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Rescaling of diffusion coefficients in two-time scale chemical systems
Damián E. Striera) and Silvina Ponce Dawsonb)
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Pabellón I, (1428) Buenos Aires, Argentina

~Received 14 June 1999; accepted 1 October 1999!

We study reaction–diffusion systems which involve processes that occur on different time scales. In
particular, we apply a multiscale analysis to obtain a reduced description of the slow dynamics.
Under certain assumptions this reduction yields a new set of reaction–diffusion equations with
rescaled diffusion coefficients. We analyze the Selkov model@E. E. Selkov, Eur. J. Biochem.4, 79
~1968!# and the ferrocyanide–iodide–sulfite reaction@E. C. Edblomet al., J. Am. Chem. Soc.108,
2826 ~1986!# to determine whether the rescaling in this case may account for the difference of
diffusivities that the formation of certain types of patterns requires. ©2000 American Institute of
Physics.@S0021-9606~99!51848-5#
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I. INTRODUCTION

Self-organization in far-from-equilibrium systems h
become a major topic of scientific research during the
decades.1 In particular, pattern formation in chemical sy
tems has attracted a great deal of attention due to its pos
applications to biological systems.2 One of the first clear
steps to generate such interest was the work of Turing
1952,3 who pointed out the possibility of finding steady no
homogeneous structures as the result of the interplay
tween nonlinear reaction kinetics and diffusion process
Turing’s work enhanced the study of reaction–diffusion s
tems, both from a theoretical and an experimental poin
view. In fact, reaction–diffusion processes have becom
key problem to push forward our knowledge about t
mechanisms of pattern formation. Reaction–diffusion eq
tions have been successfully applied to model different p
nomena in fluid dynamics, chemical reactions, and dend
growth, among others. Turing’s main concern was the
reaching implications of this mechanism for generating p
terns in biological systems~see, e.g., Ref. 2!. Although there
is no definite proof that this type of mechanism is at work
any real biological system, there are some very promis
recent results.4

Turing patterns were not observed in laboratory exp
ments until 38 years after their theoretical description.5 This
was due in part to the fact that Turing patterns need
chemicals to diffuse at different rates, and this was hard
achieve in the dilute aqueous systems that the commu
was focusing on. The experiments were done using
chlorite–iodide–malonic acid~CIMA ! reaction.5 The analy-
ses of these experiments6,7 showed that the interaction be
tween the reacting and diffusing species with other immob
chemical complexes present in the system has a param
importance for the patterns to occur. Lengyel and Epste6

proposed a kinetic mechanism for the CIMA reaction a
argued qualitatively that the gel where the reaction proce
~loaded with starch molecules that also ‘‘trap’’ iodide ion!

a!Electronic mail: strier@df.uba.ar
b!Electronic mail: silvina@df.uba.ar
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effectively reduces the diffusion coefficient of iodide. In th
way, the activator and inhibitor species diffuse at differe
rates, as required for Turing patterns to exist. The more
orous linear analysis of Ref. 7 was also supplemented wi
simple approximate calculation to explain this rescaling.
similar approach was followed in Ref. 8 to explain both t
rescaling of diffusion coefficients and the appearance o
differential flow among chemical species. The idea that d
fusion is rescaled by the interaction with immobile spec
~buffers! is also widespread in biology. For example, t
interaction of calcium ions with buffers9 accounts for the
dependence of calcium diffusion on calcium concentration10

Thus, it is clear that, given a reaction scheme, it is ve
useful to find a way to predict the changes in the effect
diffusivity of the various species.

In this article we approach the rescaling problem fro
an analytical point of view. The main feature underlying t
ability to produce such rescaling is the existence of at le
two time scales in the reaction–diffusion system. In fact, t
is the common property of all the systems mentioned befo
Therefore, in this article we focus on a two-time scale ana
sis of reaction–diffusion systems that contain proces
which occur on different time scales. The approximate c
culations of Refs. 7 and 8 did not take this time scale sp
ting into account. On the other hand, they were done only
one reaction of the formU1V


k8

k W with V andW both im-

mobile species. In this article we show how to handle m
general reactions. We also show that the rescaling of di
sion coefficients obtained in Ref. 7 or 8 is reobtained in o
setting. Another drawback of the simple approach of Re
or 8 is the lack of information about the initial conditions fo
the rescaled equations. These equations give the evolu
for an approximation to the concentrations and the ini
conditions must be changed accordingly. Our derivation
tomatically gives information on the new initial conditions.
also shows under which assumptions it is possible to red
the original dynamical equations and what concentrati
and time scales these new equations describe.

We apply our calculations to two particular systems
interest: the Selkov model11 and the ferrocyanide–iodide–
sulfite~FIS! reaction.12 The first one is a simple model that
© 2000 American Institute of Physics
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able to describe single frequency oscillations in the gly
lytic pathway.13 Analytical and numerical studies hav
shown that, in the spatially inhomogeneous case, this m
is also able to support Turing patterns, provided that
product and substrate diffuse at different rates.14 The FIS
reaction, on the other hand was originally developed by
blom et al.12 as an example of a chemical system that c
support sustained oscillations. Later experiments15,16 have
shown a variety of patterns that can be easily visualized s
they appear as a variation in the pH. Theoretical explanat
of these patterns also require that the various species dif
at different rates.17,18 Thus, in both of these cases it is im
portant to determine whether the necessary difference in
diffusion coefficients can be produced by the interactio
with immobile species that occur on a fast time scale. Thi
the point we try to unveil using the procedure described
this article.

