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Rescaling of diffusion coefficients in two-time scale chemical systems
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We study reaction—diffusion systems which involve processes that occur on different time scales. In
particular, we apply a multiscale analysis to obtain a reduced description of the slow dynamics.
Under certain assumptions this reduction yields a new set of reaction—diffusion equations with
rescaled diffusion coefficients. We analyze the Selkov migeE. Selkov, Eur. J. Biocherd, 79

(1968] and the ferrocyanide—iodide—sulfite reactj@h C. Edblomet al, J. Am. Chem. Socl08

2826 (1986] to determine whether the rescaling in this case may account for the difference of
diffusivities that the formation of certain types of patterns requires.2@0 American Institute of
Physics[S0021-960809)51848-3

I. INTRODUCTION effectively reduces the diffusion coefficient of iodide. In this
way, the activator and inhibitor species diffuse at different
Self-organization in far-from-equilibrium systems hasrates, as required for Turing patterns to exist. The more rig-
become a major topic of scientific research during the lasbrous linear analysis of Ref. 7 was also supplemented with a
decades. In particular, pattern formation in chemical sys- simple approximate calculation to explain this rescaling. A
tems has attracted a great deal of attention due to its possibéimilar approach was followed in Ref. 8 to explain both the
applications to biological systemisOne of the first clear rescaling of diffusion coefficients and the appearance of a
steps to generate such interest was the work of Turing inlifferential flow among chemical species. The idea that dif-
19523 who pointed out the possibility of finding steady non- fusion is rescaled by the interaction with immobile species
homogeneous structures as the result of the interplay be&bufferg is also widespread in biology. For example, the
tween nonlinear reaction kinetics and diffusion processesnteraction of calcium ions with buffetsaccounts for the
Turing’s work enhanced the study of reaction—diffusion sys-dependence of calcium diffusion on calcium concentratfon.
tems, both from a theoretical and an experimental point offhus, it is clear that, given a reaction scheme, it is very
view. In fact, reaction—diffusion processes have become aseful to find a way to predict the changes in the effective
key problem to push forward our knowledge about thediffusivity of the various species.
mechanisms of pattern formation. Reaction—diffusion equa- In this article we approach the rescaling problem from
tions have been successfully applied to model different phean analytical point of view. The main feature underlying the
nomena in fluid dynamics, chemical reactions, and dendriti@bility to produce such rescaling is the existence of at least
growth, among others. Turing’s main concern was the fatwo time scales in the reaction—diffusion system. In fact, that
reaching implications of this mechanism for generating patis the common property of all the systems mentioned before.
terns in biological systemsee, e.g., Ref.)2Although there  Therefore, in this article we focus on a two-time scale analy-
is no definite proof that this type of mechanism is at work insis of reaction—diffusion systems that contain processes
any real biological system, there are some very promisingvhich occur on different time scales. The approximate cal-
recent result§. culations of Refs. 7 and 8 did not take this time scale split-
Turing patterns were not observed in laboratory experiting into account. On the other hand, they were done only for
ments until 38 years after their theoretical descripfidfnis  one reaction of the formJ+Vé/W with V and W both im-
was due in part to the fact that Turing patterns need thenobile species. In this article‘we show how to handle more
chemicals to diffuse at different rates, and this was hard tgeneral reactions. We also show that the rescaling of diffu-
achieve in the dilute aqueous systems that the communityion coefficients obtained in Ref. 7 or 8 is reobtained in our
was focusing on. The experiments were done using theetting. Another drawback of the simple approach of Ref. 7
chlorite—iodide—malonic acigCIMA) reaction> The analy-  or 8 is the lack of information about the initial conditions for
ses of these experimefitsshowed that the interaction be- the rescaled equations. These equations give the evolution
tween the reacting and diffusing species with other immobiléor an approximation to the concentrations and the initial
chemical complexes present in the system has a paramougénditions must be changed accordingly. Our derivation au-
importance for the patterns to occur. Lengyel and EpSteintomatically gives information on the new initial conditions. It
proposed a kinetic mechanism for the CIMA reaction andalso shows under which assumptions it is possible to reduce
argued qualitatively that the gel where the reaction proceedge original dynamical equations and what concentrations
(loaded with starch molecules that also “trap” iodide idns and time scales these new equations describe.
We apply our calculations to two particular systems of
aE|ectronic mail: strier@df.uba.ar interest: the Selkov mod€l and the ferrocyanide—iodide—
bElectronic mail: silvina@df.uba.ar sulfite (FIS) reaction'? The first one is a simple model that is
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able to describe single frequency oscillations in the glyco-  The reduction to a center or inertial manifold is achieved
lytic pathway® Analytical and numerical studies have by replacing some of the original differential equations by
shown that, in the spatially inhomogeneous case, this modellgebraic relations. This is calleadiabatic elimination In
is also able to support Turing patterns, provided that thealoing this, there is almost a one-to-one relationship between
product and substrate diffuse at different rdte§he FIS time scales and variables in the following sense. It is possible
reaction, on the other hand was originally developed by Edto rewrite the original equations so that only a subset of
blom et all? as an example of a chemical system that canvariables evolves on the fast scale. Then, as many differen-
support sustained oscillations. Later experimErifshave tial equations as “fast” variables can be replaced by alge-
shown a variety of patterns that can be easily visualized sincbraic relations. The fast variables very rapidly adjust them-
they appear as a variation in the pH. Theoretical explanationselves to the variation of the ‘“slow” variables whose
of these patterns also require that the various species diffusvolution is described by differential equations. Introducing
at different rates’'8 Thus, in both of these cases it is im- the right rescalings in order to separate the variables in this
portant to determine whether the necessary difference in theay is the first step in the analysis of chemical systems under
diffusion coefficients can be produced by the interactionghe quasisteady state assumptjorf>which has been largely
with immobile species that occur on a fast time scale. This isised when enzymatic reactions are invol¢eHowever,
the point we try to unveil using the procedure described irthere is another approach very well suited to situations in
this article. which there is not a clear separation between fast and slow
The organization of the article is as follows. In Sec. Il variables, even if there are processes occurring on different
we briefly review the analytic tools to study two time scaletime scales. This is the method we use in Secs. Il and IV
systems. In Sec. I, IV, and V we show how to handle and is callednultiple scale$®
reaction—diffusion systems of this sort under different as-
sumptions. The case of the Selkov model is described in Sedll. THE CASE OF FAST REVERSIBLE REACTIONS
VI and that of the FIS reaction in Sec. VII. Finally, the

