ra

ct
io

n 
R

em
ov

ed
 p

er
 M

yr

Diameter (km)

Outer Ring

Removal Rate From Fig. 4(d)
Removal Rate Used in the Simulations

Fig. 5. Asteroid removal rates used in our simulation, compared to the
estimates shown in Fig. 4d.

and from this, the mass of the entire Main Belt will be written as

MMB = 2πΣ0a3/2
0

∫ 3.27

2
a−1/2da

= M0

∫ 3.27

2
a−1/2da. (50)

In the same way, the masses associated with each of the three
rings of the asteroid Main Belt will be given by

MIR = M0

∫ 2.5

2
a−1/2da,

MMR = M0

∫ 2.823

2.5
a−1/2da,

MOR = M0

∫ 3.27

2.823
a−1/2da. (51)

Proposing a given mass for the initial Main Belt, it is possible to
obtain the constant M0 from Eq. (50) and then to determine the
corresponding masses for the Inner, Middle and Outer Rings,
given by Eqs. (51). While we tested different initial masses,
the results shown here are those obtained considering an initial
belt with ∼7 times the current belt mass, namely, 0.00315 Earth
masses.

Once the masses associated with the Inner, Middle and Outer
Rings of the asteroid Main Belt are determined, the next step is to
construct the starting populations for each of these rings, which
are defined as follow:

– Inner Ring (2 < a < 2.5 AU): for D >∼ 150 km, we assume
that the number of objects is equal to the observed number
of asteroids in this region of the Main Belt. For 80 <∼ D <∼
150 km, we use an incremental power-law index of ∼−1.6,
while for D <∼ 80 km, the initial incremental population fol-
lows a slope of ∼−3.1 (see Fig. 6a).

– Middle Ring (2.5 < a < 2.823 AU): for D >∼ 250 km, we
assume that the number of objects is equal to the observed
number of asteroids in this region of the Main Belt. For
100 <∼ D <∼ 250 km, we use an incremental power-law in-
dex of ∼−2.2, while for D <∼ 100 km, the initial incremental
population follows a slope of ∼−2.9 (see Fig. 6b).

– Outer Ring (2.823 < a < 3.27 AU): for D >∼ 350 km, we
assume that the number of objects is equal to the observed
number of asteroids in this region of the Main Belt. For
120 <∼ D <∼ 350 km, we use an incremental power-law in-
dex of ∼−3.3, while for D <∼ 120 km, the initial incremental
population follows a slope of ∼−2.9 (see Fig. 6c).

We construct these initial populations following the idea pro-
posed by Bottke et al. (2005a) for the entire Main Belt. In fact,
these authors use approximately the same number of objects as
the observed Main Belt asteroids for D > D1 = 200 km, while for
D2 < D < D1 = 200 km, where D2 ranges around 100 km, the
population follows an incremental power-law index with a value
close to the observed slope of asteroids in this size range (see
Fig. 6). Here, we assume values for D1 and D2 of 150 and 80 km,
250 and 100 km, and 350 and 120 km for the Inner, Middle and
Outer Rings, respectively. Then, for D < D2, we assign a given
incremental power-law index for every of the three rings of the
Main Belt in order to reproduce their associated masses. From
the combination of these three populations, the initial popula-
tion associated with the entire Main Belt is determined. In fact,
for D >∼ 350 km, the resulting initial population of the entire as-
teroid belt shows the same number of objects as the observed
number of asteroids of the Main Belt. Moreover, for 200 <∼ D <∼
350 km, the resulting population follows an incremental power-
law index of ∼−5, while for D <∼ 200 km, we assume a slope
of ∼−2.9 (see Fig. 6d). These initial populations are consistent
with the work of Bottke et al. (2005a) which indicates that it is
not possible to reproduce the various waves of the asteroid Main
Belt population assuming an unique power law at the beginning.
On the other hand, the numerical simulations performed by Petit
et al. (1999) and Petit et al. (2001) suggest that the asteroid Main
Belt may have originally contained hundreds of times more mass
that it currently has. Moreover, these authors indicate that the
gravitational perturbations from Jupiter and primordial planetary
embryos reduced very fast the mass of the initial belt, reaching
its actual value over time scales of a few Myr. To take into ac-
count this result and following O’Brien & Greenberg (2005), the
initial populations associated with each of the three rings of the
asteroid belt are initially multiplied by a given factor and their
evolution followed for 5 Myr. Then, the residual populations are
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Fig. 6. Initial populations of the model.

reduced by the same factor and finally their evolution is analyzed
for the rest of the 4.5 Gyr. In our simulation, the used factor is as-
sumed to be 55. This leads to an initial population of ∼385 times
the current belt mass for the entire Main Belt, which is consis-
tent with the results obtained by Petit et al. (1999) and Petit et al.
(2001) for the early asteroid belt.

