
 

 

ISSN: 1568-0266
eISSN: 1873-5294

Impact
Factor:
3.402

BENTHAM
SCIENCE

C
ur

re
nt

 T
op

ic
s i

n 
M

ed
ic

in
al

 C
he

m
is

tr
y

Send Orders for Reprints to reprints@benthamscience.ae 2078

 
Current Topics in Medicinal Chemistry, 2016, 16, 2078-2087 

 

The Importance of Bioactivation in Computer-Guided Drug Repositioning. 
Why the Parent Drug is Not Always Enough 

 

Alan Talevi
* 

Medicinal Chemsitry, Department of Biological Sciences, Faculty of Exact Sciences, University of La 
Plata, La Plata, Argentina  

Abstract: Although bioactivation is a well-documented process and the role of active metabolites in 

the drug discovery field has long been recognized, drug metabolites are usually ignored in virtual 

screening campaigns oriented to drug repositioning. The present article discusses different issues re-

lated to overlooking of the active metabolites in virtual screening campaigns, including an overview of 

the essential aspects of drug biotransformation and a summary of computational approaches that can 

provide solutions to those issues. Some valuable computational resources connected with this topic are 

also overviewed.  
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1. INTRODUCTION 

The term drug repurposing (also known as drug reposi-
tioning) refers to finding second or further medical uses of 
known drugs, including approved, discontinued, abandoned 
and experimental therapeutics. It is an innovative strategy 
which has raised intense interest in the last decade owing to 
both the abundance of successful repurposing stories and the 
possibility of introducing novel medications to the clinical 
practice with relatively little investment of time and re-
sources. Recently, national institutions (e.g. the NIH’s Na-
tional Center for Advancing Translational Sciences or the 
UK’s Medical Research Council) have launched rewarding 
(and expanding) programs to promote drug repositioning-
oriented crowdsourcing partnerships between the academic 
sector and pharmaceutical companies [1-3]. While tradition-
ally most of the repurposing cases have emerged from ex-
ploitation of a drug’s known mechanism to a new therapeutic 
indication in which the same drug target is involved (on tar-
get repurposing) or from serendipitous observations of unex-
pected side-effects [4], computer-guided drug repositioning 
has recently been intensively explored to supply both effi-
ciency and rationale to off-target, more innovative drug re-
purposing [5-7]. Briefly, this approach includes cheminfor-
matics-, bioinformatics- and high-throughput literature 
analysis-based drug repurposing, along with synergistic 
combinations of the former (prominently, network-based 
approximations integrating different levels of experimental 
data and computational predictions) [7]. 

Virtual screening consists in the application of computa-
tional models and/or algorithms to rank digital collections of  
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chemical compounds (chemical libraries) in order to decide 
which ones will move on to experimental testing [8]. Al-
though within the vast realm of cheminformatics other ap-
proximations might be also used for drug repositioning pur-
poses (the reader is referred, for instance, to the very inter-
esting works related to the indication similarity ensemble 
approach [9-11]), virtual screening of specific chemical da-
tabases containing approved drugs such as DrugBank [12] or 
Sweetlead [13] is by far the most explored one [14-22].  

While the opportunities linked to bioactivation and ex-
ploitation of bioactive metabolites have long been recog-
nized within the drug discovery and development field [23-
25], metabolite profiling is often neglected in virtual screen-
ing campaigns oriented to drug repurposing, with some very 
recent exceptions [26]. As clearly discussed in a very stimu-
lating article from Oprea and Overington [27], the sub-
stances subjected to screening can often differ from the 
chemical species intrinsically responsible for the therapeutic 
effect, which should thus be also annotated in the screening 
drug library. This article overviews the role of bioactivation 
in pharmacology including discussion on which metabolites 
are more likely to be pharmacologically relevant. On the 
light of the importance of bioactivation, we will present 
some hints and considerations that should be taken into ac-
count when conducting virtual screening campaigns aimed at 
drug repurposing. Finally, a summary of some computational 
resources related to experimental and predictive information 
on potentially bioactive metabolites will be presented. 