. . - In this section we describe the main results that are ob-
conclusions are summarized in Sec. VIII.

tained in the case of fast reversible reactions using the
method of multiple scales. Their detailed derivation is in-
I THE EXISTENCE OF VARIOUS TIIE ScALES anp 14181552, sesompn et coneder 2 9
THE POSSIBILITY OF REDUCING THE NUMBER . .
OF VARIABLES sume that there are two groups of time scales in the system:
fast and slow. We assume that diffusion and the external feed
Many natural systems involve multiple processes thabr removal of the species occur on the slow time scale, while
occur at different rates. Often such systems are well dethere is a subgroup of reactiofwe work out the details for
scribed by just two time scales. Then a small parameter catihe case of onethat occur on the rapid time scale. There are
be introduced, which is given by the ratio between the twon+1 species §,,...,S,, andQ) involved in the fast reac-
time scales. When there is a small parameter, the analysi®ons, while there are otheX (V4,...,Vy, WhereN might
usually relies on perturbative methods. This occurs, for exequal zerpthat are not. The spatio-temporal variation of the
ample, in Hamiltonian systems that are “almost” integrable.various concentrations is described by a setnefN+1
In that case amveragingmethod is usedsee, e.g., Ref. 19, reaction—diffusion equations of the form:

p. 167, which results in a reduction of the number of equa- as,

tions we have to deal witiAdiabatic invariantsare obtained e TGt D.iV?%s;, 1<i=<n, (]
in this way. Another situation in which there is a time scale

which is much slower than the rest takes place near local 99 _ f_q+ 1 D.V2 @)
bifurcations. Exactly at the bifurcation parameter value there gt € 9a oV 0

is a center manifoldon which the evolution is governed by v,

small nonlinear terms, while the contraction or expansion —=g,;+D,;V?;, 1<i<N, 3
along the stable and unstable manifolds, respectively, is o

ruled by larger linear terms. In that case a systematic exparwhich are to be solved subject to boundary and initial con-
sion can also be introduced to obtain the evolution on thalitions for s;(x,t), q(x,t), and v;(x,t). In Egs. (1)—(3),
center manifold. This also involves a reduction in the num-=s;(x,t), q(x,t), vi(x,t), Dg, Dy, andD,; are the con-
ber of evolution equations, since this manifold is of lowercentrations and diffusion coefficients of time+r N+ 1 spe-
dimension than the whole phase spésee, e.g., Ref. 19, p. cies, § (1<i=n), Q, and V; (1<i<N), respectively.
117). This approach can also be used near the bifurcatiof;, f,, gsi, 94, andg,; are functions of the concentra-
point. Similar in spirit, but not tied to any type of bifurcation, tions: f; andf, do not depend ow,....,vy, butgs;, 9q.

is the projection onto arinertial manifold for dissipative andg,; may depend on any of the concentrations, including
partial differential equation{PDES (see, e.g., Ref. 20 v,,...,vy. These functions model the variation of the con-
When it exists, the long-term evolution of the infinite dimen- centrations due to the chemical reactions and to the external
sional dynamical system effectively occurs on tfieite di-  feed or removal of each species. Ttterms only include the
mensional inertial manifold. This allows a reduction from fast reactions while both the slow reactions, the feed, and the
the PDEs to a finite set of ordinary differential equationsremoval are included in thg terms. We make the difference
(ODEs. between the two time scales explicit by introducing the small
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parameterg, which is of the order of the ratio between the Q Q
time scalesQ is any species involved in the fast reaction LEVEL SET
whose concentration varies because ofsiée later. In the <

case with more fast reactions, we separate as many specie
Q;, as fast reactions, whenever that is possible.

