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Original Research Article

Growth Rates and Life Histories in Twenty-Two
Small-Scale Societies

ROBERT WALKER,* MICHAEL GURVEN, KIM HILL, ANDREA MIGLIANO,
NAPOLEON CHAGNON, ROBERTA DE SOUZA, GRADIMIR DJUROVIC,
RAYMOND HAMES, ANA M. HURTADO, HILLARD KAPLAN, KAREN KRAMER,
WILLIAM J. OLIVER, CLAUDIA VALEGGIA, AND TARO YAMAUCHIAQ1
Department of Anthropology, University of New Mexico, Albuquerque, New Mexico 87131

ABSTRACT This study investigates variation in body growth (cross-sectional height and
weight velocity) among a sample of 22 small-scale societies. Considerable variation in growth
exists among hunter-gatherers that overlaps heavily with growth trajectories present in groups
focusing more on horticulture. In most societies, intergroup variation tends to track environmen-
tal conditions, with societies under more favorable conditions displaying faster growth and ear-
lier puberty. In addition, faster/earlier developmentAQ3 in females is correlated with higher mortal-
ity. For example, African ‘‘Pygmies,’’ Philippine ‘‘Negritos,’’ and the Hiwi of Venezuela are char-
acterized by relatively fast child-juvenile growth for their adult body size (used as a proxy for
energetic availability). In these societies, subadult survival is low, and puberty, menarche, and
first reproduction are relatively early (given their adult body size), suggesting selective pressure
for accelerated development in the face of higher mortality. In sum, the origin and maintenance
of different human ontogenies may require explanations invoking both environmental con-
straints and selective pressures. Am. J. Hum. Biol. 18:00–00, 2006. ' 2006 Wiley-Liss, Inc.

Many discussions of human life history em-
phasize the large human brain (Dunbar, 2003;
Flinn et al., 2005), long lifespan (Kaplan,
1997; Hill et al., 2001), and late age at first
reproduction (Blurton Jones and Marlowe,
2002; Gurven and Kaplan,AQ4 no date). Another
distinctively human characteristic is the long
period of slow growth from weaning to puberty
(Bogin, 1998, 1999; Leigh, 2001; Gurven and
Walker, 2005). However, little is known about
the causes of specific growth trajectories, espe-
cially with respect to variation in other life-
history traits. Extensive variation in growth
rates, growth periods, and body size among
traditional populations (Eveleth and Tanner,
1990; Migliano, 2005), all without access to
fast food, supermarkets, and other modern
conveniences, begs evolutionary and ecological
explanations.

Small size and stature in many farming and
foraging populations were interpreted as adap-
tations to chronic disease and malnutrition
(Stini, 1969; Holmes, 1995), hot/humid rain
forests (Roberts, 1953, 1978; Cavalli-Sforza,
1986), and efficient foraging (Tobias, 1964;
Lee, 1979). However, ‘‘small but healthy’’ inter-
pretations are complicated by abundant evi-
dence that better nutrition and growth in both

human and nonhuman animals tend to have
positive outcomes in both fertility and survi-
vorship (Hill and Hurtado, 1996; but see
exception in Frisancho et al., 1973). Addition-
ally, many researchers emphasized the fact
that individuals from the developing world
who move and grow up in developed countries
invariably grow considerably larger than pre-
vious generations (Bogin, 1999). A secular
trend of increasing height and weight with
urbanization is well-documented (Eveleth and
Tanner, 1990; Ulijaszek et al., 1998).

The primary focus of this paper is the evolu-
tion of reaction norms for optimal growth
rates and growth periods in particular socio-
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ecological contexts. A reaction norm refers to
the set of phenotypes that a genotype will
express across a range of selectively relevant
environments (Stearns, 1992). Reaction norms
are molded by natural selection according to
the costs and benefits of trait plasticity.
Growth trajectories with potentially strong
genetic components, such as growth hormone
or insulin-like growth factor type 1 resistance
in Pygmies (Merimee et al., 1987; Hattori
et al., 1996; Jain et al., 1998), suggest that se-
lection has acted in favor of less plastic growth
under stable environmental conditions, where
large adolescent growth spurts are more costly
than beneficial.

The reaction norms for growth and body size
may not have straightforward relationships
with environmental conditions, because selec-
tive pressure and environmental constraints
(i.e., limited energy availability) may be acting
in opposite directions. Environmental con-
straints are paramount, because every unit of
growth requires additional maintenance costs
from the present time period until death. Envi-
ronmental conditions both constrain current
growth via energetic constraints and serve as
indicators for a dynamic optimality problem
concerning allocations to growth and mainte-
nance (Gadgil and Bossert, 1970; McDade,
2003). To the extent that environmental condi-
tions during fetal, infant, childhood, juvenile,
and adolescent periods (sensu Bogin, 1998,
1999) are valid indicators of future nutritional
regimes (Kuzawa, 2005), the prediction is that
slower growth rates will accompany poorer
conditions (Ellison, 2001). (‘‘Poor environmen-
tal conditions’’ are defined as those where sur-
vival and/or fertility are low due to malnutri-
tion and disease.) Poor conditions make main-
tenance proportionally more expensive, and
increase the probability of a nutritional short-
fall and starvation risk. A common result in
bioanthropological studies is that better envi-
ronmental conditions are associated with
faster child and juvenile growth, with an ear-
lier adolescent growth spurt resulting in larger
and taller adult bodies and earlier menarche
and age at first reproduction (Huss-Ashmore
and Johnston, 1985; Stinson, 2000; Ellis,
2004). For example, global variation in aver-
age age at menarche ranges from around 12
years of age in affluent societies to around age
18 in disadvantaged populations (Eveleth and
Tanner, 1990). The conventional bioanthropo-
logical approach considers growth and devel-
opmental rates to be mostly a function of ener-
getic constraints.