The organization of the article is as follows. In Sec.
we briefly review the analytic tools to study two time sca
systems. In Sec. III, IV, and V we show how to hand
reaction–diffusion systems of this sort under different
sumptions. The case of the Selkov model is described in
VI and that of the FIS reaction in Sec. VII. Finally, th
conclusions are summarized in Sec. VIII.

II. THE EXISTENCE OF VARIOUS TIME SCALES AND
THE POSSIBILITY OF REDUCING THE NUMBER
OF VARIABLES

Many natural systems involve multiple processes t
occur at different rates. Often such systems are well
scribed by just two time scales. Then a small parameter
be introduced, which is given by the ratio between the t
time scales. When there is a small parameter, the ana
usually relies on perturbative methods. This occurs, for
ample, in Hamiltonian systems that are ‘‘almost’’ integrab
In that case anaveragingmethod is used~see, e.g., Ref. 19
p. 167!, which results in a reduction of the number of equ
tions we have to deal with.Adiabatic invariantsare obtained
in this way. Another situation in which there is a time sca
which is much slower than the rest takes place near lo
bifurcations. Exactly at the bifurcation parameter value th
is a center manifoldon which the evolution is governed b
small nonlinear terms, while the contraction or expans
along the stable and unstable manifolds, respectively
ruled by larger linear terms. In that case a systematic exp
sion can also be introduced to obtain the evolution on
center manifold. This also involves a reduction in the nu
ber of evolution equations, since this manifold is of low
dimension than the whole phase space~see, e.g., Ref. 19, p
117!. This approach can also be used near the bifurca
point. Similar in spirit, but not tied to any type of bifurcation
is the projection onto aninertial manifold for dissipative
partial differential equations~PDEs! ~see, e.g., Ref. 20!.
When it exists, the long-term evolution of the infinite dime
sional dynamical system effectively occurs on the~finite di-
mensional! inertial manifold. This allows a reduction from
the PDEs to a finite set of ordinary differential equatio
~ODEs!.
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The reduction to a center or inertial manifold is achiev
by replacing some of the original differential equations
algebraic relations. This is calledadiabatic elimination. In
doing this, there is almost a one-to-one relationship betw
time scales and variables in the following sense. It is poss
to rewrite the original equations so that only a subset
variables evolves on the fast scale. Then, as many diffe
tial equations as ‘‘fast’’ variables can be replaced by alg
braic relations. The fast variables very rapidly adjust the
selves to the variation of the ‘‘slow’’ variables whos
evolution is described by differential equations. Introduci
the right rescalings in order to separate the variables in
way is the first step in the analysis of chemical systems un
thequasisteady state assumption,21,22which has been largely
used when enzymatic reactions are involved.2 However,
there is another approach very well suited to situations
which there is not a clear separation between fast and s
variables, even if there are processes occurring on diffe
time scales. This is the method we use in Secs. III and
and is calledmultiple scales.23

III. THE CASE OF FAST REVERSIBLE REACTIONS

In this section we describe the main results that are
tained in the case of fast reversible reactions using
method of multiple scales. Their detailed derivation is
cluded in a set of accompanying notes.24 We consider a sys-
tem of n1N11 components that react and diffuse and
sume that there are two groups of time scales in the sys
fast and slow. We assume that diffusion and the external f
or removal of the species occur on the slow time scale, w
there is a subgroup of reactions~we work out the details for
the case of one! that occur on the rapid time scale. There a
n11 species (S1 ,...,Sn , andQ) involved in the fast reac-
tions, while there are otherN (V1 ,...,VN , whereN might
equal zero! that are not. The spatio-temporal variation of t
various concentrations is described by a set ofn1N11
reaction–diffusion equations of the form:

]si

]t
5

f i

e
1gsi1Dsi¹

2si , 1< i<n, ~1!

]q

]t
5

f q

e
1gq1Dq¹2q, ~2!

]v i

]t
5gv i1Dv i¹

2v i , 1< i<N, ~3!

which are to be solved subject to boundary and initial co
ditions for si(x,t), q(x,t), and v i(x,t). In Eqs. ~1!–~3!,
si(x,t), q(x,t), v i(x,t), Dsi , Dq , and Dv i are the con-
centrations and diffusion coefficients of then1N11 spe-
cies, Si (1< i<n), Q, and Vi (1< i<N), respectively.
f i , f q , gsi , gq , and gv i are functions of the concentra
tions: f i and f q do not depend onv1 ,....,vN , but gsi , gq ,
andgv i may depend on any of the concentrations, includ
v1 ,...,vN . These functions model the variation of the co
centrations due to the chemical reactions and to the exte
feed or removal of each species. Thef terms only include the
fast reactions while both the slow reactions, the feed, and
removal are included in theg terms. We make the differenc
between the two time scales explicit by introducing the sm
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parameter,e, which is of the order of the ratio between th
time scales.Q is any species involved in the fast reactio
whose concentration varies because of it~see later!. In the
case with more fast reactions, we separate as many spe
Qi , as fast reactions, whenever that is possible.

We are interested only in the variations that occur on
slow time scale. As we will show, this slow evolution
described by a reduced set of differential equations. The
ferential equations that are ‘‘eliminated’’ are actually r
placed by algebraic relations among the concentrations
the case of one fast reaction the system is finally descr
by n1N differential equations and one algebraic relation
the form Q5Q(s1 ,...,sn), instead of the original set, Eqs
~1!–~3!. In the general case ofl fast reactions (l>1), up to
l differential equations can be replaced by algebraic relati
~provided that the number of species involved in the f
reactions is larger thanl ). As mentioned before, in this ar
ticle we only work out in detail the case of one fast reactio
Under certain assumptions, the case of more than one
reaction can be handled in a similar way.

