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Abstract: Background: In contrast to the one target-one drug paradigm, multi-target agents seem as a promising 

alternative to manage complex disorders and health conditions linked to drug resistance issues. In fact, many long-
standing drugs are in fact unintended multi-functional therapeutics that have emerged from phenotypic screening. 

The last two decades, however, have witnessed the emergence of tailored multi-target agents, which according to 
our perspective combine the best aspects of target-based and phenotypic-based drug discovery. Methods: We dis-

cuss a number of considerations related to the design, screening and computer-aided discovery of multi-targeted 
drugs, along with overlooked advantages that this type of agents might have in clinical trials. A theoretic example 

is included to explain the reduced positive predictive value in virtual screening campaigns focused on multi-target 
agents. Conclusion: Multi-target agents present great therapeutic potential for the treatment of complex health conditions 

and the solution of drug resistance phenomena. However, they are certainly challenging for computer-aided drug discovery approaches. Merged or 
overlapping pharmacophores should be preferred whenever possible. It is thus suggested perform a careful selection of the combination of pursued 

targets, preferring target combinations supported by co-evolution or similar biding sites.   
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1. INTRODUCTION 

 There are many good reasons that explain why, during the last 
two to three decades, target-driven approximations have dominated 
the field of drug discovery. Target-centered drug discovery was 
originally linked to the “one drug one target” model, which seeks 
for exquisitely selective agents capable of modulating a single tar-
get linked to a disease state. A target-based drug discovery cam-
paign begins with a hypothesis on the role of a given molecular 
target on the pathophysiology of disease; then, the effect of drug 
candidates on the purified target is measured through in vitro assays 
and only at that point the drug progresses to more complex models. 
The target-based approach is indeed tempting: it allegedly allows 
the definition of rational drug discovery programs [1,2] and in-
creased screening capacity [1] compared to phenotypic screening, 
which first looks at the effect of chemical compounds on cells, 
tissues or even whole organisms. Highly selective agents are less 
likely to present side-effects due to off-target interactions [1, 3] and 
also seem to present shorter development timelines [2], possibly 
due to the complex process of target deconvolution that follows 
phenotypic-based discovery [4, 5].  

 While target-based approximations are well suited to Mendelian 
disorders where the inheritance of a single gene can be linked to the 
disease [6], they have generally failed to fulfill expectations as 
treatments of more complex disorders and are frequently cited as 
one of the possible reasons for the decline in the number of new 
drugs that reach the clinical practice normalized for the cost of drug 
discovery and development [1, 3, 4, 6, 7]. Modern pharmacology, 
in line with systems biology, understands biological systems as 
robust entities that usually require multiple perturbations to lose 
functionality [3]; consistently, a disease emerging from multiple 
factors would also be a robust state. Strikingly, first-in-class small 
molecule drugs identified through phenotypic screening seem to  
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outnumber those emerging from target-centered projects [7]. Multi-
target agents, simultaneously impacting on an array of disease-
related molecular targets thus appear as promising approaches to 
cure complex diseases and infectious disorders (see next section) 
[8]. Under this new light, renewed interest into phenotypic screen-
ing has arisen in the last years [2, 7], since such strategy is prone to 
the discovery of molecules capable of modifying previously unde-
scribed targets or acting simultaneously on more than one target.
  

 In the debate on phenotypic- versus target-based strategies, 
tailored multi-target agents can be thus regarded as the middle way. 
They are an expansion of previous target-centered approaches that 
incorporates the perspective of network pharmacology. Whereas in 
phenotypic screening the target/s are, if lucky, defined a posteriori 
and the multiplicity of targets for a hit is unintended (and some-
times goes unnoticed), tailored multi-functional agents are a priori 
conceived to selectively modulate a number of chosen targets of 
interest, thus heavily relying on computational drug design and data 
analysis tools and avoiding target deconvolution. Their multi-
functional nature imposes however certain particularities when 
applying computer-guided drug discovery tools. After a brief over-
view of multi-target drugs applications, this review discusses some 
of the particular considerations that should be taken into account 
when screening or designing a multi-target drug.   