However, some aspects of poor environmen-
tal conditions, especially high mortality risk,
may prompt faster growth and earlier re-
productive development. The life-history ap-
proach to growth includes both energetic
constraints to growth and subsequent mainte-
nance, and the opportunity costs of lost repro-
duction if sexual maturity is delayed. Life-his-
tory models predict that a delay in age at first
reproduction will be costly when the probabil-
ity of survival to that age is low, all else being
equal (Stearns and Koella, 1986; AQ5Roff, 1992;
Stearns, 1992; Charnov and Berrigan, 1993;
Berrigan and Koella, 1994). Faster growth is
expected under high mortality regimes AQ6(Case,
1978). This effect should be more important in
socioecologies where children and juveniles
who attain larger sizes at earlier ages experi-
ence higher survivorship. This scenario of
size-specific mortality leading to faster growth
(Sibly et al., 1985) was proposed to explain the
finding that neonates in countries with a high
risk of parasitic and infectious diseases have
larger-than-expected birth weights (Thomas
et al., 2004).

Does empirical evidence support a positive
or negative association between developmen-
tal rates and environmental stress at the
group level? This question can be answered by
analyzing data on growth and life-history
traits in small-scale societies. Previous re-
search suggested that economizing body main-
tenance costs (Gurven and Walker, 2005) is
the primary benefit of small size and the driv-
ing factor behind variation in growth rates.
Indeed, high disease loads often co-occur with
low caloric and or/protein intake (Panter-
Brick et al., 2001; McDade, 2003). Thus, selec-
tion may favor metabolic phenotypes that
more efficiently economize body maintenance
and immune-system costs, resulting in slow
growth and later development (Arendt, 1997).
If true, worse conditions should correlate with
negative life-history outcomes such as later
menarche and age at first reproduction.

However, depending on the force of mortal-
ity and its relationship to body size, selection
for earlier/faster development may be found
under some conditions (Migliano, 2005). This
will likely be true in high-mortality regimes
where the risk of mortality from disease/vio-
lence/accidents is relatively higher than the
risk of mortality from malnutrition. Multivari-
ate analyses are used here to separate selec-
tive pressure from nutrient constraints on the
evolution and maintenance of different human
ontogenies. Our hypothesis is that variation

J_ID: JHB Customer A_ID: 20510 Cadmus Art: AJHB0036 Date: 3-MARCH-06 Stage: I Page: 2

2 R. WALKER ET AL.

American Journal of Human Biology DOI 10.1002/ajhb



in growth schedules will concurrently map
onto both selective pressure and better nutri-
tion. To separate out these two opposing
effects, adult body size is used as a proxy for
overall nutrient availability, and probability of
survivorship to age 15 is used as a measure of
the force of selection for earlier/faster develop-
ment. Ideally, we would use cause-specific
mortality data and per capita energy con-
sumption in place of body size in our analyses,
but unfortunately such information is lacking
for most societies. Nevertheless, with the
available data, we can simultaneously exam-
ine growth patterns and attempt to reconcile
the life-history perspective with the more con-
ventional nutrient-limiting view.

METHODS

Small-scale societies

Growth data were compiled for 22 groups
which are characterized by mostly subsist-
ence-based economies, which exhibit near-nat-
ural fertility, and which have low levels of
access to modern healthcare. Preference was
given to societies where life-history data are
available. This research focuses mostly on
tropical societies, to partially avoid confound-
ing effects of climate and temperature (Katz-
marzyk and Leonard, 1998). All growth data
are cross-sectional. We notice no obvious
cohort effect among any of the populations,
but cannot rule out potential cohort effects
that may alter our results. In most cases,
researchers include all available individuals
from birth to age 25 from one or more camps
or villages. In the case of repeated measure-
ments, the same individual is allowed to enter
the sample at different ages. TableT1 1 provides
descriptive information and sample character-
istics for the study populations. Readers are
encouraged to consult original sources for
detailed ethnographic information and meth-
odological issues.

Life-history data are mostly from interviews
(retrospective) if available, but some studies
relied on stable population models (Weiss,
1973) to estimate age-specific fertility and
mortality (e.g., Hadza, Ju/’hoansi, and Yano-
mamo). We use demographic data that most
closely match the sample from which growth
data were obtained. For most groups, growth
and demographic data were collected contem-
poraneously. However, growth data for the
Agta and Yanomamo were collected about a
decade after the life-history data. Demo-
graphic data from the Gainj are combined

with growth data from the Asai, who are
neighbors in Highland New Guinea. Available
body-size data for the Gainj (Wood, 1980) sug-
gest that they are physically similar to the
Asai (Malcolm, 1970a,b). The probability of
survivorship to age 15 for the Eastern Pyg-
mies is omitted, because estimates vary
widely from 0.44, based on a stable population
model (Migliano, 2005), to 0.78, as calculated
by Bailey and Aunger (1995).

Statistical and graphic methods

Nonparametric curve-fitting, following a
protocol used to study primate growth pat-
terns (Leigh and Shea, 1996), is conducted
with the locally weighted scatterplot smooth-
ing (LOWESS) macro in SAS (Cary, NC). The
tensions of the fits vary for each sample,
depending on sample dispersion and sample
size. The fits are ‘‘loose’’ to ensure that growth
spurts are not smoothed out. The smoothing
parameter or ‘‘window width’’ controls the ten-
sion, with higher numbers representing
tighter tensions. We keep the smoothing pa-
rameter low (0.05) for larger sample sizes, but
allow it to tighten to 0.15 for several groups
with samples sizes of less than 100 people.
Growth rates can be simply estimated as the
rate of change in the LOWESS fit to the dis-
tance curve (i.e., plot of weight or height by
age). In the absence of raw data, we fit the
LOWESS to 1-year means. These pseudoveloc-
ity curves tend to jump up and down with age
because of the loose tension in distance
curves, so it is common procedure to smooth
the velocity curve (Bogin, 1999; Leigh, 2001).
Therefore, growth rates by age are fit with
another LOWESS (smoothing parameter set
at 0.05) to produce relatively smooth height
and weight velocity graphs. This secondary
smoothing helps interpret the shape of the ad-
olescent growth spurt, but it is not used for
estimating velocities, since these are simply
calculated as the rate of change in the dis-
tance curve.