2. A GENERAL OVERVIEW OF DRUG METABO-
LISM 

Drug metabolism involves a wide spectrum of biotrans-
formations, enzyme-catalyzed reactions which, generally 
speaking, tend to produce biotransformation products (me-
tabolites) that are more hydrophilic than the parent or origi-
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nal compound [28]. This increment in polarity facilitates the 
biliary and renal excretion, limiting gut or tubular reabsorp-
tion, respectively [28, 29]. Classically, drug metabolism was 
divided in Phase I and Phase II reactions. Such classification 
could be misleading: though many drugs undergo both Phase 
I and Phase II reactions, in that order, others undergo either 
one or the other [28, 30, 31]; thus, labeling Phase I biotrans-
formations as functionalization or non-synthetic reactions 
and Phase II biotransformation as conjugation or synthetic 
ones is sometimes preferred nowadays.  

Functionalization metabolism involves the creation of a 
functional group or the modification or exposure of an exist-
ing one, generally leading to a metabolite which is more 
chemically reactive than the parent compound. This type of 
biotransformations introduces a “chemical handle” or an-
choring point in the substrate which predisposes the mole-
cule to take part in a conjugation reaction [28, 32]. Essen-
tially, they are either redox or hydrolysis reactions. It is es-
timated that oxidation reactions are involved in the metabo-
lism of about 90% of the known drugs. The diversity in the 
chemical nature of the resulting functional groups (among 
them aliphatic and aromatic alcohols, aldehydes, ketones, 
carboxylic acids, primary and secondary amines, hydroxy-
lamines, N-oxides, sulfides, sulfoxides, sulfones and epox-
ides) and the positional and stereochemical differences in the 
creation of a single type of functional group [33] show that 
functionalization reactions may result in an extraordinary 
diversity of metabolites. Furthermore, though the biotrans-
formation products of functionalization reactions might be 
pharmacologically inactive, very often they are indeed ac-
tive, and in some cases even more active than the original 
drug (in which case we will talk of bioactivation) [34]; this 
fact will be of utter importance for the discussion in the fol-
lowing sections. Some benzodiazepines (see, for instance, 
diazepam and some of its active biotransformation products 
in Fig. 1) are a good example of such behavior: they are of-
ten metabolized to active products with long elimination half 
lives, leading to long lasting hypnotic effect.  

Once a suitable anchoring point is available in the drug 
(whether it was originally present in it or added via a func-
tionalization reaction), endogenous molecules or moieties 
such as phosphate, sulfate, glucuronic acid and glutathione 
may be transferred to it through a conjugation reaction; the 
resulting metabolite will have modestly to markedly higher 
molecular weight and usually much higher polarity that the 
parent compound, with both changes reducing drug tubular 
and/or intestinal reabsorption. Moreover, formation of polar 
conjugates is frequently coupled with their active excretion, 
favoring drug clearance [32, 35]. Though synthetic reactions 
mostly lead to inactive products, there are numerous signifi-
cant examples of active conjugates [36], such as opioids glu-
curonides, N-acetylprocainamide and hydroxytriamterene 
sulphuric acid ester (Fig. 2).  

It should be highlighted that whether an active metabolite 
is or is not clinically relevant depends on a number of fac-
tors, including its intrinsic activity, rate and extent of its gen-
eration, its half life and whether it displays the same or dif-
ferent actions than the parent molecule [34, 37]. Metabolites 
can develop effects different from that of their parent com-
pound. For example, vitamin A is metabolized to retinoic 

acid, which has anti-acne and anti-cancer effects [38, 39]. 
Aspirin and its metabolite, salicylate, share anti-
inflammatory effects but, seemingly, they act through differ-
ent mechanisms [40]. Doxepin is a potent antihistamine indi-
cated for sedation; its metabolite, N-demethyldoxepin, binds 
to the norepinephrine transporter and exerts antidepressant 
effects [37]. Other examples of drugs that generate metabo-
lites that have increased affinity at receptors different than 
the ones targeted by the parent drug can be found in the ex-
tensive review from Obach [37]. 
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Fig. (1). Diazepam’s Phase I active metabolites. 
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Fig. (2). Although Phase II metabolites are majorly inactive, a 

number of examples of active conjugates can be found.  