2. APPLICATIONS 

2.1. Complex Diseases 

 Understandably, single-target agents usually fail to treat multi-
factorial disorders with polygenic origin and/or a strong environ-
mental component, which can be thought as “the high-hanging 
fruit” in drug discovery. In an ageing and stressful world, CNS 
drugs are potentially among the most profitable drug treatments. 
Magic bullets have however been particularly disappointing in the 
fields of neurology and neuropsychiatry [9] which now look at 
polyspecific agents and polypharmacology with renewed interest 
[10-12]. Remarkably, most of the more successful CNS agents are 
in fact unintentional multi-mechanistic drugs discovered by seren-
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dipity or physiological “black box” models which present a highly 
complex pharmacology [13-15].  

 The brain is the most complex organ in the human body; it ex-
erts control over the rest of the organs and it is responsible for 
higher functions such as language, cognition or memory. Ensuring 
brain homeostasis is thus particularly relevant to the general well-
functioning of the whole organism, which is wonderfully illustrated 
by the fact that, under normal conditions, the traffic of circulating 
chemicals and cells into the CNS is strictly controlled by the blood-
brain barrier. Accordingly, brain function tends to be compromised 
whenever exogenous compounds reach the CNS in pharmacologi-
cally relevant quantities. It is no surprise that most of the drugs 
targeting a brain disorder display important side effects (sleep, at-
tention or sensorial perturbations, among others); as already men-
tioned, they tend to present a certain degree of non-selectivity that 
is essential to their pharmacological efficacy. However, simultane-
ously modulating a number of CNS targets without perturbing brain 
functions can be challenging, especially under the traditional “the 
more potent the drug, the better” paradigm, which focuses in the 
development of high affinity drug candidates. Today, it is being 
increasingly speculated that using low-affinity multi-target ligands 
to modulate several non-crucial nodes neighboring key nodes might 
be the best choice to restore a malfunctioning network to a healthy 
state [15-17]. Note that this implies a double paradigm shift: search-
ing for a) multiple- instead of single-targeted drugs and; b) search-
ing for low affinity instead of high affinity ligands. The later might 
be particularly true when treatments for chronic conditions are be-
ing sought. Memantine (Fig. 1) constitutes a very good illustrative 
example of the potential benefits of low-affinity multi-target 
ligands on CNS disorders [17, 18]. It is currently prescribed for the 
treatment of moderate to severe Alzheimer’s disease and other 
types of dementia; the drug is recommended when acetylcho-
linesterase inhibitors are not well-tolerated, showing moderate de-
crease in clinical deterioration. Unlike high-affinity uncompetitive 
blocker of the N-methyl-D-aspartate receptors (NMDAr) dizocil-
pine, which has not reached the market due to severe side reactions 
including cognitive disruption, psychotic reactions and Olney’s 
lesions, memantine possesses surprising low-affinity binding to 
NMDARs (in the high nanomolar to low micromolar range), fast 
on/off kinetics and almost no selectivity among subtype NMDARs 
[17], being much better tolerated. It also shows uncompetitive an-
tagonist activity on several other receptors, including serotonin 5-
HT3 [19], nicotinic [20] and dopamine D2 receptors [21] (in all 
cases, with a potency similar or slightly higher to that for the 
NMDA receptors). Recently, Prati et al. have highlighted the bal-
anced potency of one triazinone found by fragment-based ap-
proaches on both BACE-1 and GSK-3  (IC50s in the mid-
micromolar range) as potential treatments for Alzheimer’s, showing 
that the paradigm shift has started to be felt in the field of tailored 
multi-target agents [22]. 

 Abundant reviews exist on the current and potential applica-
tions of multi-target agents to a number of disorders including Alz-
heimer’s [17, 23] and Parkinson’s diseases [24] and mood disorders 
[25-27], among several others (see [8] and refs therein). It should be 
noted, however, that many of these tailored multi-modal agents are 
dual or at most triple-target drugs (see for instance [23, 24, 26, 27]). 
Is simultaneous modulation of two or three targets enough to con-
trol multi-factorial diseases? The existing examples of multi-target 
therapeutics, found through serendipity or physiologic models, 
often display a far more complex pharmacology. At the same time, 
as will be discussed later, each desired selective interaction with a 
given target imposes its own structural restrictions; the restrictions 
imposed by different targets might well be mutually exclusive. The 
more targets pursued the more complex the structure-activity rela-
tionships get, especially when unrelated targets are approached.  