Growth rates in height and weight by age
illustrate several diagnostic developmental
markers that are readily comparable across
different populations. These include the fol-
lowing: 1) average growth rate from age 3 (ap-
proximate age at weaning) to age 10; 2) age at
takeoff velocity (ATO); 3) age at peak velocity
(APV); and 4) age at return to takeoff velocity
(ARTO). The latter three measures refer to
the beginning, peak, and end of the adolescent
growth spurt. Figure F11 exemplifies each of
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these growth characteristics in Ache and Ju/
’hoansi females. These measures are useful in
that they separate out the relatively stable
early growth period from the adolescent
growth spurt. We do not analyze the magni-
tude of the adolescent growth spurt, because
individuals have growth spurts at a variety of
ages that we cannot address with cross-sec-
tional data. However, as long as individual
growth spurts are approximately normally
distributed around the mean, then the aver-
age ages at the beginning, peak, and end of
the growth spurt are preserved in the analy-
sis. Other analyses of growth in some of these
small-scale societies showed that cross-sec-
tional (e.g., Agta: De Souza,AQ7 no date) and lon-
gitudinal (e.g., Hadza: Blurton Jones,AQ8 no date;
Ache: Walker et al.,AQ9 no date) growth rates are
roughly linear during the child-juvenile
phase. We have more confidence in estimates
of child-juvenile growth rates than we do in
our adolescent growth spurt parameters
because sample sizes are larger, cross-sec-
tional data better mimic longitudinal results,
and age estimates at younger ages are more
accurate.

We perform regression analyses (SPSS 10.0)
of growth and developmental diagnostics as
functions of body size and survival. All analy-
ses are performed separately for each sex.
Given that our samples sizes in multiple
regressions are dangerously small for assump-

tions of ordinary least-squares regression, we
also calculate P-values for our parameter esti-
mates, using resampling with replacement or
‘‘bootstrapping’’ techniques (Efron, 1979) with
a Pascal program. The original data distribu-
tions were resampled with replacement in
10,000 bootstrap replications for each inde-
pendent variable, while holding the other
variable constant. The P-value is then the pro-
portion of iterations where the fitted slope to
random data is absolutely larger than the
slope through the observed data (Davison and
Hinkley, 1997).

Data quality

For all samples where raw data are avail-
able, we calculate 95% confidence intervals
for child-juvenile growth rates by fitting a
linear regression through body weights and
heights from ages 3–10. However, these con-
fidence intervals assume that ages are
known. Uncertainty in age estimates (see Ta-
ble 1 for accuracy in age estimates for each
group) are of primary concern in this paper,
because systematic biases in aging can signif-
icantly alter calculations of growth rates and
life-history characteristics. Eastern Pygmy
data (Efe) are from R.C. Bailey, who followed
cohorts for a significant amount of time.
However, age estimates for the other Pyg-
mies AQ10(including the 1996 Baka study), Aus-
tralia, and New Guinea are the most uncer-
tain, since they are based on tooth eruptions
or ‘‘guess-timates,’’ albeit by people of consid-
erable experience with the study group. For
child-juvenile velocity, we divide the change
in size from age 3 to age 10 by 7 years. Since
some of our samples have potentially a year
or so error in age estimates, this results in a
14% (¼ 1/7) or more source of error, most
worrisome if there are systematic biases
(e.g., larger individuals are assumed to be
older). Most studies have age estimates that
are more accurate, as they are based on a
combination of observed births and relative
age lists tied to dated events (Ache, Hiwi,
and Agta), or a combination of these with
governmental, AQ11NGO, or missionary birth
records (Maku-Nadeb, Tsimane, Aeta, Agta,
Batak, Guaja, Toba, Wichi, Maya, and Machi-
guenga).

RESULTS

Growth rates and developmental diagnos-
tics vary considerably across different soci-
eties in both weight (Table T22) and height (Ta-
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Fig. 1. Velocity curves for Ache and Ju/’hoansi
females. Child-juvenile period of slow growth, age at
takeoff velocity (ATO), age at peak velocity (APV), and
age at return to takeoff velocity (ARTO) are marked on
graph. ATO is defined as large upswing in velocity, APV
is peak, and ARTO is age when velocity returns to same
value as at takeoff.
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bleT3 3). Tables 2 and 3 are provided to give
transparency to subsequent graphs and analy-
ses. As we shall see, impressive variation in
growth exists among groups of hunter-gather-

ers, despite the fact that these groups are of-
ten loosely assembled into the same macroca-
tegory (Kelly, 1995). Many societies fit the
classic slow human developmental strategy.
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TABLE 2. Body growth diagnostics and life-history traits1

Sex

Child-
juvenile
growth
velocity

(kg/years)

Age at
takeoff
velocity

Age at
peak

velocity

Age
return

to
takeoff
velocity

Average
adult

size (kg)
Age at

menarche

Age at
first

reproduction

Probability
of survival
to age 15

Life
expectancy
at age 15

Ache f 2.1 10.0 12.5 16.0 53.7 14.0 17.7 0.68 50.4
m 2.0 11.5 15.0 18.5 59.8 23.0 0.79 48.7