We now consider that there is only one fast reacti
which we write as

(
i 51

n

a iSi1aqQ

k8/e

k/e

(
i 51

n

b iSi1bqQ, ~4!

wherea j andb j stand for the stoichiometric coefficients o
the reactants and products, respectively. Here we are as
ing that the reaction occurs much faster in both directio
than any other process in the system. We make this exp
by writing the reaction rates ask/e andk8/e, with k andk8
of order one. As usual, we describe the chemical reaction
mass action kinetic equations.25 Thus the terms withf i and
f q in Eqs.~1!–~2! can be written as

f i

e
~s1 , . . . ,sn ,q!5~b i2a i !S k

e S )
j 51

n

sj
a j D qaq

2
k8

e S )
j 51

n

sj
b j D qbqD , ~5!

f q

e
~s1 , . . . ,sn ,q!5~bq2aq!S k

e S )
j 51

n

sj
a j D qaq

2
k8

e S )
j 51

n

sj
b j D qbqD . ~6!

The functionsf i and f q are then related by

~bq2aq! f i5~b i2a i ! f q . ~7!

The condition onQ mentioned before is equivalent to sayin
that bq2aqÞ0. In this way, as required, the concentrati
of Q varies due to the fast reaction.

We then define two times that take into account the t
groups of time scales present in the problem, the fast and
slow time scale, respectively,T[t/e andt[t. We introduce
this rescaling explicitly so that bothT andt are quantities of
order one. We then assume that the concentrations of
species involved in the fast reaction depend on these
time variables,si5si(T,t), q5q(T,t),26 while the rest of
the concentrations,v i , 1< i<N, only depend on the slow
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time variable,t. Following the steps described in Ref. 24 w
find that, on the fast time scale, the concentrations appro
slowly varying functions of times i andu:

si's i~t!1O~e!, 1< i<n, ~8!

q'u~t!1O~e!, ~9!

where

u5S k8

k D 1/~aq2bq!

)
j 51

n

s j
~b j 2a j !/~aq2bq! , ~10!

and

S 11S b i2a i

bq2aq
D 2 u

s i
D ]s i

]t
1

b i2a i

bq2aq
(
j Þ i

b j2a j

bq2aq

u

s j

]s j

]t

5Dsi¹
2s i1gsi~$s j%,u,$vk%!

2
b i2a i

bq2aq
~gq~$s j%,u,$vk%!1Dq¹2u!. ~11!

Equations ~10!–~11! together with Eq. ~3! @where gv i

5gv i($s j%,u,$vk%)] constitute the reduction of the origina
set, Eqs.~1!–~3!. Clearly, this new set of equations describ
the evolution on the slow time scale. Given initial conditio
si(t50), q(t50), andv i(t50) for Eqs.~1!–~3!, the initial
conditions for Eq.~11! can be uniquely determined: they a
the asymptotic values that the solutions of the fast equat
approach for the givensi(t50), q(t50), andv i(t50). As
explained in Ref. 24, the fast equations have so many c
stants of motion that the evolution takes place on a o
dimensional level set defined by this constant. In this wa
is straightforward to obtain the corresponding initial con
tion, as is schematically depicted in Fig. 1~a! for the n52
case.

The meaning of the reduction is the following. After
very short transient~during which the fast reaction equili
brates! the dynamics is restricted to a lower-dimension
manifold on which the evolution is slow. This manifold
defined by the algebraic constraint, Eq.~10!. We illustrate
this schematically in Fig. 2~a!. The separation into a ‘‘fast’’

FIG. 1. Integration of the fast equations forn52. The straight line is the
level set which is uniquely determined by the values of the~in this case two!
constants of motion. The arrow indicates how the system evolves in t
Each level set intersects the manifolds of fixed points of the fast equatio
isolated points. The first point of intersection provides the initial condit
for the reduced~slow! evolution equations.~a! The case of one fast revers
ible reaction.~b! The case of one fast irreversible reaction.
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and a ‘‘slow’’ process is possible because of the differ
weights that the various terms have in Eqs.~1! and~2!. It is
clear that the order-of-magnitude of the fast reaction term
these equations not only depends on the constants,k/e and
k8/e, but also on the concentrations of the variables
volved. The calculation we have presented is consisten
long as there are not very large differences in the concen
tions so that the fast terms,f i /e and f q /e, are effectively of
the same order-of-magnitude as the slow ones~e.g.,gsi). If
this happens after a transient, as a consequence of the
lution, the calculation is still consistent. But if the initia
conditions are such that, att50, f i /e;gsi or f q /e;gq ,
then the concentrations should be rescaled accordingly f
the very beginning. This is what happens, for example
most systems involving enzymatic reactions. The~spatially!
homogeneous dynamics of this type of system has b
mostly studied in the quasisteady-state assumption.21,22 A
very nice description of how the different variables need
be rescaled in some of these cases can be found in Ref
We also discuss this later in Secs. V and VI. In this sect
we assume that, at least initially, all fast terms are larger t
the slow ones.