 

 

Fig. (1). Memantine (left) exemplifies the potential advantages of low-

affinity multiple ligands compared with high affinity ones like dizocilpine 

(right). 

 

 Finally, it should be underlined that many of the tailored multi-
target agents reported so far do not fit the low-affinity ligand para-
digm, that is, many researchers are still guided by the perhaps out-
dated “the more potent, the better” model, with drug discovery 
campaigns being often focused on those drug candidates that 
display the highest activity towards the c targets. 

2.2. Drug Resistance  

 It has long been noted that there exists a relationship between 
the multi-target nature of successful antimicrobials and their low-
ered potential for target-based resistance [28]. Drugs that interact 
with a single gene product are susceptible to single step develop-
ment of high level resistance, while those that bind multiple gene 
products are less likely to present high level resistance. Apart from 
the applications in the field of anti-infective agents, network phar-
macology might be a valid alternative to treat non-infectious condi-
tions characterized by high incidence of the multi-drug resistance 
phenomena, such as epilepsy [12, 15], where pre-clinical studies 
suggest that combining drug with different modes of actions may 
enhance seizure protection [29, 30] and some of the most useful 
drugs in clinical practice are those with broad-spectrum activity 
[31]. Naturally, multi-modal drugs do not pose a particular thera-
peutic advantage when the drug resistance phenomenon is of phar-
macokinetic nature (e.g. up-regulation of efflux transporters or 
biotransformation systems, decreased cell permeability, gain-of-
function polymorphic variants of drug metabolic enzymes). But 
they might indeed be useful for other resistance mechanisms such 
as target modifications and compensatory responses.  

 As previously insinuated, the best multi-modal strategy is 
highly dependent on both the therapeutic objective and the mecha-
nisms underlying the drug resistance phenomenon. A multi-target 
approach could involve vertical (or serial) targeting, in which tar-
gets belong to the same metabolic pathway, or parallel targeting, in 
which members of different pathways are modulated [8, 32]. The 
first approach might be valid for drug resistance based on target 
modifications; the second could be more relevant to approach resis-
tance based on compensatory responses [33]. As long as the host 
does not present homologs to the targeted proteins, high-affinity 
candidates and targeting of hubs (highly connected nodes in a bio-
chemical pathway or network) are valid approaches for the devel-
opment of anti-infective drugs. Conversely, when the therapeutic 
goal is to restore an altered pathway to normal functioning, low-
affinity candidates and avoiding key nodes might be preferred to 
minimize safety issues.     

2.3. Pharmacological Profiling 

 Pharmacological profiling involves the in vitro and/or in vivo 
screening of a drug candidate against a broad range of targets (e.g. 
metabolic enzymes, transporters, ion channels) or systems that are 
different from the intended therapeutic target [34, 35], in order to 
identify secondary functions/off-target effects of the drug. If one 
gives it some thought, uncovering off-target interactions is nothing 
but exposing the multi-target nature of a drug. In the era of system-
atic drug repurposing and drug rescue (i.e. finding novel therapeutic 
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indications for existing drugs, including approved, discontinued and 
shelved drugs and also drugs in the pipeline), pharmacological pro-
filing gains a completely new meaning. It not only involves select-
ing drug candidates with reduced toxic potential and providing 
clues on which effects should be carefully monitored during clinical 
trials: it may also serve to identify new useful therapeutic indica-
tions of an investigational drug, as envisioned by Williams many 
years back [35].   