Aeta f 1.6 38.0 13.8 18.7 0.33 27.3
m 1.5 40.0 20.9 0.33

Agta f 1.4 10.0 12.0 15.0 40.3 19.5 0.42 33.4
m 1.4 11.0 14.0 16.0 46.4 0.42

Arnhem
Land

f 2.1 11.0 12.5 13.5 41.3
m 1.9 12.0 14.0 16.5 55.5

Asmat f 50.0 18.5 0.50 27
Baka f 2.9 44.4 14–15.0 18–19.0

m 2.7 49.6
Batak f 40.8 14.6 18.7 0.51 29.5

m 46.9 22.7 0.51
Gainj and Asai f 1.3 38.0 18.4 25.7 0.69 29.7

m 1.1 43.3 37.0 0.75 29.6
Guaja f 1.8 10.0 50.4

m 2.0 61.1
Hadza f 1.9 10.0 15.0 18.0 48.0 16.0 19.0 0.58 44.0

m 1.8 12.0 18.0 54.0 0.55
Hiwi f 2.6 49.7 12.6 20.5 0.45 36.3

m 2.3 57.4 0.56
Ju’/hoansi f 1.1 13.5 16.0 19.5 42.2 16.6 18.8 0.60 41.5

m 1.2 13.0 16.0 21.5 50.6 0.56
Machiguenga f 2.2 51.0 0.60 39.7

m 1.8 62.2 0.60
Maku-Nadeb f 1.8 12.0 14.0 16.0 49.7

m 1.9 13.0 14.0 17.0 60.6
Maya f 1.2 10.0 12.0 15.0 51.3

m 1.7 10.0 12.0 14.0 60.3
Pygmy (East) f 39.4 15.5 19.0þ

m 43.0
Pygmy (West) f 1.7 10.5 42.7 13.8 0.55

m 2.2 11.0 48.3 0.55
Toba f 2.4 10.5 12.5 14.5 64.2 12.8 17.8

m 2.4 11.5 12.5 15.5 76.3
Tsimane f 1.6 11.0 13.0 16.0 51.0 13.9 18.6 0.76 41.2

m 1.9 13.0 14.0 18.0 61.3 23.0 0.80
Turkana f 1.6 48.9 16.5 22.2 0.76 46.6

m 1.7 14.0 17.0 18.5 55.6 0.76
Walbiri f 1.7 45.0 14.0 17.0

m 2.1 57.0
Wichi f 2.4 10.0 11.5 13.0 62.3 12.9 16.2

m 2.0 11.5 13.0 15.0 73.9
Yanomamo f 1.5 12.0 45.4 18.4 0.48 27.0

m 1.6 52.0 0.48

1‘‘Child-juvenile growth’’ column represents rate of mass growth from ages 3–10, before age at takeoff velocity or puberty. Blank cells
for growth characteristics are indeterminable values usually driven by small sample sizes at critical ages, or potentially a true lack of
adolescent growth spurt. Sources for growth and life-history data: Ache (Walker et al., no date; AQ35Hill and Hurtado, 1996), Aeta
(Migliano, 2005), Agta (De Souza, no date AQ35; Early and Headland, 1998), Arnmhem Land (Billington, 1948; Hamilton, 1981; Hiatt,
1965), Asmat (van Arsdale, 1978), Baka (Yamauchi et al., 2000), Batak (Migliano, 2005; Eder, 1987, 1996), Asai (Malcolm, 1970a,b),
Gainj (Wood et al., 1985; Wood, 1980, 1987), Guaja (Gradimir Djurovic), Hadza (Blurton Jones et al., 1992; Blurton Jones, no date; AQ40
Marlowe, 2004), Hiwi (Hurtado and Hill, 1987, unpublished data; Kaplan et al., 2000), Ju/’hoansi (Howell, 1979), Maku-Nadeb
(Walker, 2004), Machiguenga (Hillard Kaplan), Maya (Karen Kramer), Eastern Pygmies (Bailey, personal communication; Dietz
et al., 1989; Schebesta, 1933, 1938, 1957), Western Pygmies (van de Koppel, 1983; van de Koppel and Hewlett, 1986; Cavalli-Sforza,
1986; Bahuchet, 1979); Toba/Wichi (Valeggia and Ellison, 2004; Sánchez-Ocasio and Valeggia, 2005; Bove et al., 2002), Tsimane (Mi-
chael Gurven), Turkana (Little et al., 1983; Gray, 1994; Leslie et al., 1999); Walbiri (Abbie, 1957, 1961; Meggitt, 1965), Yanomamo (R.
Hames, N. Chagnon, and W. J. Oliver; Melancon, 1982; Neel and Weiss, 1975). m, male; f, female.
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Growth is slow from weaning to puberty (1–2 kg/
year and 4–6 cm/year), followed by a marked
adolescent growth spurt. Groups with smaller
adult size and stature (average for individuals
aged 25–55) tend to display slower growth and
later development (e.g., the Ju/’hoansi as con-
trasted with the Ache; Fig. 1). For example,
there is a negative relationship between men-
arche and adult size (see regressions below).
These results appear to conform to many bio-
anthropological studies that associated slower
growth and later development with low
energy availability (reviewed in Bogin, 1999;

Eveleth and Tanner, 1990; Ulijaszek et al.,
1998).

However, some groups like the African Pyg-
mies, Philippine Negritos (Aeta/Batak/Agta),
and Hiwi of Venezuela demonstrate a growth
and developmental pattern that appears
somewhat accelerated for their adult body
size. This growth pattern is characterized by
considerably faster (and more linear) growth
across development, despite poor environmen-
tal conditions. Adolescent growth spurts tend
to be diminished or absent, at least with cross-
sectional data, and given the problem of aging
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TABLE 3. Height growth diagnostics1

Sex

Child-
juvenile
growth

(cm/year)

Age at
takeoff
velocity

Age at peak
velocity

Age at
return

to takeoff
velocity

Average
adult

height (cm)