We are interested only in the variations that occur on the =0
slow time scale. As we will show, this slow evolution is
described by a reduced set of differential equations. The dif-
ferential equations that are “eliminated” are actually re- . §”
placed by algebraic relations among the concentrations. Ir
the case of one fast reaction the system is finally described
by n+ N differential equations and one a_|gebraic relation ofFIG. 1. Integration of the fast equations foe=2. The straight line is the

— ; i level set which is uniquely determined by the values of(thehis case twp
the formQ=Q(s,. ... Sn), instead of the original set, Egs. constants of motion. The arrow indicates how the system evolves in time.

(1)=(3). In the general case offast reactionsIE1), Up 0 Each level set intersects the manifolds of fixed points of the fast equations at
| differential equations can be replaced by algebraic relationsolated points. The first point of intersection provides the initial condition
(provided that the number of species involved in the fasf_or the re_ducedslow) evolution equatio_ns(.a) The case qf one fast revers-
reactions is Iarger thal’). As mentioned before, in this ar- ible reaction.(b) The case of one fast irreversible reaction.

ticle we only work out in detail the case of one fast reaction.

Under certain assumptions, the case of more than one fast

LEVEL SET

(@) ®

reaction can be handled in a similar way. ~ time variable,r. Following the steps described in Ref. 24 we
We now consider that there is only one fast reactionfind that, on the fast time scale, the concentrations approach
which we write as slowly varying functions of timer; and 6:
n kie N .
2 ST aQ= 2 BS+AQ, @ STolFOe, 1=i=n ®
e a4~ 6()+OCe), )

where «; and g; stand for the stoichiometric coefficients of
the reactants and products, respectively. Here we are assutybere
ing that the reaction occurs much faster in both directions 1\ Uag—By N
than any other process in the system. We make this explicit = (_) [T otPim)l(@a=Fa) (10)
by writing the reaction rates dde andk’/e, with k andk’ k =1 !
of order one. As usual, we describe the chemical reaction bg
. o . . nd
mass action kinetic equatioA$Thus the terms witH; and

fq in Egs.(1)—(2) can be written as . Bi— « )ZE) doi  Bima D Bi—aj 0 doj

f; k(ﬁ a.) Ba~aq I BqTaq {Fi Bg—aq o) IT

! (B —a)| = G| g

€ (Sly e 5Sn :q) (ﬁl al) € j=l SJ q q :DS|V20'|+95|({0']},0,{V1<})

k/ B._a.
_?(Hl Sf])qﬁq)] (5) _m(gq({aj},a,{vk})‘Fquze) (11)
=
fq k(" . Equations (10)—(11) together with Eg.(3) [where g;
< (51 S0, )= (Bg—ag)| £ 11:[1 s;’ g =0yi({oj},6.{vi})] constitute the reduction of the original

set, Eqs(1)—(3). Clearly, this new set of equations describes

k' [ .M the evolution on the slow time scale. Given initial conditions
- H sjﬁi qPal. (6)  s(t=0), q(t=0), andv;(t=0) for Egs.(1)—(3), the initial
=1 conditions for Eq(11) can be uniquely determined: they are
The functionsf; andf, are then related by the asymptotic values that the solutions of the fast equations
approach for the giveg,(t=0), g(t=0), andv,;(t=0). As
(Bo—ag)fi=(Bi—apfy. R0 pp gives(t=0), q(t=0) i(t=0)

explained in Ref. 24, the fast equations have so many con-
The condition orQ mentioned before is equivalent to saying stants of motion that the evolution takes place on a one-
that B,— a4#0. In this way, as required, the concentrationdimensional level set defined by this constant. In this way it
of Q varies due to the fast reaction. is straightforward to obtain the corresponding initial condi-
We then define two times that take into account the twdaion, as is schematically depicted in Figial for the n=2
groups of time scales present in the problem, the fast and thease.
slow time scale, respectively=t/e andr=t. We introduce The meaning of the reduction is the following. After a
this rescaling explicitly so that bofiand = are quantities of very short transientduring which the fast reaction equili-
order one. We then assume that the concentrations of therate$ the dynamics is restricted to a lower-dimensional
species involved in the fast reaction depend on these twmanifold on which the evolution is slow. This manifold is
time variabless,=s;(T,7), q=q(T,7),%° while the rest of defined by the algebraic constraint, E40). We illustrate
the concentrationsy;, 1<i=<N, only depend on the slow this schematically in Fig.@). The separation into a “fast”