We now consider a particular case of interest for ap
cations: the one in which three species are involved in
fast reaction, two of which do not diffuse. For example, th
is the case in which a complex is formed out of two spec
and the complex and one of its forming species do not
fuse. This is only a particular case of our general setting
it is convenient to use as our speciesQ either one of the
nondiffusing species. So, we haveS1 , S2 , andQ, andDs2

5Dq50. For simplicity, from now on we will not write the
dependence ofgsi and gq on the concentrations explicitly
After some algebraic manipulation, we obtain from the c
responding Eqs.~10! and ~11! ~see Ref. 24!

u5S k8

k D 1/~aq2bq!

s1
~b12a1!/~aq2bq!

s2
~b22a2!/~aq2bq! ,

~12!

and

FIG. 2. Schematic illustration of what the reduction means in the cas
one fast reversible reaction~a! and in the case of an irreversible one~b!. In
both cases, the reduced equations describe the evolution on the~slow! mani-
fold that is approached after a fast transient.
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]s1

]t
5

A22

D
Ds1¹2s11

A22

D
gs12

A12

D
gs2

1
A12~b22a2!2A22~b12a1!

D~bq2aq!
gq , ~13!

where

A11511S b12a1

bq2aq
D 2 u

s1
, A125

~b12a1!~b22a2!

~bq2aq!2

u

s2
,

A215
~b12a1!~b22a2!

~bq2aq!2

u

s1
, A22511S b22a2

bq2aq
D 2 u

s2
,

and D5A22A112A21A12. In this case, the reduction intro
duces a rescaling of the diffusion coefficient, such that
new coefficient,Ds18 , is related to the original one,Ds1 by

Ds18 5
A22

D
Ds1

5
~bq2aq!2s1s21~b22a2!2us1

~bq2aq!2s1s21~b12a1!2us21~b22a2!2us1

3Ds1 . ~14!

In certain cases there are conserved quantities in the
tem that allow us to writes2 as a function ofs1, in which
case it is then possible to write the rescaled diffusion coe
cient,Ds18 , only as a function ofs1. In particular, this is the
case for the situation previously discussed in the literatur

which the fast reaction is of the formS11S2

k8/e

k/e
Q. In this

case the quantitys21q remains constant during the evolu
tion, from which we may conclude thats21u also remains
constant. SettingC5s21u and using Eq.~12!, which in this
case readsu5(k/k8)s1s2 , we obtain that the rescaled dif
fusion coefficient, Eq.~15! can be rewritten as

Ds18 5
~11~k/k8!s1!2

~11~k/k8!s1!21~k/k8!C
Ds1 , ~15!

which, in the limit of (k/k8)s1!1 reduces to the value
obtained in Refs. 7 or 8. Notice that this rescaled coeffici
depends on the dissociation constantkd[k8/k as in Ref. 9. It
is interesting to note that, as expected, in the limit ofs1

→`, Eq. ~15! implies thatDs18 →Ds1. This may be under-
stood in the following way. IfS1 is in excess, there is no
enoughS2 to trapS1 particles. Thus, most of theS1 particles
diffuse with their ‘‘normal’’ diffusion coefficient,Ds1 . In
particular, this agrees with both the experimental measu
ments of calcium diffusion in the presence of buffers and
qualitative explanation of this behavior.10 Expression~14!
also implies thatDs18 →Ds1 ass1→`.

In the more general case in which at least two of t
species involved in the fast reaction diffuse, the reduct
not only rescales the diffusion coefficients, but also int
duces cross-diffusion terms. Consider for example the c
we have just analyzed, but suppose thatDs2Þ0. Then, from
Eq. ~11! we get:

]s1

]t
5

A22

D
Ds1¹2s12

A12

D
¹2s21

A22

D
gs12

A12

D
gs2

1
A12~b22a2!2A22~b12a1!

D~bq2aq!
gq , ~16!

of
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]s2

]t
5

A11

D
Ds2¹2s22

A21

D
¹2s11

A11

D
gs22

A21

D
gs1

1
A21~b12a1!2A11~b22a2!

D~bq2aq!
gq , ~17!

with Ai j andD defined as before. If the factors of the for
Ai j /D do not vary too much with time or space and can
treated as constants, then it is possible to find linear com
nations of s1 and s2 , c5a1s11a2s2 and j5b1s1

1b2s2, such that their evolution equations are of the for

]c

]t
5Dc¹2c1gc , ~18!

]j

]t
5Dj¹

2j1gj . ~19!

This two-variable reaction–diffusion system can be analy
in terms of the usual inhibitor–activator scheme. Howev
none of the quantities,c or j, correspond to the concentra
tion of any actual chemical species present in the system

In certain cases, a similar~but more complicated! calcu-
lation can be done if there is more than one fast react
Depending on the number of fast reactions and on the n
ber of species involved, as many variables as fast react
can be eliminated by this procedure. However, this is
always possible to accomplish and the situation has to
analyzed on a one-by-one basis. In any case, these sys
may be handled in an easier way following the approach
Sec. V, of which we show several examples in the sub
quent sections.

IV. THE CASE OF ONE FAST IRREVERSIBLE
REACTION

The case of fast reversible reactions can be cle
handled in the way described in the previous section. In
case that some of the reactions are fast in one direction
slow in the reverse one, or if it only occurs in one directio
then it is not always possible to find an algebraic relation l
Eq. ~10!. In general, the system relaxes rapidly to a situat
in which the concentration of one of the variables is alm
negligible. Therefore, the reduction is not related to the
istence of an algebraic relation of the form Eq.~10! but
rather to the possibility of neglecting one of the concent
tions. In this section we analyze the simplest such exam
the case of one fast irreversible reaction. We illustrate
corresponding behavior schematically in Fig. 2~b!.