Following Campo Bagatin et al. (1994a) and Campo Bagatin
(1998), a collisional system with a low-mass cutoff leads to
waves in the size distribution of the bodies. In order to avoid
this effect, we do not evolve in time the 60 first size bins, whose
central values range from 10−10 to 10−4 km. For NEA population
and each ring of the asteroid belt, this part of the population is
only used as a tail of projectiles for calculating impact rates with
larger bodies and its size distribution is determined each timestep
by extrapolating the slope of the distribution of the ten next size
bins.

In each timestep, a characteristic orbit is generated at ran-
dom for each of the three rings of the asteroid Main Belt and
NEA population for all the sizes. For the asteroid belt rings,
we assign eccentricities e between 0 and 0.3, inclinations i be-
tween 0 and 20◦ and semimajor axes a in such a way that 2 ≤
a ≤ 2.5 for the Inner Ring, 2.5 ≤ a ≤ 2.823 for the Middle
Ring and 2.823 ≤ a ≤ 3.27 for the Outer Ring. In each case, the
combination of (a, i) values must be below the location of the
ν6 resonance, while the combination of (a, e) values must fall
outside of the gaps associated with the 3:1 and 5:2 resonances,
where the boundaries of such regions were already discussed in
Sect. 4.1. For the NEA population, we use orbital parameters 0 ≤
a ≤ 3.4, 0 ≤ e ≤ 0.7 and 0 ≤ i ≤ 40◦ which are combined in such
a way that the perihelion distance q and the aphelion distance Q
are always smaller than 1.3 AU and larger than 0.983 AU,

respectively, according to the definition of NEAs. Finally, given
the longitude of ascending nodeΩ, the argument of pericentreω
and the mean anomaly M between 0 and 360◦, an orbit can be
assigned and from this, a position-velocity pair can be derived
for all bodies of each population. In Sect. 5.1, we will discuss
some aspects related to this treatment.

Once a typical orbit has been computed for each of the
four populations of our model, the next step is to carry out the
collisional treatment (including the analysis of the reaccumula-
tion process) from the algorithm outlined in Sect. 2. In order to
determine the final fate of the fragments escaping from the grav-
itational field of the system, it is necessary to calculate which
are their orbital elements once they are ejected with a relative
velocity with respect to the parent body. Immediately before the
collision, the barycentric position and velocity of the fragments
are assumed to be those associated with their parent body. After
the collision, the relative velocity of the fragments with respect
to the parent body (Eq. (15)) is assumed to be equally partitioned
between the three components. Once the barycentric position
and velocity of the fragments after the collision have been ob-
tained, it is possible to calculate their orbital elements and the
final fate of them. For this, we use the following criterion:

1. The fragments are placed in the NEA population, if any of
the following conditions is fulfilled:
– the aphelion distance Q ≥ 0.983 AU and the perihelion

distance q ≤ 1.3 AU,
– the semimajor axis a < 2 AU,
– the combination of (a, i) values falls above the location

of the ν6 secular resonance,
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– the combination of (a, e) values falls into the gap associ-
ated with the 3:1 mean motion resonance,

– the combination of (a, e) values falls into the gap associ-
ated with the 5:2 mean motion resonance.

2. The fragments are placed in the Inner Ring of the Main Belt
if
– 2 ≤ a ≤ 2.5 AU and the combinations of (a, e) values and

(a, i) values fall outside of the gap associated with the
3:1 resonance and below the location of the ν6 resonance,
respectively.

3. The fragments are placed in the Middle Ring of the Main
Belt if
– 2.5 ≤ a ≤ 2.823 AU and the combinations of (a, e) values

and (a, i) values fall outside of the gaps associated with
the 3:1 and 5:2 resonances and below the location of the
ν6 resonance, respectively.