828 J. Chem. Phys., Vol. 112, No. 2, 8 January 2000 D. E. Strier and S. P. Dawson

Q FAST Q 60'1 A22 A22 A12
P TD51V201+ 3 917 3 9s2
FAST
A —ay)—A -«
< Sow L AuBrmad Al By 13
A(,Bq_aq)
where
S S 2
2 2 —«a 0 -« —ay) 0
Sl‘{w/ A11=1+('81_ 1) o Alzz(ﬁl( 11(52)2 2) .
§{ S| Bq—aq) o1 Bq~ aq g2
@ ®) A _(Bima)(Bo—ay) 6 A :1+(,32_a2)zi
FIG. 2. Schematic illustration of what the reduction means in the case of 2 (,Bq_ qu)2 oy’ 22 ,Bq_ aq oy’

one fast reversible reactiqa) and in the case of an irreversible ofi®. In and A=A —A.A In this case. the reduction intro-

both cases, the reduced equations describe the evolution ¢sldlag mani- d 22A11|. 21 leH diffusi ’ ffici h th h

fold that is approached after a fast transient. uces a r_escalng,] 0 _t e diffusion coe .Ic_lent, such that the
new coefficientDg, , is related to the original on®g; by

. Ax
D31:TD31

anq a “slow” process is possible b(_acause of the different (Bq—aq)20102+(ﬁ2—a2)26’01
weights that the various terms have in E¢.and(2). It is :(,3 T a0)20105+ (Bi=ay)200,+ (Bp—ay) %00
clear that the order-of-magnitude of the fast reaction terms in g To/ T1¥2 AP T 272 T2 1
these equations not only depends on the constahésand XDyg. (14)

, : ) .
k'/e, but also on the concentrations of the variables in- |, cerain cases there are conserved quantities in the sys-
volved. The calculation we have presented is consistent 8m that allow us to Writer, as a function ofo;, in which

long as there are not very large differences in the concentrgs,qe it s then possible to write the rescaled diffusion coeffi-
tions so that the fast term§;,/e andf,/e, are effectively of cient, D/, , only as a function ofr,. In particular, this is the

th_e same order-of-magth_lde as the slow ofeeg.,gs). If case for the situation previously discussed in the literature in
this happens after a transient, as a consequence of the evo-

kle
lution, the calculation is still consistent. But if the initial Which the fast reaction is of the ford, +S, = Q. In this
conditions are such that, at=0, f;/e~gg; or f,/e~g,, case the quantitg,+q remains constant during the evolu-
then the concentrations should be rescaled accordingly frofton, from which we may conclude that,+ ¢ also remains
the very beginning. This is what happens, for example, iffonstant. Setting = o, + ¢ and using Eq(12), which in this
most systems involving enzymatic reactions. Thpatiall)  case read®=(k/k")o;0,, we obtain that the rescaled dif-
homogeneous dynamics of this type of system has beeftision coefficient, Eq(15) can be rewritten as
mostly studied in the quasisteady-state assumptiéhA (1+ (KK )ory)?
very nice description of how the different variables need to Délz(1+(k/k,)01)2+(k/k/)c Ds1, (15
be rescaled in some of these cases can be found in Ref. 22. ) o ,
We also discuss this later in Secs. V and VI. In this section?Nich. in the limit of (/k")o,<1 reduces to the values
we assume that, at least initially, all fast terms are larger thafPt@ined in Refs. 7 or 8. Notice that this rescaled coefficient
the slow ones. depends on the dissociation constiafi=k’/k as in Ref. 9. It

We now consider a particular case of interest for appli-'S INteresting to note that, as expected, in the limitogf
cations: the one in which three species are involved in the”®» Ed- (15) implies thatDs, —Dy,. This may be under-
fast reaction, two of which do not diffuse. For example, thisSto0d in the following way. IfS, is in excess, there is not
is the case in which a complex is formed out of two specie€0UINS; [0 rapS, particles. Thus, most of thd, particles
and the complex and one of its forming species do not difdiffuse with their “normal” diffusion coefficient,Dg;. In

fuse. This is only a particular case of our general setting anffa"ticular, this agrees with both the experimental measure-
it is convenient to use as our speci@seither one of the ments of calcium diffusion in the presence of buffers and the

nondiffusing species. So, we hage, S,, andQ, andD, qualitative explanation of this behavitft.Expression(14)
. ) ) l 1 S.

S ,
=D,=0. For simplicity, from now on we will not write the also implies thaDg; —Dg; asoy—.
dependence ofi; and g, on the concentrations explicitly. In the more general case in which at least two of the

After some algebraic manipulation, we obtain from the cor-SPecies involved in the fast reaction diffuse, the reduction
responding Eqs(10) and (11) (see R;ef. 2% not only rescales the diffusion coefficients, but also intro-

duces cross-diffusion terms. Consider for example the case
we have just analyzed, but suppose thgt# 0. Then, from