Ache f 5.1 10.0 13.0 15.0 149
m 4.9 11.0 14.5 17.5 158

Aeta f 4.8 140
m 4.8 150

Agta f 5.5 143
m 5.0 153

Arnhem Land f 6.3 11.0 13.0 14.0 156
m 6.0 12.0 13.5 15.5 171

Baka f 7.1 147
m 5.6 154

Batak f 4.6 10.5 12.5 14.5 144
Guaja f 6.1 144

m 5.6 159
Hadza f 5.2 10.0 12.0 150

m 4.7 11.0 13.0 15.0 160
Hiwi f 7.0 146

m 5.6 156
Ju’/hoansi f 4.2 13.0 15.0 16.5 150

m 4.4 14.0 15.5 16.5 161
Machiguenga f 6.4 149

m 5.4 162
Maku-Nadeb f 4.4 11.0 14.0 16.0 143

m 4.8 14.0 15.0 16.0 156
Maya f 4.3 10.0 12.0 142

m 5.4 10.0 12.0 155
Pygmy (East) f 4.6 136

m 4.3 144
Pygmy (West) f 5.1 10.0 145

m 5.8 153
Toba f 6.1 157

m 6.1 11.5 13.0 14.5 172
Tsimane f 4.9 10.0 12.0 13.0 149

m 5.2 12.0 14.0 18.0 163
Turkana f 5.4 166

m 5.5 14.0 17.0 18.5 175
Walbiri f 6.3 157

m 6.3 170
Wichi f 6.3 10.0 10.5 11.0 152

m 5.2 12.0 13.0 14.0 165
Yanomamo f 4.6 12.0 142

m 4.7 152

1‘‘Child-juvenile growth velocity’’ represents rate of height growth from ages 3–10, before age at takeoff velocity or puberty. Blank
cells are indeterminable values usually driven by small sample sizes at critical ages, or potentially a true lack of adolescent growth
spurt. f, female; m, male.
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discussed above. Growth rates during child-
hood and juvenile periods (age 3–10) are sur-
prisingly fast for some groups, especially
given their small adult sizes (Figs.F2,F3 2, 3). For
example, child-juvenile growth for Baka girls
averages 2.9 kg/year and 7.1 cm/year, and
2.6 kg/year and 7.0 cm/year for Hiwi girls.
These growth rates approach or exceed those of
US children and juveniles (about 3.3 kg/year
and 6.5 cm/year), despite the fact that Baka
and Hiwi adults are less than two thirds the
weight of US adults. For the Baka and Hiwi,
this translates into average size at age 10 for
girls being around 70% of adult size, whereas
societies like the Ju/’hoansi, Hadza, and Maya
are only about 40–45% of their adult size at age
10. We believe that these large differences
among groups makes it unlikely to be an arti-
fact driven by age errors alone.

We find that average growth rate from ages
3–10, or child-juvenile velocity, is one of the

best measures to compare across societies,
because available longitudinal data show that
growth rates appear to be mostly linear and
stable during this period of slow growth (Blur-
ton Jones, AQ12no date; Walker et al., no date),
probably AQ13because few individuals are spurting
before age 10. This makes child-juvenile veloc-
ity an excellent measure when analyses are
desired of small sample sizes and cross-sec-
tional data. Our smallest sample of individu-
ally reported measurements is 10 Hiwi girls
between ages 3–10 who were weighed over a
period of several years, for a total of 55
weights. This small sample yields a 95% confi-
dence interval of child-juvenile velocity be-
tween 2.3–2.9 kg/year, making it significantly
faster than many of the other groups. The
much larger sample size for Ache girls, for
example, gives a 95% confidence interval of
child-juvenile velocity between 1.95–2.25 kg/
year. However, this is a comparison between
two groups where we have considerable confi-
dence in age estimates.

Multivariate analyses

We attempt to separate the two opposing
effects of environmental constraints vs. selec-
tive pressure on the rates and timing of devel-
opment by running multiple regressions sepa-
rately for males and females. Adult body size
is used as a proxy for overall nutrient avail-
ability and probability of survivorship to age
15 (or l15) as a measure of the environmental
hazards that would select for earlier/faster de-
velopment. Life expectancy at age 15 (or e15)
is also considered an alternative measure of
environmental hazard level. The two survivor-
ship measures l15 and e15 show a positive cor-
relation of 0.59 (n ¼ 14), but tap into different
sources of mortality, i.e., juvenile vs. adult,
respectively. We also tested the survivorship
from ages 1–15 by removing infant mortality,
and found slightly weaker effects (not shown).

Survivorship and adult body size act in
opposing directions on all aspects of growth
and development in this sample. Larger adult
body size is associated with faster and earlier
development, indexed by child-juvenile grow-
th (weight and height), menarche, and age at
first reproduction for females (Table T44). How-
ever, survivorship is associated with slower
and later development, indexed by all the
same variables. Growth and developmental
markers are more strongly associated with l15
than e15 with the exception of menarche,
which is strongly associated with both. Our
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Fig. 2. Relationship between child-juvenile growth
rate and adult weight for (a) females and (b) males. It
should be noted that many small body-size groups are
Pygmies and Negritos, which pull up left end of fit line.
If one includes survival in multiple regression (see
below), true body-size slope increases over what is
shown here. Multiple regressions give body-size coeffi-
cient of 0.07 for females (Table 4) and 0.04 for males,
which is double that shown here, illuminating fact that
Pygmies/Negritos appear to have faster-than-expected
growth for their adult size, correlated with low juvenile
survival rates. Error bars (95% confidence interval of
slope for weights by age from ages 3–10) are provided
for those societies where we have access to raw individ-
ual-level data. These error bars only capture variation
in cross-sectional growth rates assuming no error in
age estimates. Three unlabeled groups that clump near
Ache on male graph are Tsimane, Guaja, and Maku-
Nadeb.
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results suggest that juvenile mortality risks
are the main force behind faster and earlier
growth (given adult body size).

From the multivariate regressions, we can
calculate that age at first reproduction comes
about 1 year earlier for every 4-kg increase in
adult female size. Additionally, age at first
reproduction comes about 1 year earlier for ev-
ery 10% decline in survivorship to age 15.
Similar shifts are seen in age at menarche.
Not surprisingly, child-juvenile growth is
faster with larger body size, at about 73 g

faster per year for each additional kilogram in
adult females. Additionally, a 10% decrease in
survivorship is associated with an additional
growth of 172 g/year in females.

It is important to note that multiple regres-
sions show a considerably stronger relation-
ship between body size and growth rates than
is shown by the univariate regression in Fig-
ure 2, because faster/earlier development is
also associated with lower survivorship. Given
that most smaller body-size groups (Pygmies/
Negritos) tend to have lower survival than
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Fig. 3. Relationship between child-juvenile growth rate and adult height for (a) females and (b) males. Error
bars (95% confidence interval of slope for heights by age from ages 3–10) are provided for those societies where we
have access to raw individual-level data.
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groups with larger body size, this has the
effect of increasing the body-size regression
coefficient over that shown in Figure 2 (in fact,
it doubles for both sexes). The result is that
Pygmies and Negritos, in addition to the Hiwi,
actually have faster-than-expected growth (as
well as earlier menarche) for their adult body
size, and these residuals are positively related
to high juvenile mortality.