4. The fragments are placed in the Outer Ring of the Main Belt
if
– 2.823 ≤ a ≤ 3.27 AU and the combinations of (a, e) val-

ues and (a, i) values fall outside of the gap associated
with the 5:2 resonance and below the location of the
ν6 resonance, respectively.

5. Finally, the fragments are assumed to be ejected from the
Solar System on hyperbolic or parabolic orbits, no longer
participating in the collisional evolution, if the eccentricity
e ≥ 1 or a > 3.27 AU.

Once the collisional treatment has been developed and all the
collisional information has been kept, the removal rate of bodies
due to the action of the Yarkovsky effect and orbital resonances
must be included in our analysis. According to the dynamical re-
sults derived by Bottke et al. (2002) with regard to the different
NEA source regions (Sect. 3.1), our algorithm assumes that the
objects removed from the Inner, Middle and Outer Rings of the
asteroid Main Belt are delivered to the NEA population. On
the other hand, in order to take into account the mean time spent
in the NEA region by bodies coming from the different source
regions, it is necessary to include a rate of dynamical removal of
objects from the NEA population. In a steady state, the rate of
injection of bodies from a given source into the NEA population
matches the rate of dynamical elimination of those bodies from
such population. Thus, for any source

τ =
NNEA

TNEA
, (52)

(Bottke et al. 2002), where τ gives the number of objects injected
into the NEA region per unit time, NNEA represents the steady-
state number of NEAs and TNEA is the median time spent in
that population. These values are shown in Table 2. Following
O’Brien & Greenberg (2005), the mean dynamical lifetime of all
bodies in the NEA population coming from the different source
regions studied by Bottke et al. (2002) is given by

〈TNEA〉 =
∑

NNEA∑
τ

(53)

where the summation extends to all the sources shown in
Table 2, except the JFCs. Using the values given there, a 〈TNEA〉
of 1.14 Myr is obtained. But, the numerical simulations per-
formed by Migliorini et al. (1998) suggest that the multi-
kilometer NEAs may have the Mars-crosser population as pri-
mary source. Thus, our model treats the dynamical removal of
objects from the NEA population using a dynamical lifetime
T IMC

NEA = 3.75 Myr associated with the Mars-crosser population

for bodies with an H magnitude smaller than 12 (namely, diam-
eters larger than ∼15 km) while 〈TNEA〉 is used for bodies with
larger H magnitudes.

To study the evolution in time of the populations, the
timestep ∆t is calculated in such a way that the change of the
number of objects in any size bin is always smaller than a given
amount, which is generally chosen as 1% of the original number
of bodies.

5. Results

In order to test the proposed model, here we compare our results
to the most important observational constraints on the collisional
and dynamical history of the asteroid Main Belt and NEA popu-
lation. Thus, in Sect. 5.1, we compare our estimates of the Main
Belt and NEA size distributions to observational data. Then, in
Sect. 5.2, we discuss the relation between our estimate of the
mean collisional lifetimes of bodies and the meteorite cosmic-
ray exposure ages. In Sect. 5.3, we analyze our results in regard
to the collisional history of Asteroid (4) Vesta. Then, we com-
pare in Sect. 5.4 the results of our simulations with the number
of asteroid families observed in the Main Belt. In Sect. 5.5, we
analyze how the collisional process might contribute to the mix-
ing of primordial material in the asteroid Main Belt. Finally, in
Sect. 5.6, we study the provenance of the NEA objects.

5.1. Main Belt and NEA size distributions

The population of Main Belt asteroids is assumed to be reason-
ably complete to ∼30 km in diameter. Some years ago, several
observational studies such as Spacewatch (Jedicke & Metcalfe
1998), the Sloan Digital Sky Survey (SDSS) (Ivezić et al. 2001)
and the Subaru Sub-km Main Belt Asteroid Survey (SMBAS)
(Yoshida et al. 2003) were developed, which have allowed us to
extend the Main Belt size distribution estimate down to a diame-
ter of about 500 m. As the reader can see in Fig. 7a, the estimated
values of the asteroid Main Belt size distribution obtained from
our simulations are in agreement with the observational data.