Prodrugs constitute a particular case of bioactivation. 
They are bioreversible derivatives of drug molecules that 
undergo enzymatic or chemical transformation within the 
body to release the active parent drug [41]. Prodrugs should 
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have no or negligible biological activity per se, becoming 
active after biotransformation or in vivo chemical cleavage. 
Interestingly, around 10% of approved drugs worldwide are 
unintended or designed prodrugs [42-43], with a dramatic 
increase in the number of prodrug patents in the beginning in 
2000s [44]: approximately one third of all the approved 
small molecule drugs in 2008 were prodrugs [45]. These 
figures should not be overlooked: chemical repositories ori-
ented to drug repositioning such as DrugBank may include 
around 10% of prodrugs which will undergo rapid conver-
sion into the active chemical species.  

On the other hand, discovering drugs by mean of biologi-
cal transformations might be a viable approach to drug de-
sign [46]. Note that while metabolites are chemically distinct 
from the parent drug, they are still chemically similar (spe-
cially the metabolic products of functionalization reactions), 
and a similar activity profile to the one of the precursor 
might be attained if the modification is introduced in a non-
pharmacophoric group or whenever it leads to optimization 
in binding to the molecular target [23]. In a way, Phase I 
biotransformations might be considered as natural SAR stud-
ies in which functional groups are modified and/or new sub-
stituents are incorporated to different positions of an active 
scaffold. Occasionally, the metabolite might display en-
hanced target interactions, pharmacokinetics and/or safety. 
As a matter of fact, many metabolites of approved drugs 
have been later registered as novel therapeutics (see Fig. 3 
for examples), a strategy that may prove rewarding from an 
intellectual property perspective.  

From the previous discussion it is evident that consider-
ing the drug metabolome is of major importance when exe-
cuting in silico screening campaigns directed to drug repro-
filing, as will be discussed in detail in the next section.  

N

H
N

Cl
OH

HN

O

DESLORATADINE ACETAMINOPHEN  

Fig. (3). Two examples of successfully marketed active metabo-

lites. 

3. HOW TO CONSIDER DRUG METABOLISM 
WHEN CONDUCTING CHEMINFORMATIC-BASED 
DRUG REPOSITIONING CAMPAIGNS 

Docking, quantitative structure-activity relationships 
(QSAR) and pharmacophore searches can be mentioned 
among the most prominent cheminformatic approaches ap-
plied in the frame of computer-guided drug repositioning 
initiatives [7]. Either of these methodologies may be applied 
to prioritize the experimental testing of repositioned candi-
dates emerging from chemical repositories or libraries con-
taining approved, discontinued, shelved or investigational 
drugs such as DrugBank [47] or Sweetlead [48] repositories. 
Very briefly, docking refers to a target-based approximation 
which, from experimental knowledge on the drug target 3D 
structure and the binding site/s, aims to reproduce or predict 

the binding mode/s of a given ligand to a certain molecular 
target, by estimating the drug-target complex free energy and 
thus the binding affinity [49]. The QSAR approach consists 
in making a statistical, empirical inference (which will be 
termed QSAR model) on the correlation between the molecu-
lar structures of a set of chemicals (the training or calibra-
tion set) and some biological property of interest (e.g. the 
binding constant to a given molecular target) [50, 51]. The 
theoretical or experimental molecular features through which 
the statistical relationship is established are known as mo-
lecular descriptors. Finally, pharmacophore searches sup-
pose obtaining, from one or multiple known active com-
pounds (or occasionally, in a structure-based manner), a spa-
tial arrangement of key chemical features which are funda-
mental for a compound to elicit the studied bioactivity 
(pharmacophoric features, e.g. H-bond donor or acceptor 
groups, aromatic rings, etc.) [52, 53]. Later, superimposition 
of the candidate molecules onto the pharmacophoric pattern 
will decide which candidates best accomplish the pharma-
cophore requisites.  