The sample sizes for the regressions in Ta-
ble 4 are small (only 9–12 societies), but we
obtain comparable (and significant) results
using iterative resampling techniques that
are less affected by small samples. Major-axis
regressions (model II, considering that the in-
dependent variables have error) also produce
significant results with strong coefficients (not
shown). Finally, if we omit the two studies
from the regressions in Table 4 that have the
worst age estimates (Asai-Gainj and Western
Pygmies), the child-juvenile growth model for
females improves considerably (both P-values
<0.005). However, omission of these two
groups adversely affects the age at first repro-
duction model, already teetering at borderline
levels of significance. The age at menarche
remains essentially identical as reported in
Table 4 with these two groups removed. We
were unable to identify a clear adolescent
spurt in many of the societies, disallowing
multivariate analyses of ATO, APV, and
ARTO. We hope that future work will compile
a larger sample of all these characters,
because these measures will likely further

confirm our results. Finally, parameters in the
regression of child-juvenile velocity for males,
while in the predicted direction as found for
females, are not significantly different from
zero.

DISCUSSION

Our results for females support both the
traditional bioanthropological and life-history
perspective. Societies with larger and taller
adults generally develop faster and earlier. In
addition, we find that juvenile mortality is
related to faster child-juvenile growth rates
and earlier menarche and age at first repro-
duction. In fact, the relative force of nutrient
constraints vs. selective pressure is approxi-
mately equal, given that the standardized
regression coefficients of adult body size and
survivorship tend to be about the same.

In general, male growth rates are less plas-
tic across societies, as evidenced by a flatter
slope in Figures 2 and 3 as compared to
females. Male growth rates also have less
spread around the regression lines in Figures
2 and 3, and this variation is not significantly
associated with juvenile survival (but this
could be a type II error). Male and female
growth trajectories may be under a different
selection. Selection for early female develop-
ment must be strong when survivorship is
low, given that each reproductive act requires
considerable time for both gestation and lacta-
tion. Males may have strong selection for a
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TABLE 4. Regression models for child-juvenile growth rates, menarche, and age at first reproduction in females1

Model
Independent

variables
Unstandardized

coefficient B SEC
Standardized

coefficient (beta) AQ38t-statistic
P-value
(OLS)

P-value
(resampling)

Child-juvenile growth in weight (kg/year) for females, n ¼ 12, R2 ¼ 0.69
Constant �0.632 0.667 �0.947 0.368
Body size 0.073 0.017 0.940 4.409 0.002 0.007
Survivorship to 15 �1.724 0.658 �0.559 �2.621 0.028 0.041

Child-juvenile growth in height (cm/year) for females, n ¼ 12, R2 ¼ 0.52
Constant 0.709 1.725 0.411 0.691
Body size 0.155 0.050 1.006 3.125 0.012 0.004
Survivorship to 15 �4.671 1.916 �0.785 �2.439 0.037 0.020

Age at menarche (females), n ¼ 10, R2 ¼ 0.68
Constant 19.545 3.078 6.349 0.000
Body size �0.240 0.076 �0.763 �3.149 0.016 0.031
Survivorship to 15 10.763 3.118 0.836 3.452 0.011 0.037

Age at menarche (females), n ¼ 9, R2 ¼ 0.62
Constant 25.266 3.900 6.479 0.001
Body size �0.451 0.144 �1.457 �3.134 0.020 0.003
Life expectancy at 15 0.272 0.103 1.226 2.636 0.039 0.005

Age at first reproduction for females, n ¼ 12, R2 ¼ 0.43
Constant 25.668 4.720 5.438 0.000
Body size �0.255 0.115 �0.623 �2.222 0.053 0.057
Survivorship to 15 10.002 4.521 0.621 2.213 0.054 0.068

1Reported P-values are from ordinary least-squares regression (OLS) and from a resampling technique.
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target body size for male-male competition,
with fewer opportunity costs than females in
terms of foregone reproduction.

Life-history theory is a powerful explana-
tory framework for auxology that forces
researchers to delineate the fitness costs and
benefits of different growth trajectories sub-
ject to energetic constraints. Traditional bio-
anthropological studies focused mostly on the
cost side of the equation (i.e., maintenance
costs) by documenting the energetic con-
straints imposed by malnutrition and disease.
Life-history theory firmly addresses these con-
straints, but also considers that selection may
act on different competing demands (i.e., cur-
rent vs. future reproduction), and that optimal
allocations are likely to change across differ-
ent mortality regimes. Therefore, the conven-
tional bioanthropological perspective is not an
alternative explanation in opposition to the
life-history perspective. Rather, it is probably
best viewed as an emphasis on energetic con-
straints, and subsumed as a subset of life-his-
tory theory.

It is important to emphasize that mortality-
based selection for faster/earlier development
implies greater investments in current rather
than future reproduction, a pattern that
makes sense if future survival is less certain.
Additionally, we suggest that larger body size
at young ages may be important for combating
parasites and infectious diseases via a more
robust immune system (e.g., larger spleen/thy-
mus) or some other form of size-dependent
mortality, such as infanticide of smaller indi-
viduals. We recognize that immune function
and other maintenance costs must compete
with body growth for energetic resources
(Panter-Brick et al., 2001; McDade, 2003), and
one interpretation of our regressions is that
the causal arrow points from faster growth to
higher mortality, and not the other way
around. However, it is difficult to understand
why fast growers would simultaneously pay
relatively higher growth and maintenance
costs, only to experience higher mortality. An
alternative interpretation is that higher juve-
nile mortality may render fewer siblings and
hence less competition for parental provisions.
This scenario may allow for faster child-juve-
nile growth and earlier reproduction. Indeed,
less sibling competition may work in concert
with faster development that buffers against
certain mortality risks, and shortens time
spent in high-mortality lifestages.