As in the previous section, we consider a system
scribed by Eqs.~1!–~3! where nowf i and f q are given by
Eqs.~5! and ~6! with k850. Following the steps of Ref. 24
we find that one of the species,Q, approaches very fast
negligible value (q'eq(1)), while the others approac
slowly varying amplitudes,s i (si's i(t)1O(e)). In this
situation it is not always possible to perform a two-time sc
analysis as before. In fact, we can only find reduced eq
tions if aq51, in which case we get
e
i-

:

d
r,

n.
-

ns
t
e
ms
f

e-

ly
e
nd
,
e
n
t
-

-
e:
e

-

e
a-

]s i

]t
5gsi~$s j%,0,$vk%!2

b i2a i

bq2aq
gq~$s j%,0,$vk%!

1Dsi¹
2s i , ~20!

or if aq.1 andgq($s j%,0,$vk%)50, in which case we get

]s i

]t
5gsi~$s j%,0,$vk%!1Dsi¹

2s i . ~21!

In none of these cases do the diffusion coefficients get
caled. This can be intuitively understood from the micr
scopic point of view. Consider for example speciesS1 which
is irreversibly transformed into other species under the
reaction. Then, the only particles of speciesS1 that are still
in the system are those that have not undergone the
reaction. Those particles diffuse with their normal diffusio
coefficient. The initial conditions for the reduced equatio
can be obtained as in the case of the previous section. Th
shown schematically in Fig. 1~b!.

V. ANOTHER APPROACH TO REDUCTION

In Sec. III we performed a systematic two-time sca
expansion of the original equations of motion and obtaine
reduced set of equations. The reduction was a consequ
of the algebraic relation Eq.~10! and of the ability to sepa-
rate the dependence on the two time scales in a certain w
In this section we start seeking an algebraic relation am
the concentrations from the very beginning, without maki
precise statements on the time-dependence of the varia
we are going to keep~the si of Sec. III!. In some sense, this
is almost an extension of the quasisteady-st
approximation22 for partial differential equations. Howeve
we do not discuss how the various variables need to s
with the small parameter of the system in order to star
consistent calculation. Rather, we look for an algebraic eq
tion in the original variables. Under the assumptions of S
III, this new calculation gives the same result as before.
other situations, ana posterioricheck is necessary in order t
guarantee the validity of the reduction.

As before, we assume that there is only one fast reac
and that we want to ‘‘eliminate’’ one of the variables,q,
involved in that reaction. To this end we expand

q'q(0)~s1 ,...,sn!1eq(1)~s1 ,...,sn!, ~22!

and replace it in Eq.~2!. We find

(
i 51

n
]q(0)

]si

]si

]t
1e(

i 51

n
]q(1)

]si

]si

]t

5
f q~q(0),s1 , . . . ,sn!

e
1

] f q

]q
q(1)

1q~q(0),s1 , . . . ,sn ,v1 , . . . ,vN!1Dq¹2q(0)1O~e!.

~23!

If we introduce the two time scales,T andt as before, then

]si

]t
5

1

e

]si

]T
1

]si

]t
.
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In the previous section we could justify thatsi5z i(T,t)
1s i(t) with z i!s i for T big enough. This condition implies
that ]si /]t']si /]t, so that]si /]t;O(1). If we assume
this, then, equating terms with equal powers ofe in Eq. ~23!
we obtain

f q~q(0),s1 , . . . ,sn!50, ~24!

q(1)5
1

] f q /]q S (
i 51

n
]q(0)

]si

]si

]t

2gq~q(0),s1 , . . . ,sn ,v1 , . . . ,vN!2Dq¹2q(0)D ,

~25!

provided that] f q /]qÞ0. Clearly, it is not possible to do thi
in the case of one fast irreversible reaction. In most ca
from Eq. ~24! we obtain the desired algebraic relationsh
q(0)5q(0)(s1 , . . . ,sn). Replacing this relationship in Eq
~25! we obtain q(1) as a function of s1 , . . . ,sn and
v1 , . . . .,vN . Replacing these functions in the expansion~22!
and inserting it in the equations for the concentrationssi we
get Eq.~11! with si , instead ofs i andq(0) instead ofu.

Even if we cannot guaranteea priori that ]si /]t
']si /]t, we can perform this calculation and check afte
wards if it is consistent. Namely, if the values ofq(0) and
q(1) that we obtain satisfy

ueq(1)u!uq(0)u, ~26!

then the calculation is correct. Notice that if the fast variat
of somesi is relevant, thenq(1) can be of order 1/e and the
condition Eq.~26! will fail. Under the assumptions of Sec
III ~fast reversible reactions!, this ‘‘new’’ calculation gives
exactly the same result. If some of these assumptions do
hold, we can still follow this new calculation and then pe
form the check we have just mentioned. For this reason
may be extended to cases not included in the assumption
Sec. III. However, the validity of this approach can only
checkeda posteriori. On the other hand, it is not clear ho
to obtain the initial conditions for the reduced equations. W
discuss this in detail in Ref. 24.