It is clear that inherent to the formerly described ap-
proximations lays the assumption that the considered com-
pounds are actually the chemical entities directly responsible 
for the biological activity under study. Provided that most 
drugs elicit their action after very specific ligand-target rec-
ognition events, no relationship between the structure and 
activity of a set of compounds can be imagined if those 
compounds do not share a common action mechanism and, 
even more, a common binding site. So how can we ensure 
that the compounds used to infer a QSAR of pharmacophore 
model and, later, the screened compounds (candidates for 
repositioning) are the chemical entities directly responsible 
for the biological activity? And how can we predict if the 
biological response to a given compound might be aug-
mented through bioactivation? Practical hints to approach 
these issues will be discussed within the next sub-sections.  

3.1. Practical Considerations to Build the Training Set 

Very often it is stated in the specialized literature that 
when building a model (e.g. a QSAR model or a pharma-
cophoric hypothesis) from chemical and biological data the 
model can only be as good as the data itself [51, 54], thus 
requiring a very careful curation of such data to avoid un-
necessary noise. In other words, the quality of the model is 
training set dependent. The modeler must then take all the 
possible cautions to assure that the training set compounds 
have been adequately represented and that they (and not their 
metabolites) are the chemical entities responsible for the 
biological property being modeled. It must be guaranteed 
that the training set instances do have intrinsic activity. In 
the case of docking, where the drug-target interaction is ex-
plicitly modeled, it is very clear that only if the chemical 
entity with intrinsic activity is docked in the correct binding 
mode/s one should expect highly scored complexes. 

Assurance regarding the intrinsic activity of the training 
set instances can be easily achieved if binding or dissociation 
constants (or other binding parameters such as drug-target 
residence time) are chosen as the dependent variable of the 
model: in that case, by definition, only ligands with experi-
mentally measured binding constants to the intended target 
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will be allowed in the training set. Fortunately, public online 
resources compiling experimental affinity data for a wide 
range of proteins, such as BindingDB [55], are today avail-
able, as will be discussed in the next section of the article. 

Although binding parameters can be thus regarded as the 
gold standard choice for a model’s dependent variable, many 
others such as ED50 [56, 57], IC50 [58, 59], carcinogenicity 
[60], or toxicity [61] are frequently used in modeling cam-
paigns. When the modeled variable is measured in a pheno-
typic assay (e.g. effect of the drug on a microorganism cul-
ture, an animal model or a cell culture) the modeler cannot 
be sure regarding the specific action mechanism explaining 
the phenotypic observation or the number or identity of the 
pharmacologically active chemical species. In those cases, 
the complex nature of the biological response makes it im-
possible to describe, a priori, a well-defined action mecha-
nism, or to discriminate the influence of other processes on 
the modeled activity apart from the studied drug-target inter-
action (e.g. transport processes, interaction with multiple 
targets, bioactivation). Succinctly: the more complex the in 
vitro (or in vivo) model used to measure the experimental 
variable from which the model’s dependent variable is ob-
tained, the noisier the in silico model and the less certainty 
regarding the identity of the chemical species with intrinsic 
activity.  

From a statistical viewpoint the use of discriminant (clas-
sifier) models or even multiple-classifier systems (meta-
algorithms) may help limiting the influence of noisy data on 
the quality of the model [62-64]. Noisy data points could 
behave as outliers: atypical training instances that cannot be 
fully explained (or explained at all) by the model. The choice 
of a discrete dependent variable (class or category label) 
instead of a continuous one may alleviate the incidence of 
noise (unknown molecular or cellular processes influencing 
the model’s response, experimental variability in the biologi-
cal data points). Some adaptive boosting algorithms are par-
ticularly suitable to deal with this issue. While most of such 

recursive algorithms focus on training examples that are re-
peatedly misclassified (i.e. misclassified instances gain 
weight previous to the addition of a new learner to the en-
semble), others such as BrownBoost (an adaptive version of 
boost by majority) operate in the exactly opposite manner 
[65]: they decrease the weight of repeatedly misclassified 
examples, giving up on/downplaying those instances. The 
first type of boosting approaches might lead to overfitting, 
failing to obtain general hypothesis from noisy data; the sec-
ond type could be a powerful tool to detect and lessen the 
influence of outliers. Several other statistical solutions to 
deal with the issue of outliers have been reported [66-69]. 