 Interestingly, early detection of secondary effects at the discov-
ery or preclinical stages can enhance the probability for a drug to 
gain approval. It is well known that pre-definition of study design 
(including endpoints and statistical analyses) is much necessary to 
avoid bias in the analysis of the study outcome. Pharmacological 
profiling can help deciding between a superiority or non-inferiority 
trial, and whether a composite endpoint (particularly useful for 
drugs that can benefit the patients in several ways) may be appro-
priate.  When using a composite endpoint it is usually primary; 
ideally, the components of the composite variable should be simi-
larly important [36, 37]. The non-inferiority trials are a viable alter-
native when a new treatment might be equivalent to the standard 
therapy in terms of efficacy but preferable owing to other reasons 
(e.g. safety, convenience, or others) [38, 39]. Today, in silico phar-
macological profiling could be a valuable tool to decide, at the early 
stage of drug development, which candidates should advance to 
further studies, aiding in the detection of additional functionalities 
which could pose an advantage over established treatments (e.g. 
ability of the new drug to treat a common co-morbid condition be-
sides the primary therapeutic goal) [8]. 

3. COMPUTATIONAL APPROACHES TO MULTI-TARGET 
DRUG DISCOVERY 

 There are two basic ways to approach the computer-guided 
search of multi-target therapeutics: virtual screening and computer-
guided drug design [40]. In a certain way, both are intrinsically 
related to the pharmacophore (from the greek, “medicine bearer”) 
concept, that is, the idea that there exists a set of molecular features 
that a ligand should gather in order to bind a given molecular target 
in a given binding site. These essential features are common to all 
ligands that interact with the same target in the same way. The 
pharmacophore notion is clearly related to the key and lock analogy 
[8] as long as one bears in mind that, while keys are rigid, ligands 
can be flexible and “adapt” to the target features (and the other way 
around). Apart from the pharmacophoric features, there are 
secondary features that, if present or absent, may lead to activity 
gain or activity loss. 

 Virtual screening supposes using computational models (e.g. 
QSAR models, pharmacophoric hypotheses) to rank chemical com-
pounds from digital libraries or databases according to their likeli-
hood of presenting one or more desired activity/ies [41]. Although 
it is possible to screen libraries of theoretical, not-yet-existing com-
pounds [42], it is far more common to submit collections of existing 
chemicals to in silico screening procedures. Conversely, computer-
aided drug design implies using computational models to generate, 
in a rational manner, novel active compounds. Particular considera-
tions should be taken into account when using either methodology 
to discover new multi-target agents. 

3.1. Virtual Screening for Multi-Target Agents. The Impor-

tance of Sensitivity 

 A general condition when performing a virtual screening cam-
paign is that inactive compounds will be greatly overrepresented in 
the screened library. This is to be expected: if looking for a com-
pound which specifically binds to a molecular target, the very defi-
nition of specific (exerting a distinctive influence; sharing or being 
those properties of something that allow it to be referred to a par-
ticular category) makes it more probable not finding the relevant 
molecular features that determine the binding event than finding 

them. The hit rate has actually been estimated to range between 
only 0.01 and 0.14% [43]. 

 When working with modeling techniques that provide continu-
ous or ordinal output/score, it is possible to optimize the score 
threshold that will be used to discriminate between hits and non-hits 
(predicted active and inactive compounds). Such optimization in-
tends to find an adequate balance between the model’s specificity 
(Sp) and sensitivity (Se). What is, however, and adequate balance? 
As clearly explained in the seminal work from Triballeau et al. [44] 
the choice of such balance is not a statistical matter but a context-
dependent decision. Specificity represents the true positives (TP) 
rate; sensitivity, the true negative (TN) rate. The unachievable per-
fect model would display a Sp and a Se equal to 1, representing a 
perfect classifier. Unfortunately, Sp and Se evolve in opposite 
senses. If abundant funding exists, the user may choose to relax Sp 
in favor of Se, in order to retain as much active scaffolds as 
possible. On the contrary, if funding is limited, as it usually is, the 
user may prefer to prioritize Sp over Se, so to minimize the number 
of false positives (compounds moved to in vitro or in vivo testing 
that will fail to display the pursued activity). Triballeau et al. pro-
posed Receiving Operating Characteristic (ROC) curves as a 
graphical tool to analyze the balance between Sp and Se (Fig. 2); 
additionally, the area under the ROC (AUROC) can be used to 
statistically compare the performance of a screening procedure with 
either random classification or other screening approaches. Later, 
other metrics have been proposed to address some of the limitations 
of the AUROC, in particular, the “early recognition” problem [45-
47].    