Analogous patterns of mortality-induced
increases in growth and early reproduction

likely evolved in other species when a develop-
mental threshold had to be obtained quickly
(Arendt, 1997). Some common themes in the lit-
erature include escaping from high predation,
surviving overwintering, and achieving sexual
maturation. For example, survival rates in fish
are closely related to body weight and length
(Lorenzen, 1996). Rapid growth may allow
some species (e.g., guppies: Reznick, 1983) to
reach a size refuge from heavy predation (Seed
and Brown, 1978). Some snails, when exposed
to a trematode parasite, appear to compensate
for potential losses in future reproductive suc-
cess by an increase in egg-laying soon after ex-
posure (Minchella and Loverde, 1981). This
holds true whether or not they actually become
infected, but in either case, snails show a reduc-
tion in fitness, demonstrating a cost of in-
creased early reproductive effort. Other snails
were shown to grow more rapidly in the pres-
ence of crayfish, a phenomenon initiated by a
water-borne cue released by crayfish feeding on
conspecific snails (Crowl and Covich, 1990).

AQ14Case (1978) surmised that juvenile mortality is
one of the most important determinants of
faster growth in homoiotherms, in order to
quickly escape vulnerability in the nestling
stage.

Slow and fast life histories?

The origin and maintenance of a slow hu-
man life-history strategy is easy to conceptu-
alize. Selection for long juvenile periods in
humans is likely closely tied to longer life-
spans and larger brains (Harvey et al., 1987; AQ15
Kaplan et al., 2000). Indeed, we show here
that juvenile periods tend to be longer with
higher juvenile survivorship. Human develop-
ment requires extensive provisioning to
unproductive offspring. Larger size may bring
few benefits for pre-reproductive youngsters
with underdeveloped cognitive capacities in
complex foraging (Walker et al., AQ162002) or social
settings. Selection may have acted to slow
down growth rates in order for offspring to
remain small and save on maintenance costs
that they themselves cannot produce. With
slow-growing offspring, parents can econo-
mize and better provision other dependent off-
spring, thereby increasing fertility (Bogin,
1999). Adult size is reached quickly via the ad-
olescent growth spurt, which effectively saves
on maintenance costs that would have accu-
mulated during the long human child-juvenile
period (Gurven and Walker, 2005).
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The origin and maintenance of a faster
human life-history strategy, if it exists, de-
serve more attention. The fast strategy ap-
pears to manifest in poor environmental con-
ditions, yet one must ask why other groups
under poor conditions, such as the Ju/’hoansi
and New Guinea Highlanders (Gainj and
Asai), appear to manifest slow strategies, and
why the Hiwi and Baka opt to increase their
cumulative maintenance costs and provision-
ing demands on their parents by growing fast
at young ages. One interpretation is that the
relative risk of death from parasites and infec-
tious diseases prompts fast development in
order to reach puberty, menarche, and first
reproduction at younger ages. Faster growth
must be less costly when it comes with size-
related benefits that reduce mortality and
morbidity (Arendt, 1997). Higher-elevation or
drier environments probably reduce parasitic
and infectious diseases. In these environ-
ments, the relative risk of death from starva-
tion increases in comparison to disease.
Human groups in these ecologies may do bet-
ter to grow slowly and reproduce late as a
maintenance-cost effective strategy. Fast
growth may only be beneficial in environ-
ments where larger subadult sizes bring bene-
fits of reduced mortality. For example, nation
states with a higher prevalence of parasites
and infectious disease species (PIDS) have

larger-than-expected neonates, and this find-
ing was interpreted as a mechanism to combat
these PIDS (Thomas et al., 2004).

A three-dimensional character space that
includes juvenile survival, adult survival, and
resource abundance is useful to sort out the
different conditions leading to various ontoge-
nies (Table T55). In the upper right corner with
low juvenile and adult mortality is the classic
slow human life history, separated into high
and low resource abundance. At the opposite
end (bottom left) are the Negritos (and prob-
ably the Pygmies), characterized by high juve-
nile mortality that potentially drives rela-
tively earlier development and small body
size. Looking across the chart, low adult mor-
tality correlates mainly with larger adult size,
and less with developmental rates and timing,
though we show a strong effect of adult mor-
tality on earlier age at menarche (Table 4).
Again, the main driver of the timing of devel-
opment may be juvenile mortality, which
speeds up child-juvenile growth with an early
cessation of growth, AQ17and an early commence-
ment of reproduction that potentially cuts off
a robust adolescent growth spurt.

Given that we have estimates for juvenile
and adult survival and adult female body size
as a proxy for resource abundance, we can plot
the life-history characters of each society in a
three-dimensional plot (Fig. F44). Following Ta-
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TABLE 5. Three-dimensional character space of juvenile survival, adult survival, and resource abundance, and
their effects on human ontogenetic patterns1

Low adult survival High adult survival

High juvenile survival AQ39High energy availability High energy availability
Intermediate adult size Large adults
Intermediate age at first reproduction? Intermediate menarche/puberty
Intermediate growth Intermediate age at first reproduction
Not observed Intermediate growth with spurt

Ex. Ache AQ40
Low energy availability Low energy availability

Small adults Intermediate adult size
Late menarche Late menarche
Late reproduction Late reproduction
Slow growth with small spurt Slow growth with small spurt
Ex. Gainj and Asai Ex. Ju/’hoansi

High energy availability High energy availability
Intermediate adult size Large adults
Early reproduction Early reproduction
Fast growth Fast growth
Not observed Not observed

Low juvenile survival Low energy availability Low energy availability
Small adults Intermediate adult size
Relatively early menarche Early menarche
Intermediate age at first reproduction Intermediate age at first reproduction
Relatively fast growth, reduced spurt? Fast growth, reduced growth spurt?
Ex. Negritos Ex. Hiwi

1‘‘Relatively’’ refers to ‘‘for a given small adult body size’’ or ‘‘given high energetic constraints.’’
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ble 5, a plane appears with high adult and ju-
venile survival on the upper right, with both
diminishing as one moves toward the Negritos
on the lower left. The Gainj jump out as out-
liers from the best-fit plane. The Gainj appear
to have high adult adult mortality yet excel-
lent juvenile survival, which is perhaps re-
lated to their slow growth and development.
In contrast, the Hiwi are somewhat intermedi-
ate in terms of adult body size and adult sur-
vival, but demonstrate high juvenile mortal-
ity. Indeed, the Gainj and Hiwi may represent
the exceptions that prove a life-history rule of
juvenile mortality selecting for developmental
rates. The Asmat of Lowland New Guinea as-
sociate near the Hiwi, and we would predict
fast and early growth in this society.