Alternatively or complementarily to pure statistical ap-
proximations to the problem of outlier detection, the modeler 
may perform knowledge-based prospective curation of the 
training data points previously to starting the model search 
procedure. Approved and investigational new drugs are 
much better characterized regarding their active metabolites 
and action mechanism/s, compared to drug candidates in 
early stage of development [70-71], thus being more reliable 
(less noisy) training examples. Inclusion of prodrugs in the 
training set should be avoided [72]. Eventually, models di-
rected to predict metabolic stability or the sites and products 
of metabolism can provide insight into atypical training ex-
amples related to bioactivation processes [73-76] (the reader 
is particularly directed to the excellent review from Kirch-
mair et al. [75]). 

The preceding considerations are synthetically presented 
in Table 1.  

3.2. Metabolites that Deserve Particular Attention 

Since drug metabolism can result in active metabolites 
which may be even more active than the parent drug, drug 
repurposing in silico screening campaigns should not only 
explore known drugs but their metabolites as well [27]. A 
good example of the importance of considering drug me-

Table 1. Some practical considerations that can help compensating noisy biological data due to bioactivation and other unforeseen 

processes.  

Issue Solutions / Advices 

The chemical structures used to simulate the ligand/target interaction 

(docking) or as training example (pharmacophore or QSAR models) 

should display per se the pursued activity 

If possible, choose affinity constants as biological response 

Use outlier detection approaches to uncover atypical/noisy training examples. 

If outliers are found, remove them but try to find an explanation to the 

unexplained behavior 

Biological responses obtained from complex model systems (e.g. in vivo 
preclinical tests) usually reflect the interaction of multiple molecular proc-

esses (e.g. transport processes, interaction with multiple targets, bioactiva-

tion). 

Use classification QSAR approaches: class or category labels may mitigate 

the influence of noisy data. 

Use ensemble learning approaches (meta-algorithms). Prefer adaptive boost-

ing algorithms that lessen the weight of misclassified examples. 

Exclude prodrugs from the training set. 

Prefer including approved drugs or drug candidates at late stage of develop-

ment in the training set. They are usually extensively characterized re-

garding their metabolome. If not possible, consider the use of in silico 
tools to estimate metabolic stability and predict biotransformation site 

and/or products.  
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tabolome in virtual screening campaigns is our recent work 
related to the anticonvulsant effect of steviosides and their 
biotransformation products in rodents [77, 78]. Following 
previous in silico studies which helped us identifying the 
anticonvulsant effect of artificial sweeteners [79], we de-
cided to explore the potential anticonvulsant effect of natural 
sweeteners from Stevia rebaudiana. For that purpose, we 
resorted to a combination of two different computational 
models (a linear discriminant function and a pharmacophore) 
previously reported, both capable of identifying anticonvul-
sants acting through voltage-operated sodium channels 
blockade. Interestingly, while steviosides were predicted as 
non-anticonvulsants by the models, the aglycone steviol and 
its phase I metabolites were predicted as active (Fig. 4 shows 
the superposition between steviol and several functionaliza-
tion metabolites onto the pharmacophore). Later, both the 
aqueous infusion of Stevia rebaudiana and the isolated 
steviosides displayed anticonvulsant effect, presumably due 
to the aglycone and Phase I metabolites exposure. The re-
sults illustrate the importance of taking drug metabolites into 
consideration when conducting virtual screening campaigns 
oriented to drug repurposing: the anticonvulsant effects of 
Stevia would have not been identified by the models if only 
steviosides had been considered in the analysis.  

 

Fig. (4). Superposition of steviol and its Phase I metabolites onto 

the pharmacophore. 