1\ Ulag—Bg) Eqg. (11) we get:
9= (k?) 0.(131*al)/(aqfﬁq)o_(zﬁzfa2>/(aqfﬁq) ’ q g

doy Ay A1 Az A1
12 ——=—DuV?01— = V?0t ——0a— 1 Os
(12 ar A A A A

A Br— az) — Ay B1— ay)

and + A(Bo—aq) dq> (16)
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doy  An Az A1 A Joj Bi—
e TD32V20'2_ TVZ(HJF 3 Y2~ 3 s 7 = 9si{o}04vig) — mgq({aj}’ov{vk})
Ax(B1—ay) —Au(Br—ay) (17 +DgV0;, (20)
A(Bq— ag) i or if aqg>1 andgq({o;j},0{vy})=0, in which case we get

with Aj; and A defined as before. If the factors of the form @_ 2
Aj; /A do not vary too much with time or space and can be 7 =0sil{oj}.04vi}) + DsiV70;. (21)
treated as constants, then it is possible to find linear combi- e -
! _ N In none of these cases do the diffusion coefficients get res-
nations of o, and oy, ¥=a,0,+ta,o, and &é=bjo; . S .
. : : _.caled. This can be intuitively understood from the micro-
+b,0,, such that their evolution equations are of the form: . ) . . .
scopic point of view. Consider for example spectgswhich
o is irreversibly transformed into other species under the fast
= D¢V21//+ 9y (18 reaction. Then, the only particles of spec®sthat are still
o7 in the system are those that have not undergone the fast
reaction. Those particles diffuse with their normal diffusion
‘?_5_ 2 coefficient. The initial conditions for the reduced equations
=D/Vé+g;. (19 : ; . : L
ar can be obtained as in the case of the previous section. This is

shown schematically in Fig.(f).
This two-variable reaction—diffusion system can be analyzed

in terms of the usual inhibitor—activator scheme. However,
none of the quantities) or &, correspond to the concentra-
tion of any actual chemical species present in the system.

In certain cases, a similébut more complicatédcalcu- In Sec. Ill we performed a systematic two-time scale

lation can be done if there is more than one fast reactiong, ,ansjon of the original equations of motion and obtained a
Depending on the number of fast reactions and on the NUMqced set of equations. The reduction was a consequence
ber of species involved, as many variables as fast_regctlorgf the algebraic relation E10) and of the ability to sepa-

can be eliminated by this procedure. However, this is NOf4te the dependence on the two time scales in a certain way.
always possible to accompllsh. and the situation has to bﬁ1 this section we start seeking an algebraic relation among
analyzed on a one-by-one basis. In any case, these SySte@s, concentrations from the very beginning, without making
may be handled in an easier way following the approach of,ecise statements on the time-dependence of the variables

Sec. V, of which we show several examples in the subsejq o1 going to keefthe s, of Sec. Ill). In some sense, this

quent sections. is almost an extension of the quasisteady-state
approximatioR? for partial differential equations. However,
we do not discuss how the various variables need to scale
IV. THE CASE OF ONE FAST IRREVERSIBLE with the small parameter of the system in order to start a
REACTION consistent calculation. Rather, we look for an algebraic equa-
. ] tion in the original variables. Under the assumptions of Sec.
The case of fast reversible reactions can be clearly)| this new calculation gives the same result as before. In
handled in the way described in the previous section. In thher situations, aa posterioricheck is necessary in order to
case that some of the reactions are fast in one direction angl,arantee the validity of the reduction.
slow in the reverse one, or if it only occurs in one direction, = ag before, we assume that there is only one fast reaction
then itis not always possible to find an algebraic relation likeang that we want to “eliminate” one of the variables,

Eqg. (10). In general, the system relaxes rapidly to a situationyolved in that reaction. To this end we expand
in which the concentration of one of the variables is almost

negligible. Therefore, the reduction is not related to the ex- q~=q(sy,....80) + €qM(sy, ... S), (22)
istence of an algebraic relation of the form EHQO) but  and replace it in Eq(2). We find
rather to the possibility of neglecting one of the concentra- N
tions. In this section we analyze the simplest such examplex 5Q_(0) Isi aq™) Isi
the case of one fast irreversible reaction. We illustrate the=; ds; dt 6i=1 s, ot
corresponding behavior schematically in Figb)2 ©)

As in the previous section, we consider a system de- _ fa(d"":S1, - - - Sn) n AT
scribed by Eqs(1)—(3) where nowf; and f, are given by € aq q
Egs.(5) and(6) with k" =0. Following the steps of Ref. 24,
we find that one of the specie®, approaches very fast a
negligible value g~eq®), while the others approach (23
slowly varying amplitudesg; (si=oi(7)+O(€)). In this | e introduce the two time scale§,and 7 as before, then
situation it is not always possible to perform a two-time scale
analysis as before. In fact, we can only find reduced equa- 9Si _1 Jsi Jsi
tions if @q=1, in which case we get ot € dT  Ir’

V. ANOTHER APPROACH TO REDUCTION

+q(a,s1, ... 80, V1, .. V) +DV2A D+ Oe).
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In the previous section we could justify that=¢(T,7) As shown by SelkoV! the time evolution of the dynami-