 

Fig. (2). Schematic representation of ROC curve construction.  

 

 Let us use the previous information to shed some light into 
some particular difficulties of virtual screening when searching for 
multi-target drug candidates. To this purpose, we will discuss a 
hypothetic example. Assume we are using two models (model 1 and 
model 2) to search for dual drugs acting on two molecular targets of 
interest (molecular target 1 and molecular target 2, respectively). 
The models will be applied in a serial manner to screen a 100,000 
compound database. For the sake of simplicity, let us say that both 
models have, for a particular score threshold, a Sp of 0.98 and a Se 
of 0.90. Note that the balance between Sp and Se is thus, in both 
cases, very good. Let us be generous and assume that the yield of 
actives for the database is about 1% for both molecular targets 
(quite a generous proportion compared with the 0.01 to 0.14% es-
timation). In other words, in the hypothetic dataset there are 1,000 
ligands for molecular target number 1 and 1,000 ligands for mo-
lecular target number 2. Assume that being a ligand for target 1 
does not increase or decrease the chance of being a ligand for target 
2. Since we are looking for dual ligands, we are interested in the 
intersection between these two 1,000 compound subsets. As we 
said, we will work serially: we will apply model 1 to the 100,000 
compound database, and we will then apply model 2 to identify 
dual ligands among the resulting compounds from the first screen-
ing step. Let us now translate this into raw numbers.  
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 In relation to molecular target 1, there are 1,000 active com-
pounds and 99,000 inactive compounds in the database. Now, from 
the 1,000 active compounds, 900 will be identified by model 1 
(Se=0.90). From the 99,000 inactive compounds in relation to mo-
lecular target 1, two in 100 compounds would be misclassified as 
positives (Sp=0.98, false positive rate = 0.02). In other words, 1,980 
compounds from those 99,000 will be labeled as positives. In total, 
we will have 900 actives and 1,980 inactive as predicted hits (2,880 
in total). The Positive Predictive Value, i.e. the activity probability 
of one of these selected candidates can be computed through the 
following expression [44]:  

PPV = (Se * Ya) / [Se * Ya + (1-Sp) (1 – Ya)]                              (1) 

Ya being the yield of actives for the database. If we replace and 
solve the equation, PPV is 0.3125. In other words, one in every 
three assayed predicted hits will be actually active on target 1. Note 
that the yield of actives cannot be known a priori in a real virtual 
screening application; thus, the true PPV is ignored before conduct-
ing the screening.  

 Now let us apply model 2 (which is absolutely independent 
from model 1) to the 2,880 compound subset resulting from appli-
cation of model 1. Only around 29 compounds in this set (1%) are 
ligands for molecular target 2; to them, we should add 57 false posi-
tives selected by model 2. Among the resulting 83 hit compounds 
for model 2, approximately one in three (26) is a real ligand for 
molecular target 2 (note that as we are assuming that being a ligand 
for target 1 is independent from being a ligand for target 2, and both 
models share Sp and Se balance, PPV1 is identical to PPV2).  
About 8 hits will be dual ligands; the overall PPV (the probability 
that a hit emerging from the serial application of the individual 
models will be experimentally active against both targets) corre-
sponds to the product of the PPV associated to each individual 
model:  

                                                (2) 

 While in our example, PPV1 and PPV2 are circumstantially 
identical, this will not be the general situation.  

 The preceding analysis is illustrated in Fig. (3). Note how small 
that number is considering we started from 100,000 compounds 
from which 1,000 were ligands for target 1 and 1,000 for target 2. 
The number could be higher if target 1 and target 2 have co-evolved 
and share ligand specificity (resulting in partially or totally overlap-
ping pharmacophores); on the contrary, the number could be lower 
if the correspondent pharmacophores are mutually exclusive.   