In 2014, Pan et al. introduced a computational frame-
work to reveal putative off-targets of a set of analgesics 
(oxycodone, fentanyl, morphine, acetaminophen, liquicet 
and rofecoxib) in a high-throughput manner [80]. Recogniz-
ing the potential contribution of drug metabolites to off-
target interactions, the authors also explored the putative off-
targets of known phase I metabolites compiled from litera-

ture: acetimidoquinone (acetaminophen metabolite), oxy-
morphone (oxycodone metabolite), hydrocodone and hy-
dromorphone (liquicet metabolites). Though the bioinformat-
ics analysis carried out by the authors were intended to iden-
tify proteins and pathways linked to severe adverse drug 
reactions, the authors underlined that some of the predictions 
had therapeutic potential (e.g. as antihypertensives) and 
could be used to guide drug repositioning initiatives  

Recently, Kigondu et al. explored the antimycobacterial 
activity of metabolites of the antipsychotic agent chlorpro-
mazine [81]. To that purpose, they expose the parent drug to 
liver microsomes, obtaining six major phase I metabolites; 
two of them (7-hydroxichlorpromazine and nor-
chlorpromazine) displayed weak inhibitory activity on the 
model organism Mycobacterium smegmatis; synergistic 
combinations with known anti-TB drugs were studied, with 
positive results.  

In the light of previous discussions, do some metabolites 
deserve particular attention? Whether an active metabolite 
will or will not significantly contribute to the pharmacologi-
cal response will depend, essentially, on two factors: a) its 
intrinsic activity/potency and; b) its exposure/pharmacoki- 
netics. While small amounts of a highly active metabolite 
might have an impact on the pharmacological response, fre-
quently those metabolites that achieve high concentrations in 
the vicinity of the molecular target (in general, the major 
metabolites) will be of more interest. The metabolite expo-
sure depends on its rates of formation and elimination and its 
biodistribution profile. Since conjugation reactions often 
lead to inactivation, Phase I metabolites are, a priori, more 
relevant. Whenever the in silico model used in the screening 
study provides a continuous or categorical output, those me-
tabolites predicted as more active will also be intuitively 
interesting. Finally, the more metabolites from the same drug 
that are labeled as active by the in silico models, the higher 
the probability than the parent drug elicit the pursued phar-
macological response. It must be emphasized that the ob-
served activity of a given metabolite (as in the case of any 
chemical) will depend on the balance between its potency 
and its exposure. A slightly active metabolite that achieves 
high levels in the biophase could be equally important to a 
potent metabolite that reaches the target in small quantities. 
Thus, resources compiling data on the biofluid and tissue 
concentrations of the metabolites are as important as the 
knowledge on their identity and their predicted pharmacol-
ogical effect. Back in 2012, Patel et al. introduced the prepa-
ration of clusters of docking poses to identify preferences in 
the site of metabolism and correlate with the percentage of 
metabolites from antimalarial prodrugs proguanil and phe-
noxypropoxy biguanide derivatives found in previous in vi-
tro studies [82]. Since the docking results displayed a nice 
correlation with the experimental ones, the authors postulate 
that their strategy could be applied in the future in the pre-
diction of the quantity of desirable active triazine metabolites 
production over other less important or unwanted metabo-
lites, the prediction of the role of specific CYP isoforms in 
the production of active metabolites and to assist the selec-
tion of optimal lead candidates.  

The former (and some more) thoughts are synthetically 
presented in Table 2.  
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4. SOME USEFUL COMPUTATIONAL TOOLS TO 
CONSIDER THE POTENTIAL CONTRIBUTION OF 

BIOACTIVATION TO CHEMINFORMATIC-BASED 

DRUG REPOSITIONING 

Below these lines we will present a limited, non-
exhaustive list of some interesting computational resources 
that may help addressing the preceding considerations re-
lated to the importance of potential or known active metabo-
lites and bioactivation processes in computer-guided drug 
repurposing projects.  