+ o;(7) with ;<o for T big enough. This condition implies cal system that represents the chemical reactions of an ide-
that gs;/dt=ds;/dr, so thatds;/at~O(1). If we assume ally homogeneous medium can be confined on a two-
this, then, equating terms with equal powerscoh Eq. (23) dimensional manifold given by the ATP and ADP

we obtain concentrations. He then showed that the frequency of the
fq(q(o),sl, ...,Sp) =0, (29 limit cycle predicted by his model is very close to the one
n ©) found in experiments. Moreover, it is simple to show that if
qV= 1 2 99 ﬁ spatial variations are permitted, then Turing instabilities can
afqloq\i=1 ds; dt be observed in this system provided that ATP diffuses more

slowly than ADP!* The possibility of finding mesoscopic
chemical patterns in biological cells is of fundamental im-
portance. Many other chemical species, not necessarily in-
25) volved in this reaction, could rest on ATP-rich paths created
by this instability. Besides, as pointed out by Goldbétf,

provided thavf,/dq+ 0. Clearly, it is not possible to do this the cell membrane is permeable to chemical reactants a
in the case of one fast irreversible reaction. In most casegropagating structure may arise from the coupling of several
from Eq. (24) we obtain the desired algebraic relationship neighboring cells possesing enzyme oscillators synchronized

q©=q(s,, ... s,). Replacing this relationship in Eq. by the source of the substrate. It is also believed that this
(25) we obtain g as a function ofs;,...,s, and  kind of chemical supracellular pattern could play a role in
Vi, ....Vn. Replacing these functions in the expansi®®  embryonic development since the dimensions for which they
and inserting it in the equations for the concentratisnge  arise are those of the morphogenetic field. However, at least
get Eq.(11) with s;, instead ofo; andq(® instead ofé. one point against this possibility must be overcome for gly-

Even if we cannot guarantee priori that ds;/dt  colytic spatial patterns to be observed in cells: as mentioned
~ds;/dr, we can perform this calculation and check after-in the introduction, Turing patterns are mainly driven by dif-
wards if it is consistent. Namely, if the values @) and  ferences in the diffusion coefficients of chemical species.
q™) that we obtain satisfy Thus in this case the diffusion coefficient of substr&ie

qu(1)|<|q(°)|, (26) (ATP) a_nd the productS, (ADP) should become signifi-

cantly different for the structures to be observed. But, as long
then the calculation is correct. Notice that if the fast variationgs these molecules have almost the same structure and mass,
of somes; is relevant, them™) can be of order ¥and the it js clear that without a selective interaction with nondiffus-
condition Eq.(26) will fail. Under the assumptions of Sec. ing species, the necessary difference in the magnitude of the
Il (fast reversible reactionsthis “new” calculation gives giffusion coefficients cannot be achieved. It would be inter-
exactly the same result. If some of these assumptions do n@kting to apply in this case the methods developed in the last
hold, we can still follow this new calculation and then per- gections and study if the rescaling of the diffusion coeffi-
form the check we have just mentioned. For this reason, itients can be large enough for this kind of pattern to be
may be extended to cases not included in the assumptions ghserved.

Sec. lll. However, the validity of this approach can only be  The simple kinetic model developed by Selkov reads:
checkeda posteriori On the other hand, it is not clear how

to obtain the initial conditions for the reduced equations. We Vls yk*ilf ,

discuss this in detail in Ref. 24. - 1+Eszk~/ SES],
—1/€

VI. THE SELKOV MODEL kiple Vo

The Selkov modét represents an open monosubstrate
and monoproduct reaction catalized by an allostéran- kisle
zyme which is inhibited by the substrate and activated by the ¥y$+E = ES],
product. The model describes the kinetics of the reactions k-ale
involved in the appearance of a single frequency oscillatiorwhere S; is supplied by an external source at the rate
in the glycolytic pathway? The allosteric properties of the which is supposed to remain constant during the reaction.
enzyme(phosphofructokinase, PHKare taken into account From the equations it is clear th&f is irreversibly converted
in an approximate wa$f through a factor 4) which repre- into the product moleculeS,. The product is then removed
sents both the degree of product activation and that of sulby an irreversible sink at the rate. The free enzymé& is
strate inhibition. What makes the PFK special is that it bednactive unless when it hag product molecules bounded,
longs to a path that globally produces adenosine triphosphaferming the comple>xeS) . We start from the corresponding
(ATP) but in the specific step it catalizes, it produces adenoEgs.(1)—(3) in which we assume that the sink of the product
sine diphosphatéADP) out of ATP. Given that the PFK is behaves as a first-order reaction, €k,s,) and that the sub-
regulated by its global behavior, there is a positive feedbacktrate and product diffuse in space, but neglect the diffusion
exerted on the PFK by the ADP. This feedback gives rise t@f the enzymes and its complexes. These are five reaction—
the appearance of self oscillations on the concentration dfiffusion equations for the concentratiors=[S;], S,
ATP and ADP. =[S;], q;:=[ES]], 9,=[S,ES}], andg;=[E] (see Ref.
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24). However, taking into account the constancy of the total(29)], in which case the conditiodeq(?|<|q{”)| are easily

amount of enzyme(t) +g,(t) +gs(t) =const=egy it is pos-
sible to reduce the number of equations by one.
According to Selkov’s data, the concentrationebfind

satisfied, provided that¢ is small enoughisee the detailed
calculations of Ref. 24 Then, keeping up to linear terms in