VI. THE SELKOV MODEL

The Selkov model11 represents an open monosubstr
and monoproduct reaction catalized by an allosteric27 en-
zyme which is inhibited by the substrate and activated by
product. The model describes the kinetics of the reacti
involved in the appearance of a single frequency oscillat
in the glycolytic pathway.13 The allosteric properties of th
enzyme~phosphofructokinase, PFK! are taken into accoun
in an approximate way,28 through a factor (g) which repre-
sents both the degree of product activation and that of s
strate inhibition. What makes the PFK special is that it b
longs to a path that globally produces adenosine triphosp
~ATP! but in the specific step it catalizes, it produces ade
sine diphosphate~ADP! out of ATP. Given that the PFK is
regulated by its global behavior, there is a positive feedb
exerted on the PFK by the ADP. This feedback gives rise
the appearance of self oscillations on the concentration
ATP and ADP.
s,
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As shown by Selkov,11 the time evolution of the dynami
cal system that represents the chemical reactions of an
ally homogeneous medium can be confined on a tw
dimensional manifold given by the ATP and AD
concentrations. He then showed that the frequency of
limit cycle predicted by his model is very close to the o
found in experiments. Moreover, it is simple to show that
spatial variations are permitted, then Turing instabilities c
be observed in this system provided that ATP diffuses m
slowly than ADP.14 The possibility of finding mesoscopi
chemical patterns in biological cells is of fundamental im
portance. Many other chemical species, not necessarily
volved in this reaction, could rest on ATP-rich paths crea
by this instability. Besides, as pointed out by Goldbeter,28 if
the cell membrane is permeable to chemical reactan
propagating structure may arise from the coupling of seve
neighboring cells possesing enzyme oscillators synchron
by the source of the substrate. It is also believed that
kind of chemical supracellular pattern could play a role
embryonic development since the dimensions for which th
arise are those of the morphogenetic field. However, at le
one point against this possibility must be overcome for g
colytic spatial patterns to be observed in cells: as mentio
in the introduction, Turing patterns are mainly driven by d
ferences in the diffusion coefficients of chemical speci
Thus in this case the diffusion coefficient of substrateS1

~ATP! and the productS2 ~ADP! should become signifi-
cantly different for the structures to be observed. But, as lo
as these molecules have almost the same structure and m
it is clear that without a selective interaction with nondiffu
ing species, the necessary difference in the magnitude o
diffusion coefficients cannot be achieved. It would be int
esting to apply in this case the methods developed in the
sections and study if the rescaling of the diffusion coe
cients can be large enough for this kind of pattern to
observed.

The simple kinetic model developed by Selkov reads

→
v1

S11ES2
g 


k21 /e

k11 /e

S1ES2
g ,

S1ES2
g →

k12 /e

ES2
g1S2→

v2

, ~27!

gS21E 

k23 /e

k13 /e

ES2
g ,

where S1 is supplied by an external source at the ratev1

which is supposed to remain constant during the react
From the equations it is clear thatS1 is irreversibly converted
into the product moleculesS2. The product is then remove
by an irreversible sink at the ratev2. The free enzymeE is
inactive unless when it hasg product molecules bounded
forming the complexES2

g . We start from the correspondin
Eqs.~1!–~3! in which we assume that the sink of the produ
behaves as a first-order reaction (v25k2s2) and that the sub-
strate and product diffuse in space, but neglect the diffus
of the enzymes and its complexes. These are five reacti
diffusion equations for the concentrationss15@S1#, s2

5@S2#, q15@ES2
g#, q25@S1ES2

g#, and q35@E# ~see Ref.
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24!. However, taking into account the constancy of the to
amount of enzymeq1(t)1q2(t)1q3(t)5const[e0 it is pos-
sible to reduce the number of equations by one.

According to Selkov’s data, the concentration ofE and
its complexes is three to four orders-of-magnitude bel
those of ATP and ADP.11 So, we can rescale theqi concen-
trations by a small parameter~of the order ofe), as done in
Ref. 22. In order to discuss the validity of the approximati
in different limits we will introduce a new parameter,ẽ, such
that qi5 ẽq̃i and e05 ẽẽ0 , and use the expansionqi5 ẽq̃i

5 ẽ(qi
(0)1eqi

(1)) to simplify the notation. Thus,ẽ is propor-
tional to the ratio of enzyme to product or substrate conc
tration.

We proceed as described in the last section in orde
get rid of q̃1 , q̃2 , and q̃3 in favor of s1 and s2. After a
lengthy calculation we obtain:24

]j1

]t
5

a(0)1 ẽ~a(1)b(0)1d(1)a(0)!

D
1

D1

D
~11 ẽd(1)!¹2j1

1 ẽa(1)
D2

D
¹2j2 , ~28!

]j2

]t
5

b(0)1 ẽ~b(1)a(0)1c(1)b(0)!

D
1

D2

D
~11 ẽc(1)!¹2j2

1 ẽb(1)
D1

D
¹2j1 , ~29!

where we have defined the rescaled concentrationsj1

[k11 /(k211k12)s1 and j2[(k13 /k23)1/gs2 , d[1
1j2

g(11j1) and

a(0)5
k11

k211k12
S v12

ẽ

e

k12j1j2
g

d
ẽ0 ,D ,

b(0)5S k13

k23
D 1/g ẽ

e

k12j1j2
g

d
ẽ02k2j2 , ~30!

a(1)5
gk11j1j2

g21ẽ0

~k211k12!d2
,

b(1)5S k13

k23
D 1/g ~k232k12!j2

gẽ0

k23d2
, ~31!

c(1)5
k11j2

gẽ0

k23d2 S j11
k21

k211k12
D ,

d(1)5S k13

k23
D 1/g k23g~11j2

g!j2
g21ẽ0

~k211k12!d2
, ~32!

D5~11 ẽc(1)!~11 ẽd(1)!2 ẽ2a(1)b(1). ~33!