4.1. The Human Metabolome Database  

The Human Metabolome Database (HMD, 
http://www.hmdb.ca) was released in 2007 [83] and it is cur-
rently in its 3.6 version. It is an impressive, manually cu-
rated, continuously expanding and publicly available data-
base compiling detailed information of more than 40,000 
detected or expected small molecule metabolites. Though 
most of the entries correspond to physiological compounds 
(e.g. food-derived compounds) the latest release contains 
>1500 drugs and drug metabolites. Detected metabolites are 
those that have been experimentally confirmed, while ex-
pected metabolites are those whose intake is frequent in hu-
man or for which molecular pathways are known in human, 
despite they have not been experimentally detected yet [84]. 
The complete structure library can be downloaded in sdf file 
format, thus making tit immediately available for virtual 
screening purposes. It should be highlighted that, as reflected 
in the resource name, the entries from the HMD exclusively 
refer to chemicals (either exogenous or endogenous) found 
or expected to be found in the human body, thus preventing 
any noise in the data owing to inter-species variability. An-
other highlight is that more than 5,000 entries contain infor-

mation (if available) on biofluid (urine, plasma, CSF) and/or 
tissue concentration, though presently most of these data 
corresponds to endogenous compounds. Predicted biofluid 
concentration ranges have however been included in the 3.0 
release for a significant number of drugs. Inclusion of dos-
ing, pharmacokinetic and biofluid concentration data for 
indexed drugs and drug metabolites in future releases could 
strengthen the potential of this resource for virtual screening 
applications.  

As already discussed, the effect of a parent drug can be 
prolonged when biotransformation products are also active 
on the same molecular target, or even enhanced through bio-
activation. Therefore, if an in silico screening campaign in-
dicates that both a drug and its metabolites could display a 
given pharmacological effect, such prediction would deserve 
special attention. Every predictive tool incurs into mistakes, 
but, in general, the more predictions pointing in the same 
direction, the less the probability of a misprediction (a false 
positive, for the example at hand). Furthermore, provided 
that all the predictions on a certain compounds and its meta-
bolic products were true, one could be facing an indication 
of a long-acting drug (as in the case of benzodiazepines with 
many phase I active metabolites). Therefore, online reposito-
ries compiling information on known drug metabolites 
would be valuable to expand the screened library by includ-
ing those biotransformation products; to the moment, the 
already determined drug metabolites must be in most cases 
compiled from literature, with the consequent time invest-
ment.  

4.2. The Binding Database (BindingDB) 

BindingDB (https://www.bindingdb.org) is a public data-
base compiling experimentally determined binding affinities 
that focus on interactions between drug targets and drug-like 

Table 2. Some practical considerations that can help compensating noisy biological data due to bioactivation and other unforeseen 

processes.  

Advice Reasoning 

Include drug metabolites in the screened library 
The pharmacological response to many drugs is a function of the sum of ef-

fects of the parent drug and some of its metabolites 

Focus on Phase I metabolites 

Phase I metabolites are structurally similar to the parent drug, thus presenting 

better chances of interacting with the same molecular target. Phase II reactions 

entail a more radical change in the physicochemical properties (i.e. shape, 

molecular weight), and, with exceptions, lead to inactivation. 

Focus on major metabolites 
The intensity of the pharmacological response will not only depend on the 

intrinsic activity of the metabolite, but also on its level of exposure. 

Focus on metabolites predicted as highly active 
Even small amounts of a compound with high intrinsic activity may result in a 

significant pharmacological effect 

The more biotransformation products predicted as active, the better 

If a number of metabolites plus the parent drug are all predicted as active 

compounds by the models, there is better chance that an experimental activity 

be observed. Have in mind, however, that drugs with many active metabolites 

tend to present more complicated pharmacokinetics. 

A drug might be repurposed even if it is not the chemical entity directly 

responsible for the new therapeutic indication 
Many approved drugs are actually unintended prodrugs 
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compounds [55]. At present it contains binding data for more 
than 7,000 proteins and about 500,000 small molecules, 
which makes it a valuable source of quality (“clean”) train-
ing examples for QSAR modeling projects. It also includes a 
list of more than 5,000 compounds from the FDA Drugs 
database with their correspondent binding data to the target/s 
responsible of their therapeutic effects and/or other targets, a 
resource of great interest for all kind of in silico drug reposi-
tioning initiatives, including network-based approximations. 
This resource has been applied in the already discussed work 
from Pan et al [80]. The putative protein targets of the six 
analgesic drugs (and the correspondent metabolites) explored 
in that study were identified by simulation of ligand-receptor 
recognition using the reverse software INVDOCK; later, the 
proposed putative drug-target interactions were validated by 
looking for experimental evidences in BindingDB and 
ChEMBL. Adverse reactions associated pathways were then 
obtained by mapping the identified off-targets into the Kyoto 
Encyclopedia of Genes and Genomes pathway database.  

