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Decoherence and the Rate of Entropy Production in Chaotic Quantum Systems
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We show that for an open quantum system which is classically chaotic (a quartic double well with
harmonic driving coupled to a sea of harmonic oscillators) the rate of entropy production has, as a
function of time, two relevant regimes: For short times it is proportional to the diffusion coefficient
(fixed by the system-environment coupling strength). For longer times (but before equilibration) there
is a regime where the entropy production rate is fixed by the Lyapunov exponent. The nature of the
transition time between both regimes is investigated.
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Environment induced decoherence has been identified in
recent years as one of the main ingredients in the transition
from quantum to classical behavior. Classicality emerges
as a consequence of the coupling of quantum systems to
an environment which, in effect, dynamically enforces su-
perselection rules by precluding the stable existence of
the majority of states in the Hilbert space of the system.
The physics of decoherence has been extensively studied
during the last few years both from the theoretical [1]
and also from the experimental point of view [2]. As
part of these studies it has been recognized that the deco-
herence process has rather unique properties for systems
whose classical analogs are chaotic [3]. In fact, for classi-
cally chaotic systems decoherence has two very important
features: First, decoherence restores the validity of the
correspondence principle that for isolated chaotic systems
could be violated in an absurdly short time scale (see the
Hyperion paradox in [4]). Thus, environment induced de-
coherence ensures that classical and quantum expectation
values agree for a long range of times pushing towards
infinity the “breakdown” time which would otherwise be
present and would depend logarithmically on h̄. This im-
portant feature was first conjectured in [3] and later studied
in more detail in [4–6].

The second salient feature of decoherence for classically
chaotic systems concerns the entropy production rate. In
fact, in [3] it was also conjectured that, when decoher-
ence is effective, there is a robust range of parameters for
which the entropy production rate becomes independent of
the strength of the coupling to the environment. In such
regime, the rate is equal to the sum of positive Lyapunov
exponents (the conjecture was modified in [7] where it was
noticed that, in general, one should use appropriately av-
eraged Lyapunov exponents).

In this Letter we present the first conclusive numerical
evidence supporting the above conjecture for open quan-
tum systems evolving continuously in time (in the last few
years the status of the conjecture was analyzed in part for
some open quantum maps [7–9]). Our results show that
the Lyapunov exponent determines the value of the entropy
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production rate after an initial transient. We also clarify
other important issues: First we show that during the ini-
tial transient the entropy production rate is proportional
to the system-environment coupling strength. Second we
analyze the transition between the two regimes. Our nu-
merical results are consistent with a linear dependence of
the transition time tc on the entropy of the initial state and
with a logarithmic dependence on the coupling strength.
Again, remarkably enough, our results validate once more
the grossly oversimplified but very intuitive picture that
was presented in [3].

The system we analyze is a quantum particle moving
in a quartic double well potential under the action of a
harmonic driving force. The Hamiltonian is H � p2�2 1

V �x, t� with the potential V �x, t� � 2Bx2 1 Cx4�2 1

Ex cos�vt�. This driven system has been extensively
studied [10], and it is well known that for a wide range of
parameters it has chaotic (mixed) behavior. In our studies
we chose several sets of parameters in such a way that the
stroboscopic phase space portrait is like the one shown in
Fig. 1 where one clearly sees the coexistence of islands of
stability and a chaotic sea. The coupling of this system to
an environment is modeled via the simplest (Ohmic, high
temperature) quantum Brownian motion model. In this
case, the evolution of the reduced density matrix of the
system follows a local master equation [11], which gives
rise to the following equation for the Wigner function of
the system:

�W � �H, W�PB 1
X

n$1

�21�nh̄2n

22n�2n 1 1�!
≠�2n11�

x V≠�2n11�
p W

1 2g≠p�pW � 1 D≠2
ppW . (1)