First we must notice that botha(0) andb(0) contain terms
that are proportional toẽ/e @see Eq.~30!#. Thus, if ẽ;e
!1, then the calculation is consistent since we may ass
that ]j1 /]t and ]j2 /]t are of order one@see Eqs.~28!–
l

-

to

e

~29!#, in which case the conditionsueqi
(1)u!uqi

(0)u are easily
satisfied, provided thate is small enough~see the detailed
calculations of Ref. 24!. Then, keeping up to linear terms i
ẽ, Eqs.~28!–~29! may be approximated by

]j1

]t
5a(0)1 ẽ~a(1)b(0)2a(0)c(1)!

1D1~12 ẽc(1)!¹2j11 ẽa(1)D2¹2j2 , ~34!

]j2

]t
5b(0)1 ẽ~b(1)a(0)2b(0)d(1)!

1D2~12 ẽd(1)!¹2j21 ẽb(1)D1¹2j1 . ~35!

Also in this approximation there are cross diffusion term
which can be neglected ifẽ is small enough. However, unde
that assumption, the rescaling of the diffusion coefficients
also negligible. The ratio between the effective diffusion c
efficients of the substrate and the product is approxima
given by (D1 /D2)(11 ẽd(1)2 ẽc(1)) and this might not give
the necessary value to sustain Turing patterns.14 Now, the
ratio of enzyme to product or substrate concentration~which
is proportional toẽ in our notation! is very small in experi-
ments donein vitro. It has been argued14 that conditionsin
vivo can be largely different. Namely, ifẽd(1);O(1) or
ẽc(1);O(1) then the rescaling could be important. How
ever, the cross-diffusion terms would also be important an
new analysis of pattern formation in this context should
done, which goes beyond the scope of this article. In a
case, we must note that the conditions for the reduction to
valid @the natural extension of Eq.~26!# may not hold ifa(0)

or b(0) become too large due to their dependence onẽ/e.
This consistency condition must be checked for each spe
application before drawing any conclusions for this syste
We will study the general reduced system in more detai
the future.

VII. THE FIS REACTION

We now analyze the case of the FIS reaction, which w
originally studied in Ref. 12 and later in Refs. 15, 16, whe
a variety of patterns were observed. A set of basic reac
steps involved in the FIS system was first proposed in R
12 and then improved in Ref. 29. It was later shown30 that,
under certain assumptions which hold in the experiments,
evolution may be described in terms of four dynamical va
ables. We will consider this model, which is given by th
following set of reactions:

A1V

kN1 /e



kN18 /e

U, ~36!

U→
kN2

V, ~37!

2V →
kN3 /e

Z, ~38!
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Z1U →
kN4 /e

3V, ~39!

Z→
kN5

, ~40!

whereU5HSO3
2 , V5H1, A5SO3

22 , andZ5I 2. In this
case, we start from a set of four reaction–diffusion equati
in which we have assumed that the speciesV andA are fed
into the system at the same rate at which all of the spe
are removed (k0) and that all the species may diffuse~see
Ref. 24!.

Taking into account the huge differences in the vario
rates, Ga´spár and Showalter further reduced the correspo
ing homogeneous dynamical system~our reaction–diffusion
equations with no diffusion terms! to a set of two ODEs.
With the addition of diffusion terms these two equatio
form an inhibitor–activator system with bisulfite (U) the in-
hibitor and protons (V) the activator species. Theoretic
analyses and numerical simulations of this type of inhibito
activator system indicates that the inhibitor needs to diff
faster than the activator for patterns to be formed.17,18,16This
seems unrealistic if protons are the activator species. In
section we apply the methods of Sec. V to see if the diffus
coefficients are rescaled so as to satisfy this theoretical
dition.

In order to make this calculation more specific, we co
sider the parameter values that are used in the experim
when replicating spots are observed:kN250.06 s21 kN1 /e
55.031010 M21 s21, kN18 /e58.13103 s21, kN3 /e57.5
3104 M21 s21, kN4 /e52.33109 M21 s21, kN5543.68 s21.
It is not completely clear what the values ofv0 anda0 actu-
ally are inside the gel where the reaction takes place. We
considera050.089 and 0.0072 M<v0<0.085 M. We then
see why we can introduce the small parametere to distin-
guish between fast and slow reactions. However, we also
that there are more than two time scales. In any case, at
point, we only distinguish two groups. Inspired by the redu
tion of the ODEs performed in Ref. 30, we seek a reduct
of the PDEs in which the variablesa andz are eliminated in
favor of u andv. To this end we follow the steps of Sec.
consideringS15U, S25V, Q15A, andQ25Z. Since the
Z species is iodine which binds to the gel, its diffusion co
ficient may be neglected. For the sake of simplicity, we w
also neglect the diffusion term ofA. With these assumption
we obtain, after a lenghty calculation,24

]u

]t
52

kN3

e

v2

D S 11
4kN3v
kN4u D

1
Du

D
¹2uS 11

6kN3v
kN4u

1
kN18 u

kN1v2D
1

Dv

D
¹2vS kN18 u

kN1v2 1
2kN3v
kN4u D 1BuA111BvA12,

~41!
s

es

s
-

e

is
n
n-

-
nts

ill

ee
is

-
n

-
l

]v
]t

5
kN3

e

v2

D S 12
2kN3v2

kN4u2 D
1

Dv

D
¹2vS 11

kN18

kN1v
1

kN3v2

kN4u2D
1

Du

D
¹2uS kN18

kN1v
1

3kN3v2

kN4u2 D 1BvA221BuA21,

~42!