4.3. MetaPrint2D 

Freely available computational tools to predict metabolic 
stability, possible molecular sites undergoing metabolic reac-
tions and metabolic products are still scarce [75]. Such re-
sources, however, are valuable when no experimental data 
on a drug’s metabolites identity are publicly available, to 
include putative metabolites in in silico screening cam-
paigns.  

University of Cambridge’s MetaPrint2D and its exten-
sion, MetaPrint2D-React are remarkable exceptions 
(http://www-metaprint2d.ch.cam.ac.uk/) [85], since they are 
publicly available. It is a high-throughput data-mining tool 
that uses 2D circular fingerprints to identify sites of metabo-
lism and possible metabolic products. The algorithm is based 
in the statistical analysis of the frequency of occurrence of 
certain atom environments in substrates and products of 
metabolic reactions. Two limitations of this application are 
that it is training set dependent (predictions cannot be made 
about atom environments which are not present in the train-
ing examples, i.e. outside the applicability domain of the 
algorithm) and that, since 2D substructures are employed, no 
discrimination between enantiomers can be expected. Oppor-
tunely, the application detects and acknowledges whenever 
novel sites outside of the applicability domain are found in 
the query molecule. The primary site of metabolism is found 
within the top three predictions in about 70-80% of the 
cases. In the frame of a QSAR or pharmacophore based VS 
campaign, this kind of application might be useful to: a) 
identify if a mispredicted case could be a result of bioactiva-
tion and; b) to predict the potential pharmacological activity 
of predicted metabolites.  

4.4. MetaSite 

MetaSite (http://www.moldiscovery.com/software/ meta-
site/) is a computational resource that predicts metabolic 
transformations related to cytochrome and flavin-containing 
monooxygenase mediated reactions [80]. The MetaSite algo-
rithm is training set independent, and can be then used to 
make predictions for structurally novel pharmaceutical com-
pounds. By applying a procedure that resembles flexible 

docking, MetaSite evaluates the substrate atoms accessibility 
to the correspondent catalytic domain and the substrate reac-
tivity, which is computed from molecular orbital calculations 
using molecular fragments and ab initio methods, taking into 
consideration the inductive and mesomeric effects of adja-
cent groups. The primary site of metabolism is found within 
the top three MetaSite predictions in around 90% of the 
cases. 

CONCLUSION 

The role of bioactivation in the drug discovery and de-
velopment field is well-documented. About 10 percent of 
marketed drugs are designed or accidental prodrugs: inactive 
precursors that are transformed to active species within the 
body. Furthermore, many drugs are biotransformed to meta-
bolic products with intrinsic activity that impact on the 
pharmacological response.  

However, to the moment, the role of active metabolites 
and bioactivation has been mostly ignored in virtual screen-
ing campaigns oriented to drug repositioning. Such neglect 
may impact on two instances of the virtual screening cam-
paign: a) inclusion of noisy data as training examples of 
QSAR or pharmacophore models, owing to ignored or non-
acknowledged active metabolites/bioactivation. Such train-
ing examples will not be fully explained by the model, in-
creasing model’s error and; b) ignoring that some known 
drugs might be repurposed not (or not only) because of their 
intrinsic activity but also due to the pharmacological activity 
of their metabolites.  

Current state of the art of computational techniques and 
drug metabolism-related resources can help addressing the 
preceding issues. Such techniques include classifier QSAR 
models, ensemble learning approaches and outlier detection 
techniques. Useful tools to address this issue include me-
tabolism-related resources include repositories compiling 
drug metabolome information such as the Human Me-
tabolome Database and models and algorithms capable of 
predicting sites of metabolism and molecular structures of 
the resulting metabolites.  
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