Figure 7b shows our estimate of the NEA size distribu-
tion, which is described in terms of the absolute magnitude H.
Following Bowell et al. (1989), it is possible to derive the diam-
eter of a body with a given H-magnitude from the expression

D =
1347√

pv
10−H/5, (54)

where pv is the visual geometric albedo which is assumed to be
0.11. The population of NEAs is believed to be observationally
complete up to about H = 15, which corresponds to a diam-
eter of ∼4 km. Several observational surveys have been devel-
oped in order to extend the NEA H-magnitude distribution up to
larger H values. In fact, Rabinowitz et al. (2000) used data ob-
tained from Spacewatch and JPL’s Near Earth Asteroid Tracking
(NEAT) program for deriving an estimate of the NEA population
down to a H magnitude of ∼30, while Stuart (2001) and Harris
(2002) used the data from the LINEAR Survey in order to ex-
tend the NEA H-magnitude distribution down to H magnitudes
of 22.5 and 25.5, respectively. From Fig. 7b, it is possible to see
that the NEA population resulting from our simulation fits to the
observed data. One important result derived from our analysis is
that the NEA H-magnitude distribution is determined primarily
by the dynamical removal of asteroids from the Main Belt due to
the action of the Yarkovsky effect and orbital resonances while
the collisional processes do not play an important role.
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Fig. 7. Our estimates of the asteroid Main Belt size distribution a)
and NEA H-magnitude distribution b). Observed data are given for
comparison.

As we have already said in Sect. 4.5 and following O’Brien
& Greenberg (2005), we include a brief period of primordial
evolution at the beginning the simulation in order to reproduce
the results of Petit et al. (1999) and Petit et al. (2001) concerning
the mass loss from a massive early asteroid belt. In this phase,
the initial populations associated with each of the three rings of
the asteroid belt are multiplied by a factor of 55 and their evo-
lution followed for 5 Myr. During this period, the intense col-
lisional activity removes ∼74% of the initial mass of the Main
Belt, leading to a residual initial population for the entire aster-
oid belt of ∼100 times its current value. Then, the residual initial
populations associated with each of the three rings of the Main
Belt are reduced by that factor of 55, which simulates the re-
moval of about 98% of the masses of everyone of them. Finally,
the evolution of a Main Belt initial population of ∼1.8 times its
current value is analyzed for the rest of the 4.5 Gyr. During this
time, the collisional and dynamical mechanisms remove ∼25%
and ∼17% of the initial mass of the Main Belt, respectively,
leading to a final population for the entire asteroid belt of ap-
proximately its current value. On the other hand, our simulations
suggest that the asteroid Main Belt population acquire a smooth
wave structure similar to that observed in the current asteroid
belt during the first 5 Myr of evolution (see Fig. 8). These re-
sults are consistent with those obtained by Bottke et al. (2005a),
who indicate that the Main Belt size distribution is predomi-
nately a fossil.
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Fig. 8. Our estimate of the asteroid Main Belt Size Distribution after
5 Myr. A smooth wave structure is formed during the first 5 Myr of
evolution.
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Fig. 9. a) Number of bodies of diameter D ≥ 1 km removed per unit time
from the entire Main Belt over the history of the Solar System. Here,
we include the asteroid removal due to the Yarkovsky effect, collisional
injection into the ν6, 3:1 and 5:2 resonances and collisional ejection
outside 3.27 AU. A mean removal rate of 1070 asteroids larger than
1 km per Myr from the entire Main Belt is obtained, which is in agree-
ment with the results derived by Bottke et al. (2002). b) Number of
bodies of diameter D ≥ 5 km removed per unit time from the Inner
Ring of the Main Belt over the history of the Solar System. Here, we
just include the asteroid removal due to the action of the Yarkovsky
effect since the collisional injection rate into the powerful resonances
and the collisional ejection of material outside 3.27 AU are negligible.
A mean removal rate of 3 asteroids larger than 5 km per Myr from the
Inner Ring is obtained over the last 3 Gyr, which is in agreement with
the analysis developed by Morbidelli & Nesvorný (1999).