where we have defined Bu[(2kN2u2k0u1k0(a0

2 kN18 u/kN1v) 1 (kN5 1 k0)(kN3v2/kN4u) )/D, Bv [ (kN2u
1k0(v0 2 v ) 2k0 ( a0 2 kN18 u/kN1v ) 23(kN51k0)(kN3v2/
kN4u))/D,

A11511
6kN3v
kN4u

1
kN18 u

kN1v2 , A125
kN18 u

kN1v2 1
2kN3v
kN4u

,

A22511
kN18

kN1v
1

kN3v2

kN4u2 ,

A215
kN18

kN1v
1

3kN3v2

kN4u2

andD5A11A222A12A21. Now, the whole calculation is con
sistent provided thatuea(1)u!ua(0)u and uez(1)u!uz(0)u, but
both a(1) and z(1) contain terms that are proportional t
]u/]t and ]v/]t ~see Ref. 24!. These time derivatives ma
get large given that Eqs.~41!–~42! contain terms which are
proportional to 1/e. However, the existence of more than tw
time scales is of help in this case. Assuming that the rig
hand side of Eqs.~41! and ~42! are dominated by the term
proportional to 1/e, we may rewrite the conditionsuea(1)u
!ua(0)u and uez(1)u!uz(0)u as ~see Ref. 24!:

kN3

kN1
U v
uD S 11

2kN3v
kN4u D1

1

DU!1, ~43!

kN3

kN4
U2v

D
1

v2

uDU!1. ~44!

For the parameter values we are considering it iskN3 /kN1

51.531026 andkN3 /kN4 53.2631025. Thus, provided that
v/u does not become too large, the conditions~43! and~44!
are satisfied and the calculation is self-consistent. As in
Selkov model, also in this case we get cross-diffusion ter
which are small forkN3 /kN4 , andkN18 /kN1v small enough.
Under these conditions, however, the rescaling of the di
sion coefficients is not very important and the ratio betwe
them may be approximated by

Du /Dv'11
6kN3v
kN4u

1
kN18 u

kN1v2 2
kN18

kN1v
2

kN3v2

kN4u2 .

For some values ofu andv of interest for the experimenta
system this ratio becomes larger than one. As we discus
Ref. 31, the dependence of the rescaled coefficients with
concentrations must be taken into account in this case.
thermore, via an approximate local analysis we have rece
found that the reduction does not hold for all the concen
tion values that may be achieved in the experiment. Ho
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ever, in the regions where it holds, we may conclude that
rescaling is indeed enough to explain the formation of
observed patterns.31 In any case, a more detailed analysis
the full reduced set of equations is still necessary.

VIII. CONCLUSIONS

We have used a multiple scale analysis23 to study the
slow-time dynamics of reaction–diffusion systems with se
eral time scales. The method is particularly suitable for
case of reversible reactions. We have also approached
reduction in a way similar to the quasisteady-state appr
mation used for ordinary differential equations.21,22 Both ap-
proaches are the same in the case of one fast reversibl
action. The reduced equations are usually a generalizatio
reaction–diffusion equations, since they involve cro
diffusion terms and diffusion coefficients that a
concentration-dependent. Thus, these diffusion coefficie
vary in space through their dependence on the concen
tions. If taking them as constant is a good approximati
then the cross-diffusion terms may be eliminated by a lin
transformation. In this case, the resulting~reduced! equations
are of the usual reaction–diffusion type, but for variab
that do not correspond to the concentration of any ac
chemical species~they correspond to linear combinations
the concentrations!.

In cases involving several fast reactions, some of th
irreversible, it is easier to follow the steps in the quasistea
state style. However, in this case, the validity of the red
tion is not knowna priori and ana posterioricheck is nec-
essary. We have analyzed in this way the Selkov model
the FIS reaction.

The Selkov model is a model for the glycolytic oscill
tions that describes the conversion of ATP into ADP. T
possibility of developing Turing patterns within the sma
scales of the cell for this pathway was discussed in Ref.
It required that ATP and ADP diffused at unequal rat
which seemed unrealistic given the similarities in their str
ture. However, they both react differently with enzymes t
may be assumed to remain immobile. Thus, we reduced
evolution equations involving ATP, ADP, and the enzym
to a system that described the slow dynamics of ATP
ADP. We wanted to determine if the resulting system co
be of reaction–diffusion type with diffusion coefficients re
caled in the right way. We concluded that under the exp
mental conditionsin vitro, this rescaling is very small, while
for other conditions that may holdin vivo, the resulting sys-
tem involves cross-diffusion terms. A further analysis of th
more complicated system is necessary in order to ach
any conclusion on the possibility of developing patterns. W
will do this in the future.

The interest in the FIS reaction was motivated by
observation of a variety of patterns that could be reprodu
in numerical simulations of very simple models. The ex
tence of patterns in the models also required different di
sivities. In this case again we investigated if the reduction
the original system to a set of two equations could acco
for this difference. However, as in the case of the Selk
model, the rescaling was not important when the redu
e
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system was of the usual reaction–diffusion type in the or
nal variables, with negligible cross-diffusion terms. Wh
these cross-diffusion terms~with concentration-dependen
‘‘diffusion coefficients’’! become important, a further analy
sis is necessary. By means of a local analysis we have
cently found that, under the experimental conditions of R
15, the rescaling may account for the formation of t
patterns.31
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