The physical effects included in this equation are well
understood. The first term in the right-hand side is the
Poisson bracket that induces classical evolution (Liouville
flow). The second term carries the quantum corrections.
The last two terms bring the influence of the environment
generating, respectively, friction and diffusion. The regime
of interest for us is the one where the friction term can
© 2000 The American Physical Society 3373
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FIG. 1. Stroboscopic phase space portrait of the driven
double well with parameters B � 10, C � 0.5, E � 1, v �
5.35. The black ellipses (one in a regular island and the
other in the chaotic sea) show two of the initial states we
considered [these are pure states and the boundary of the
ellipses, whose area is p ln�20�h̄ � 9.4h̄, corresponds to points
where the Wigner function decreases to 1�20 of its peak value].
Throughout our studies we used h̄ � 0.1.

be neglected (g ! 0, and energy is approximately con-
served) while the diffusive term that produces decoherence
is non-negligible (D � 2mgkBT � const).

Let us first qualitatively describe the most important
effects we expect to test in our numerical study. We con-
sider initial states with a smooth Gaussian Wigner func-
tion centered either in the chaotic sea or in a regular
island as shown in Fig. 1 (these two cases lead to drasti-
cally different results). Let us suppose first that the diffu-
sion term in (1) is absent (i.e., the state evolves according
to Schrödinger equation). For a smooth initial state the
dominant term in (1) is the Poisson bracket. As the Wigner
function initially evolves following nonlinear classical tra-
jectories, it loses its Gaussian shape and develops tendrils
while folding (this happens exponentially fast if the initial
state is in the chaotic sea). As a consequence, gradients
of W increase and quantum corrections in (1) become im-
portant, inducing oscillations in the Wigner function. The
decoherence producing term in (1) can be qualitatively un-
derstood as being responsible for two interrelated effects:
On the one hand, the diffusion term tends to smooth out
the Wigner function naturally reducing gradients. This
washes out the oscillations in the Wigner function sup-
pressing quantum interference. The time scale character-
izing the disappearance of the fringes can be estimated
using previous results [12]: Fringes with a character-
istic wave vector (along the p axis of phase space) kp

decay exponentially with a rate given by GD � Dk2
p . Not-

ing that a wave packet spread over a distance Dx with
two coherently interfering pieces generate fringes with
kp � Dx�h̄, one concludes that the decoherence rate is
GD � DD2

x�h̄2. This rate depends linearly on the dif-
fusion constant and is one of the factors that contributes
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to the rate of entropy increase during the first phase of
the evolution.

There is a second related aspect of decoherence which
is drastically different for regular and chaotic systems.
Thus, apart from suppressing the fringes, the diffusion
term also tends to spread the regions where the Wigner
function is positive, contributing in this way to the en-
tropy growth. But, as discussed in [3,7], the rate of en-
tropy production distinguishes regular and chaotic cases.
For regular states, decoherence should produce entropy at
a rate which depends on the diffusion constant D. How-
ever, for chaotic states the rate should become independent
of D and should be fixed by the Lyapunov exponent.
The origin of this D-independent phase can be under-
stood using a simple minded argument (presented first in
[3] and later discussed in a more elaborate way in [7]):
Chaotic dynamics tends to contract the Wigner function
along some directions in phase space competing against
diffusion. These two effects may balance each other giving
rise to a critical width below which Wigner function cannot
contract. This local width should be approximately s2

c �
2D�l (being l the local Lyapunov exponent). Once this
critical size has been reached, the contraction stops along
the stable direction (the expansion continues along the
unstable one, driven by the system’s dynamics). When
this condition is achieved, entropy grows linearly in time
at a D-independent rate fixed by the Lyapunov exponents
(see below).