 From the previous analysis it is no surprise that virtual screen-
ing for multiple-target drugs could be disappointing. Note that in 
the example we have only considered dual ligands; the scenario 
could be even worse for triple ligands or further, since the general 
expression for overall PPV:  

                                                                (3) 

where n represents the number of molecular targets approached in a 
serial manner in the VS campaign. Remember that the balance be-
tween Sp and Se is hardly as good as the ones in the example 
(which correspond to area under the ROC curves very similar to 
that of the ideal ROC curve, i.e. 1).  

 At the expense of increasing the false positive rate, an alterna-
tive to improve this situation is to relax Sp in favor of Se (the oppo-
site of the more common balance of these two parameters) [48]; 
such strategy, of course, results in an increment of experiment-
related costs (diminished active enrichment). Alternatively, choos-
ing the pursued targets on the basis of previous evidence on shared 
ligands could be a good advice to improve the likelihood of suc-
cess. This frustrating perspective is however compensated by the  
 

 

Fig. (3). Schematic representation of the hypothetic virtual screening cam-

paign described in section 3.1. Only around 8 dual hits will be selected at 

the end of the protocol; only 1 in 6 predicted hits will be active. Note that 

rather generous model performances and yields of actives have been hy-

pothesized. Real situations could be even worse.  

 

vast and exponentially expanding chemical universe: the Chemical 
Abstract Service today holds more than 100,000,000 entries; on the 
basis of the Pubchem entries, more than half of these accessible 
chemicals correspond to small drug –like molecules.  

 This theoretic analysis on the intrinsic limitations for the appli-
cations of VS to select dual (or further multi-target agents) that 
result in a very limited number of actual multi-target hits is re-
flected in real VS campaigns for multi-target agents. For instance, 
in their search for more efficacious anti-inflammatory agents, 
Moser et al. recourse to pharmacophore-based virtual screening of 
Asinex merged-fragment database for dual 5-lipoxygenase/soluble 
epoxide hydrolase inhibitors [49]. From 36 predicted dual inhibi-
tors, only one (that is, a PPV for dual agents of only 2.8%) con-
firmed dual action experimentally. Similarly, Ruggeri et al. imple-
mented a pharmacophore- and docking-based search to retrieve 
dual inhibitors against P. falciparum alanyl aminopeptidase, PfA-
M1, and leucyl aminopeptidase, PfA-M17 from 18 million com-
pounds from ZINC database [50]. Despite the broad substrate speci-
ficity of PfA-M1 and its partially shared substrate specificity with 
PfA-M17 (which increase the probability of finding common in-
hibitors) only two among the 12 (16.6%) experimentally assayed 
hits confirmed dual activity.  

3.2. Designing Multi-Target Agents. Binding Efficiency,  

Entropy, Bioavailability 

 The design of multi-targets agents is based in the combination 
of pharmacophores from single-target ligands (that is, a fragment-
based approach). The distinct pharmacophores might be linked 
together through stable or cleavable links [51]. This category of 
multi-target agents corresponds to what Sturn et al. have called 
bianchor ligands, which use different sets of atoms to interact with 
the target proteins (note that pairs of targets sharing ligands were 
considered) [52]. When using stable links to join distinctive phar-
macophores, the designer should carefully watch that if the result- 
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Fig. (4). Free energy of binding per atom for ligands and enzyme inhibitors 

versus the number of non-hydrogen atoms in the ligand. Note that the bind-

ing energy per atom tens to decrease for larger drugs. Reproduced with 

permission from. D. Kuntz et al. PNAS 1999; 96: 9997-10002. Copyright 

(1999) National Academy of Sciences, U.S.A. 

 

ing molecule does not violate drug-likeness criteria, e.g Lipinski 
rules, Veber rules, etc. Naturally, the chance of violating drug-
likeness rules and compromising bioavailability increases as the 
number of distinct anchors, and thus molecular targets, rises. In 
addition to the potential bioavailability issues of this type of multi-
ligand, one should also consider the associated binding efficiency 
metrics.   