‘e, Egs.(28)—(29) may be approximated by

its complexes is three to four orders-of-magnitude below

those of ATP and ADPB! So, we can rescale thg concen-
trations by a small parametéof the order ofe), as done in

Ref. 22. In order to discuss the validity of the approximation

in different limits we will introduce a new parametet,such
that g;=eq; and ey;=e€ey, and use the expansion = eq;
="¢(9\9+ eq{V) to simplify the notation. Thuse is propor-

961 _ 2+ Z(aWp©)— a(0)c(D))

tional to the ratio of enzyme to product or substrate concen-

tration.

at

+Dy(1-ecM) V¢ +ealVD,V2E,, (34)
0”_'52 =b(®+¢(bMal® —p0)g(1)
at

+D,(1-edM)V2¢,+ebMD,V?¢, . (35)

We proceed as described in the last section in order to

get rid of q;, 0, andqs in favor of s; and's,. After a
lengthy calculation we obtaiff

0¢;  a9+€(a®p@+dMa)
at A

+ Xl(1+~ed(1))V2§1
~ .\D
+ ea<1>fv2§2, (28)

9&,  bO+g(bMal®+ cMp(0)
at A

+ f(1+2c<1>)v252

~ D
+eb® V2, (29)
where we have defined the rescaled concentrati@ns,
=k i /(koitkip)s,  and  &=(k,3/k_3)"s,, 5=1
+&2(1+¢,) and

a(o)_L _E k+2§1§g§
Ktk Ve 5 o)
k 3 ]Jy; k+2§l§g~
b(°)=<kL) T 5 o kb, (30
-3
a(l): ’yk‘*' 1§1§27_ Iéo
(kog+kig)d®
w_ [ Kes| 7 (kog—ki2)€3eg
b\t = k_ 2 (31)
-3 k_35
k 582 \°7 kogtkyp)’
d(l):(E)llyk—37(1+§3)§g_léo (32
K3 (k_q+kyp)o?
A=(1+ecV)(1+edD)—e2aMp), (33

First we must notice that bott® andb(®) contain terms
that are proportional ta/e [see Eq.(30)]. Thus, if e~e

<1, then the calculation is consistent since we may assume

that 9¢,/0t and 9¢,/dt are of order ondsee Eqs.(28)—

Also in this approximation there are cross diffusion terms,
which can be neglected &is small enough. However, under
that assumption, the rescaling of the diffusion coefficients is
also negligible. The ratio between the effective diffusion co-
efficients of the substrate and the product is approximately
given by O /D,)(1+ed™—"ecM) and this might not give
the necessary value to sustain Turing pattéfridow, the
ratio of enzyme to product or substrate concentrationich

is proportional toe in our notation is very small in experi-
ments donén vitro. It has been arguétithat conditionsin

vivo can be largely different. Namely, #d®~O(1) or
‘ec~O(1) then the rescaling could be important. How-
ever, the cross-diffusion terms would also be important and a
new analysis of pattern formation in this context should be
done, which goes beyond the scope of this article. In any
case, we must note that the conditions for the reduction to be
valid [the natural extension of E¢26)] may not hold ifa(®

or b(® become too large due to their dependenceebn

This consistency condition must be checked for each specific
application before drawing any conclusions for this system.

We will study the general reduced system in more detail in

the future.

VIl. THE FIS REACTION

We now analyze the case of the FIS reaction, which was
originally studied in Ref. 12 and later in Refs. 15, 16, where
a variety of patterns were observed. A set of basic reaction
steps involved in the FIS system was first proposed in Ref.
12 and then improved in Ref. 29. It was later shdthat,
under certain assumptions which hold in the experiments, the
evolution may be described in terms of four dynamical vari-
ables. We will consider this model, which is given by the
following set of reactions:

kNl/e
A+V = U, (36)
ki€
kn2
Uu—V, (37)
knz /e
2V — Z, (38
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kna/e ov kN3 V2 2kN3V
Z+U = 3V, (39) A e A\ ad®
Ky KnzV2
ks 3 VA 1 Ni/ + kN3u2)
Z—, (40) N1 N4
D, kip  3kngv?
+ V| — + — | +
A v KtV | KngU2 ByA22+ BuA2,

whereU=HSQ; , V=H", A=SC; , andZ=1,. In this
case, we start from a set of four reaction—diffusion equations (42)
in which we have assumed that the spedfeandA are fed where we have defined B,=(—ky,u—Kou+Kq(ag
into the system at the same rate at which all of the species- kj;,u/ky;v) + (Kns + Ko) (Kngv/Knal) )/A, By, = (Kypu
are removed Ky) and that all the species may diffuseee  +ky(vo—v) —ko(ay— kW kn1v) —3(Kns+ Ko) (Knav?/
Ref. 24. KnaU))/A,