Figure 9 shows the kilometer-scale asteroid removal rates
from the entire Main Belt and the Inner Ring, taking into account
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the action of the Yarkovsky effect, the collisional injection of
material into the ν6, 3:1 and 5:2 resonances and the collisional
ejection outside 3.27 AU. Our results indicate that 1070 asteroids
larger than 1 km are removed per Myr from the entire Main Belt,
which is consistent with the analysis developed by Bottke et al.
(2002). Besides, our study determines the escape of 3 asteroids
larger than 5 km per Myr from the Inner Ring of the asteroid
belt over the last 3 Gyr, which is in agreement with the work
performed by Morbidelli & Nesvorný (1999). Figure 9 allows us
to infer that the Yarkovsky effect is the most important process
that removes material from the asteroid Main Belt, rather than
collisional injection into the major resonances, which is consis-
tent with the works of Morbidelli et al. (2002) and Morbidelli
& Vokrouhlický (2003). In fact, while 891 asteroids larger than
1 km are removed per Myr due to the action of the Yarkovsky
effect, the collisional processes inject a total of about 25, 38 and
68 asteroids larger 1 km per Myr into the ν6, 3:1 and 5:2 res-
onances, respectively. These removal rates have been obtained
following the dynamical treatment proposed in Sect. 4.5. From
this, in each timestep only one characteristic orbit is considered
in each zone for all the sizes. To test this assumption we also
performed some simulations where, in each timestep, different
orbits were generated at random for each group of bodies (of
a given diameter D) in each zone. While the CPU time was much
longer, the results did not show relevant changes.

5.2. Cosmic ray exposure ages of meteorites

The cosmic-ray exposure (CRE) ages of meteorites represent the
time interval that a body was exposed to cosmic rays in space
as a meter-sized object or near the surface of a larger body.
Thus, CRE ages allow us to determine the time in space between
the meteoroid’s liberation from its parent body and its arrival at
the Earth. According to Marti & Graf (1992) and Morbidelli &
Gladman (1998), CRE ages for the different types of ordinary
chondrites, which represent the most common class of mete-
orites, range from a few million years to about 100 Myr with
a mean age of approximately 10–20 Myr. Figure 10 shows the
mean collisional lifetimes obtained from our simulations. For
meter-sized objects belonging to the Inner, Middle and Outer
Rings of the asteroid Main Belt, we estimate mean collisional
lifetimes of about 3.2, 4.3 and 6.8 Myr, respectively, which
are within of factor 2–3 of the mean CRE ages of stony mete-
orites. Moreover, our results are consistent with those derived by
O’Brien & Greenberg (2005) who obtained a lifetime of about
8 Myr for meter-sized objects.

5.3. Collisional history of asteroid (4) Vesta

Asteroid (4) Vesta, with a diameter of approximately 500 km,
orbits the Sun at a distance of about 2.362 AU. This object rep-
resents one of the most peculiar cases of the Solar System since it
is the only known differentiated asteroid with an intact basaltic
crust (Keil 2002). We find that D ∼ 500 km asteroids in the
Inner Ring of the Main Belt have a mean collisional lifetime of
∼17.7 Gyr (Fig. 10), which allows us to infer that an object like
Vesta has ∼75% probability of surviving over Solar System his-
tory without receiving a catastrophic impact, which is in agree-
ment with the preservation of the intact basaltic crust of this
asteroid.

On the other hand, Hubble Space Telescope (HST) observa-
tions of Vesta have revealed the existence of a singular crater
with a diameter of about 450 km on its surface. According to
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Fig. 10. Mean collisional lifetimes of bodies belonging to the Inner,
Middle and Outer Rings of the asteroid Main Belt, estimated from
our simulations. Meter-scale objects have mean collisional lifetimes
between 3.2 and 6.8 Myr, which are consistent with CRE ages of
meteorites.

studies developed by Thomas et al. (1997), the diameter of the
impactor that created such crater was Dp ∼ 35 km. Bottke et al.
(2005b) used the fact that Vesta does not have two such craters as
a very specific constraint of the collisional history of this aster-
oid. Estimating the approximated number of projectiles N with
diameters Dp of ∼35 km and taking into account that the average
interval between such impacts on Vesta can be calculated by

τ =
4∑

Pic(DVesta + Dp)2N
, (55)

where the summation extends to all the populations of the model
and Pic is the correspondent intrinsic collision probability, it is
possible to determine the mean number of collisions between
Dp ∼ 35 km objects and Vesta over the age of the Solar System.
In fact, our simulations indicate that the mean number of bodies
of ∼35 km in diameter impacting Vesta over 4.5 Gyr is ∼0.5.
As Bottke et al. (2005b), this result suggests that the odds are
slightly against asteroid (4) Vesta having an unique crater of size
comparable to its total size, but very much against this particular
object having two such singular craters.