 Back in 1999, an empirical study by Juntz et al. showed that, 
across a wide variety of small molecule-macromolecule complexes, 
maximal contributions to binding free-energy per ligand non-
hydrogen atom are similar to 1.5 kcal/mol; they also noticed a 
significant trend to smaller contribution per atom as the molecular 
mass of the ligand increases (Fig. 4) [53]. Interestingly, while dur-
ing lead optimization the compound molecular weight usually in-
creases, the average molecular weight for drugs in clinical devel-
opment declines in each subsequent stage towards approval [54]. 
Apparently, normalizing the potency using the number of heavy 
atoms in the ligand or its molecular weight can be useful to assess 
the druggability of leads and targets. On the other hand, several 
studies suggest that ligand promiscuity is inversely related to mo-
lecular weight [52, 55, 56], with a trend to bind a higher number of 
targets for those compounds with molecular weight below 200 
g/mol. All in all, there seems to exist an optimal ratio between po-
tency and molecular size that provides and adequate balance be-
tween promiscuity and other pharmaceutically relevant features. In 
the case of the bianchor agents, one might speculate that, since only 
a fraction of the molecule takes part in the interaction between the 
ligand and each molecular target, efficiency metrics will tend to be 
low. Cleavable links are a possible solution to this issue: once in-
side the body, the link will be cleaved to release each individual 
anchor/pharmacophore. However, this approach will compromise 
some of the advantages of multi-target agents over drug combina-
tions (in particular, simplified pharmacokinetics).  

 Multi-target agents in which the distinct pharmacophores are 
overlapped in a single moiety of reasonably low size may solve the 
binding efficiency and bioavailability issues of bianchor agents. 
Among these, the class that Sturn et al. named flexible ligands in-
cludes ligands which can adopt different conformations in the bind-
ing sites of the different targeted proteins; the same set of heavy 
atoms locates in the binding sites, but different atoms are involved 

in direct interactions with the targets [52]. It should be warned, 
though, that an excessive flexibility could conspire against the bind-
ing free energy owing to the entropy cost associated to the loss of 
conformational freedom. Some druglikeness rules also preclude the 
presence of a large number (e.g. > 10) of rotatable bonds. In a third 
category Sturn et al considered a class that they labeled as “difficult 
to rationalize”, which consists in ligands that display a high overlay 
between the heavy atoms of the ligands located in the two binding 
sites and also share at least some of the atoms involved in direct 
interactions with each target. Though this situation may be expected 
for closely related targets with similarities at the binding sites, the 
authors signaled a subset of compounds that they named “super-
promiscuous”, which could bind to non-homologous targets and 
shared however some of the atoms involved in direct interactions 
with each of them. Remarkably, these superpromiscuous ligands 
tend to present low or high complexity.  

 Direct correlations have also been found between promiscuity 
and calculated logP [57, 58]. Bases and quaternary bases are 
markedly more promiscuous than acids, neutral compounds or 
zwitterions [58]. The molecular topology can also influence 
promiscuity: the number of rings and the fraction of molecular 
framework (fMF) have shown to be directly correlated with 
promiscuity at least for large fMF values [57, 58]. 

CONCLUSION 

 Multi-target agents present great therapeutic potential for the 
treatment of complex health conditions and the solution of drug 
resistance phenomena. However, they are certainly challenging for 
computer-aided drug discovery approaches. Possible multi-target 
designs include multi-anchor drugs (a different part of the mole-
cules interacts with each of the targeted binding sites, separate 
pharmacophores) and partially or completely merged pharmacopho-
res. The first could give rise to limited bioavailability and low bind-
ing efficiency. Overlapping or pharmacophores could be favored by 
including a certain degree of flexibility; excessive flexibility, how-
ever, can impact negatively on binding free energy due to unfavor-
able entropic contribution and it can also compromise drug 
bioavailability. Low complex and low molecular weight candidates, 
as wells as high complex ones, should be avoided owing to increase 
probability of promiscuity.  

 The designer should always contemplate the possibility that two 
selected targets could be mutually exclusive (incompatible pharma-
cophores) precluding the applicability of the merged pharma-
cophore approach. It is recommended to perform a careful, rational 
selection of the combination of pursued targets, preferring target 
combinations supported by co-evolution or similar biding sites.  
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