Taking into account the huge differences in the various ) )
rates, Gapa and Showalter further reduced the correspond- N BKnav + KngU A= Kngu o 2kyav
ing homogeneous dynamical systéaur reaction—diffusion B2 kat kygv2 T kv Kyl
equations with no diffusion termgo a set of two ODEs.
With the addition of diffusion terms these two equations & KnaV?
form an inhibitor—activator system with bisulfit®J§ the in- B
hibitor and protons Y) the activator species. Theoretical
analyses and numerical simulations of this type of inhibitor— _ﬁ 3kygv?
activator system indicates that the inhibitor needs to diffuse  * 21 ky,v = KyqU?
faster than the activator for patterns to be formetf:1®This
seems unrealistic if protons are the activator species. In thi
section we apply the methods of Sec. V to see if the diffusio

- . . . (1) (1) i i
coefficients are rescaled so as to satisfy this theoretical corl?—Oth a'”’ and z**’ contain terms that_ are pr-opo.rt|onal to
dition. dulat and v/t (see Ref. 24 These time derivatives may

In order to make this calculation more specific, we con-9€t large given that Eqs41)—(42) contain terms which are

sider the parameter values that are used in the experimerf?éc’porﬁonal 'to 1¢. How'ever_, the existence gf more than t,WO
when replicating spots are observédi,=0.06 s ky,/e time scales is of help in this case. Assuming that the right-

—50x10° M 1s! K./e=81x10° s kua/e=75 hand side of Eqs(41) and(42) are dominated by the terms
«10f M-1s 1 kN4/E':2Né>< 100 M-1g1 kN’SIZ% 68 1 Pproportional to 1, we may rewrite the conditiongea‘)|

’ . ’ . ' = (0) (1) < (0)
It is not completely clear what the values\gf anda, actu- <[a™] and|ez™|<[z7] as(see Ref. 24

gndAzAllAzz— A1,A51. Now, the whole calculation is con-

istent provided thatea™|<|a(®)| and|ezV|<|z()], but

ally are inside the gel where the reaction takes place. We will .| v 2kyav) 1

considerag=0.089 and 0.0072 Mv,=<0.085 M. We then — |1+ ~ <1, (43
. .. kNl uA kN4U A

see why we can introduce the small parametdo distin-

guish between fast and slow reactions. However, we also see k,,[2v  v?

that there are more than two time scales. In any case, at this Kna| & oA <t (44)

point, we only distinguish two groups. Inspired by the reduc-

tion of the ODEs performed in Ref. 30, we seek a reductiorF-or the parameter values we are considering iyg/kn

of the PDEs in which the variablesandz are eliminated in  =1.5xX 10 ® andkys/ky, = 3.26x 10" °. Thus, provided that

favor of u andv. To this end we follow the steps of Sec. V v/u does not become too large, the conditid43) and (44)

consideringS;=U, S,=V, Q;=A, andQ,=Z. Since the are satisfied and the calculation is self-consistent. As in the

Z species is iodine which binds to the gel, its diffusion coef-Selkov model, also in this case we get cross-diffusion terms

ficient may be neglected. For the sake of simplicity, we will which are small forkys/kyns, andky,/kyiv small enough.

also neglect the diffusion term & With these assumptions Under these conditions, however, the rescaling of the diffu-

we obtain, after a lenghty calculatié, sion coefficients is not very important and the ratio between
them may be approximated by

6kN3V k,,\llu kll\ll kN3V2

au Knz V2 4Kp3V ~ _ _
E = - — K + kN4U ) DU/DV 1+ kN4U kN1V2 kN]_V kN4U2 )
D 6kuay KU For some values afl andv of interest for the experimental
+ —quu( ZONST &z) system this ratio becomes larger than one. As we discuss in
A Knau — Knav Ref. 31, the dependence of the rescaled coefficients with the
D, kiU 2kyav concentrati(_)ns must be.taken into accoupt in this case. Fur-
+ XVZ ( VA +ByA1+ByA,, thermore, via an approximate local analysis we have recently
N1V NaU found that the reduction does not hold for all the concentra-

(41 tion values that may be achieved in the experiment. How-
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ever, in the regions where it holds, we may conclude that theystem was of the usual reaction—diffusion type in the origi-
rescaling is indeed enough to explain the formation of thenal variables, with negligible cross-diffusion terms. When
observed patterri€.In any case, a more detailed analysis ofthese cross-diffusion terméwith concentration-dependent
the full reduced set of equations is still necessary. “diffusion coefficients”) become important, a further analy-
sis is necessary. By means of a local analysis we have re-
cently found that, under the experimental conditions of Ref.
VIIl. CONCLUSIONS 15, the rescaling may account for the formation of the
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