There is no marked adolescent growth spurt
in the Hiwi, Baka, Batak, or East African Pyg-
mies, at least with cross-sectional examination
of height and weight. However, part of the in-
ability to uncover the spurt is likely related to
errors in age estimates (especially of the Baka)
and small sample sizes at critical ages (in all
these societies). The other West African Pyg-
mies, Aeta, and Agta show some semblance of a
growth spurt, but less robust than in other soci-
eties like the Ache and Ju/’hoansi in Figure 1.
Under the caveat of limitations of small sam-
ples and cross-sectional data, there is the
impression that faster relative growth during
the child-juvenile phase is associated with a

less pronounced adolescent growth spurt. A
diminished adolescent growth spurt in Pygmies
and Negritos is probably associated with
genetic differences in the growth hormone/in-
sulin-like growth factor type 1 axis (Merimee
et al., 1981, 1987; Hattori et al., 1996; Jain
et al., 1998; Clavano-Harding et al., 1999).

The Hiwi are an interesting case. Hiwi age
at first reproduction (20.5 years), taken from
adult women in the population, does not
appear to match the very early age at men-
arche (12.6 years, standard deviation (SD) ¼
1.6, n ¼ 11) for adolescent girls from the cohort
from which growth data were obtained. While
the sample size for menarche is small, the ages
are determined with confidence, since the Hiwi
girls undergo memorable rite-of-passage cere-
monies. The average age at first birth for
younger mothers under age 35 (where there is
more confidence in ages) is 17.9 years. This
better matches other societies, where the age
difference between age at first reproduction
and menarche averages 4.5 years (SD ¼ 1.6,
n ¼ 14). Interestingly, the 14- and 15-year-old
(n ¼ 5) Hiwi girls are as large as or larger than
Hiwi women in their 20s, but we have no girls
in their late teens in this sample. It is
unknown whether the Hiwi recently moved to-
ward a faster developmental strategy driven
by lower juvenile survival, or if this pattern is
more genetic and ancient in its origin, as it
may be for the Pygmies and Negritos. There is
no evidence of any recent increase in nutri-
tional status in the Hiwi (since disease load
and malnutrition are commonplace; Hurtado
and Hill, 1987) that would inflate recent
growth in children and juveniles.

The Australian Aborigines (Walbiri and var-
ious ethnicities in Arnhem Land) in several
respects also appear to have a somewhat
accelerated life history. Relative child-juvenile
growth rates are slightly faster than expected
for their body size (Fig. 2). Reliable survivor-
ship data are missing, so it is not possible to
assess mortality-driven selection for faster de-
velopment. An adolescent growth spurt is
marked in the sample from Arnhem Land,
and less so in the Walbiri. Nonetheless, a
rather young age of menarche, first reproduc-
tion, and growth cessation, given their adult
size, all support a partially advanced rate of
development for these Aborigines. Unfortu-
nately, considerable error in aging makes us
uncomfortable about making more definitive
statements for the Aborigines.

Growth characteristics that were promo-
ted as distinct human universals, such as a
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Fig. 4. Three-dimensional plot of adult female body
weight (kg) on x-axis, juvenile survival (l15) on y-axis,
and adult survival (e15) on z-axis, with best-fit plane.
This plot emphasizes continuity or spectrum along dif-
ferent axes. Pygmies are not included in this plot due to
lack of information for e15, but are likely associated
near Negritos (Batak, Agta, and Aeta).
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robust adolescent growth spurt preceded by
slow child-juvenile growth (Bogin, 1998, 1999;
Walker et al.,AQ18 no date), are not markedly visi-
ble in the ‘‘fast strategy’’ societies. Therefore,
they may not be human universals. However,
a better assessment of this idea must await
more (and higher-quality) data. Despite some
similarities with chimpanzee life histories, it
is probably erroneous to view the ‘‘fast human
life history’’ as the ancestral condition. If it
exists, the ‘‘fast strategy’’ may actually be a
recently derived characteristic of some human
groups in response to high mortality from par-
asites and infectious disease, probably exacer-
bated by higher population densities in com-
parison to other hunter-gatherers.

CONCLUSIONS

It is beneficial to include growth trajectories
as integral components of life histories. A com-
plete assessment of an organism’s life history
requires age-specific rates of growth, survivor-
ship, and fertility. It is unfortunate that such
data are rare (and occasionally low-quality)
for hunter-gatherers, given that human evolu-
tion occurred in a foraging context, and that
the last century has seen a drastic global
reduction in societies with this lifestyle.
Detection of different developmental patterns
is difficult without cross-cultural growth infor-
mation, and perhaps this explains the previ-
ous lack of attention to the question of diver-
gent human life-history strategies.

In this cross-cultural comparison, growth
and life-history traits helped illuminate some
differential ontogenetic strategies, and proved
useful for understanding the evolutionary and
ecological processes behind their existence. In
sum, evidence is presented that relatively fast
development may be an adaptation for some
human females (e.g., Hiwi, Negritos, and Pyg-
mies) living in several high-mortality regimes,
a conclusion also reached (independently) by
Migliano (2005). The commonly held assump-
tion that worse conditions only lead to slower
growth and later development has been called
into question. We are not saying that ener-
getic constraints are not important to under-
stand delayed growth and development in
these societies, but we do suggest that energy
availability may only be a little over half the
full story. Better or normal conditions (i.e.,
good survivorship and nutrition) appear to
promote a slow ontogenetic strategy that is
likely involved with energy conservation dur-
ing long learning periods. On the other hand,

more attention should be paid to high-mortal-
ity regimes that have potentially causal links
to faster ontogeny and may contribute to im-
portant variation in modern human growth
and development.
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