5.4. Asteroid families

The existence of asteroid families represents a clear consequence
of the collisional activity in the Main Belt. According to the
works developed by Zappalà et al. (1995), there are a total of
about 60 statistically significant asteroid clusters in proper ele-
ment space, and it is possible to identify approximately 25 reli-
able families. Our simulations predict the formation of 8 aster-
oid families from parent bodies larger than 200 km in diameter,
which is consistent with that discussed by Davis et al. (1985)
who suggested the existence of 8 actual families formed from
the breakup of parent bodies larger than 200 km. Moreover, it is
important to take into account that the 8 asteroid families gen-
erated in the model form after the brief of primordial evolution
which is included to model the existence of a massive early as-
teroid belt.

On the other hand, the studies of asteroid families developed
by Vokrouhlický et al. (2006) have shown that the typical dis-
persal velocity for ∼5 km fragments is of order of a few tens
of meters per second. Following O’Brien & Greenberg (2005)
we assume a maximum value for the velocity of fragments of
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Fig. 11. Cumulative fraction of ∼5 km fragments as a function of ve-
locity. Our study indicates that ∼90 percent of the fragments of 5 km in
diameter are ejected with velocities smaller than 80 m s−1, which is in
agreement with Vokrouhlický et al. (2006).

3000 m s−1, which is of order of the sound velocity in the ma-
terial (see Sect. 2.4). While this value would seem to be too
large, our studies indicate that ∼90% of the fragments of 5 km
in diameter are ejected with velocities smaller than 80 m s −1

(see Fig. 11), which is in agreement with that discussed by
Vokrouhlický et al. (2006).

5.5. Mixing of taxonomic classes – Discussion

Since some decades, the distribution of taxonomic classes in the
Main Belt of asteroids has been thoroughly studied by many au-
thors. For a long time, the work performed by Gradie & Tedesco
(1982) has been widely accepted as the major reference con-
cerning the distribution and mixing of taxonomic classes. These
authors studied a total of 656 objects with diameters larger than
50 km concluding that S-type asteroids represent the most abun-
dant class in an inner zone between 2.1 and 2.5 AU, C-type as-
teroids dominate a central zone between 2.5 and 3.2 AU while
D/P types are the dominant classes in an outer zone after 3.2 AU.
In addition, Gradie & Tedesco (1982) showed the existence of
some C and D asteroids in the inner zone and some S types
in the outer zone. However, Mothé-Diniz et al. (2003) devel-
oped an analysis aimed at refining the heliocentric distribution
of taxonomic types in the asteroid Main Belt. Using a total of
2026 objects with diameters larger than 13 km, they found im-
portant differences with Gradie & Tedesco (1982) and other pre-
vious works. In fact, Mothé-Diniz et al. (2003) concluded that
S-type asteroids represent a significant fraction of the asteroid
Main Belt population beyond 3 AU. Besides, they showed rele-
vant discrepancies in the distribution of taxonomic classes con-
sidering different ranges of eccentricities and inclinations.

Knowing the existence of this distribution of taxonomies,
the goal of this analysis is to determine if such distribution of
classes is a characteristic feature of the Main Belt formation
process or could have changed over the evolution of the Solar
System. Figure 12 shows that, after 4.5 Gyr of evolution, more
than 99 percent of the final mass of every ring is represented
by primordial material. From this, we conclude that the distri-
bution and mixing of taxonomic classes observed in the asteroid
Main Belt can not be explained by the collisional exchange of
mass and owing to that such distribution of taxonomies should
be a primordial feature. In this study, the transport of mate-
rial between the different regions of the Main Belt due to the
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Fig. 12. Mass fraction of the Inner, Middle and Outer Rings distributed
in the entire Main Belt due to the action of collisional processes after
4.5 Gyr. Our results indicate that each ring conserves more than 99 per-
cent of its primordial mass which allows us to infer that the mixing of
taxonomic classes observed in the asteroid belt can not be explained
only by the collisional exchange of material.

action of the Yarkovsky effect has not been taken into account.
In order to justify this assumption, we must analyze our model
of the Yarkovsky effect together with the dynamical properties
of the ν6, 3:1 and 5:2 powerful resonances, which determine the
boundaries of the rings of the Main Belt. Figure 4 shows that
the semimajor-axis drift rate ȧ of bodies ≥10−4 km is always
smaller than 0.005 AU Myr−1 for any ring of the asteroid belt.
In addition, as Table 1 indicates, the median lifetime of bodies
initially in the ν6 and 3:1 resonances is ∼2 Myr while, for the
5:2 resonance, the median lifetime is ∼0.5 Myr. Assuming that
these powerful resonances have a characteristic width of some
hundreds of an AU, the time required to cross these regions is
always larger than the median lifetimes. Thus, we consider that
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the Yarkovsky effect does not play an important role in mixing
material between the different zones of the Main Belt.

5.6. Provenance of the NEA objects

Here, we study statistically what percentage of mass of the
NEA population comes from the different regions of the Main
Belt. In every timestep, we compute the injection rates from ev-
ery ring of the asteroid belt into the NEA population and the rates
of dynamical elimination of those bodies from such population.
To calculate the influx rates, we take into account the action of
the Yarkovsky effect and the collisional injection into the ν6, 3:1
and 5:2 resonances. To compute the object removal rates from
the NEA population, we need to determine a mean dynamical
lifetime for bodies in this population. Following Bottke et al.
(2002), we obtain a mean dynamical lifetime of 3.73 Myr in the
NEA region for objects coming from the Inner and Middle Rings
of the asteroid belt, averaging the values associated to the ν6 sec-
ular resonance, the intermediate-source Mars-crossing (IMC)
population, and the 3:1 mean motion resonance. On the other
hand, a mean dynamical lifetime of 0.14 Myr is used for bodies
coming from the Outer Ring of the Main Belt (Bottke et al. 2002,
Table 2). Our analysis shows that ∼94% of the NEA population
comes from the Inner and Middle Rings of the asteroid belt and
∼6% comes from the Outer Ring, which is in agreement with
Bottke et al. (2002) who found that ∼85% of the NEA popula-
tion comes from the inner and central Main Belt (namely, a <
2.8 AU), ∼8% comes from the outer Main Belt and ∼6% comes
from the Jupiter-family comet population.

6. Conclusions

We have presented a new multi-population code for collisional
evolution that takes into account the main dynamical features
present in the asteroid Main Belt and NEA region. The proposed
collisional model is based on Petit & Farinella’s (1993) method
that includes some corrections made by O’Brien & Greenberg
(2005). This algorithm allows us to describe the escape and
reaccumulation processes of the fragments resulting from catas-
trophic fragmentation events and cratering impacts. The dynam-
ical mechanisms taken into account in our code include mean
motion and secular resonances, and the Yarkovsky effect, which
represent a source of mass depletion in the asteroid belt and lead
to a connection between the Main Belt and NEA populations.

While the previous works model the entire Main Belt, we
study the collisional and dynamical evolution of the Main Belt
and NEA populations, dividing the asteroid belt into three semi-
major axis zones whose boundaries are given by the ν6, 3:1, 5:2
and 2:1 resonances. This treatment allows us to calculate the di-
rect collisional injection into these powerful resonances, to study
the collisional exchange of mass between the different regions
of the Main Belt and to analyze the provenance of the NEA ob-
jects. Our results are consistent with the predictions made by
Morbidelli et al. (2002) and Morbidelli & Vokrouhlický (2003),
who proposed that the Yarkovsky effect is the most important
process that removes material from the asteroid Main Belt, rather
than collisional injection into the major resonances (Sect. 5.1).
Besides, we conclude that the distribution and mixing of taxo-
nomic classes observed in the asteroid belt (Mothé-Diniz et al.
2003) can not be explained by the collisional exchange of mass
since more than 99 percent of the final mass of every of the
three rings of our model of the Main Belt is represented by pri-
mordial material (Sect. 5.5). With regard to the provenance of
the NEAs, our work shows that ∼94% of the NEA population

comes from the Inner and Middle Rings of the asteroid belt and
∼6% comes from the Outer Ring (Sect. 5.6), which is in agree-
ment with Bottke et al. (2002).

Our numerical algorithm have proved to satisfy the ma-
jor observational constraints associated with the Main Belt and
NEA populations, such as their size distributions, the colli-
sional history of Vesta, the number of large asteroid families
and the cosmic-ray exposure (CRE) ages of meteorites (Sect. 5).
Besides, our model allows us to reproduce the dynamical re-
sults derived by Morbidelli & Nesvorný (1999) and Bottke et al.
(2002) with regard to the removal rate for multi-kilometer bodies
from the Main Belt (Sect. 5.1).

Finally, this new multi-population code can be adapted in
order to study the collisional and dynamical evolution of any
small body population.
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