Here we will present solid numerical evidence support-
ing the existence of this D-independent phase. For sim-
plicity, instead of looking at the von Neuman entropy
HVN � 2Tr�rr logrr � we examine the linear entropy, de-
fined as H � 2 log���Tr�r2

r ����, which is a good measure of
the degree of mixing of the system and sets a lower bound
on HVN . The above argument concerning the role of the
critical width sc may appear as too simple but captures
the essential aspects of the dynamical process. Indeed, the
master equation can be used to show that

�H � 2D��≠pW�2���W2� , (2)

where the bracket denotes an integral over phase space.
The right-hand side of this equation is proportional to
the mean square wave number computed with the Fourier
transform of the Wigner function. This implies that the en-
tropy production rate is closely related to the phase space
structure present in the Wigner distribution. Thus, the
D-independent phase begins at the time when the mean
square wavelength along the momentum axis scales with
diffusion as

p
D (as sc does). This behavior cancels the

diffusion dependence of �H which becomes entirely de-
termined by the dynamics.

Apart from analyzing the D-independent phase of en-
tropy production we will analyze the nature of the transi-
tion time between the diffusion dominated and the chaotic
regime. This time tc can also be naively estimated along
the lines of the previous argument: The time for which
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the spread of the Wigner function approaches the critical
one is tc � l21 log	sp�0��sc
. Thus, one expects tc to
depend logarithmically on the diffusion constant and on
the initial spread of the Wigner function (for Gaussian ini-
tial states the spread depends exponentially on the initial
entropy, therefore tc should vary as a linear function of the
initial entropy). Our numerical work is devoted to testing
these intuitive ideas.

We solved numerically the master equation using two
different methods (that give similar results). First we
computed the Wigner function numerically solving Eq. (1)
using a third order pseudospectral method [13]. For this,
we used a phase space grid of variable size and adaptive
time steps (a similar method was used in [5]). Second
we obtained approximate solutions to (1) using a different
strategy: We computed the Floquet states of the original
(isolated) driven system and obtained the master equation
in the Floquet basis [14]. This equation has a rather simple
form when averaged over one driving period. In such a
case, it can be numerically solved by the usual means (the
limiting factor is the number of Floquet states that are re-
quired). In what follows we present our results for the
entropy behavior (plots are obtained using the first of the
two numerical methods; more details and other results will
be presented elsewhere [15]).

The drastic difference between the behavior of the
entropy production rate for regular and chaotic initial
conditions is clearly displayed in Fig. 2. Regular initial
conditions produce entropy at a rate linearly dependent on
the diffusion coefficient. This is precisely what we expect
when the entropy production is due to the following:
(i) the destruction of interference fringes, and (ii) the
slow increase in the area covered by the positive Wigner
function. The oscillations evident in Fig. 2 have some
distinguishing features: They have the frequency of the
driving force, and both their amplitude and their phase
are D independent (this is true for the regular initial
state and for the initial transient of the chaotic state).
These oscillations can be shown to be related both to
the change in orientation of the fringes (decoherence is
more effective if fringes are aligned along the p axis)
and to the change in spread of the Wigner function
in the momentum direction induced by the dynamics.
When the initial state is centered in the chaotic sea, the
initial transient is followed by a regime where the rate

�H becomes independent of the value of the diffusion
constant (if D is not too small, see below). Moreover, the
numerical value of the rate oscillates around the average
local Lyapunov exponent computed by averaging over
an ensemble of classical trajectories weighted by the
initial Wigner function (in [7] the use of a more elaborate
averaging scheme was suggested, and we will compare
these approaches elsewhere [15]).

It is remarkable that for long times the entropy produc-
tion rate is indeed fixed just by the dynamics becoming
independent of D (after all, the entropy production is it-
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FIG. 2. Entropy production rate (in logarithmic scale) vs time
(in units of the driving period). The bold curve is the (time
dependent) Lyapunov exponent. The linear dependence of the
rate on D appears in the graph at the top (regular initial state)
and during the initial transient in the lower plot. In this case
(initial state in the chaotic sea) the rate becomes independent of
diffusion and is equal to the Lyapunov exponent (if D is not too
small; see text).

self a consequence of the coupling to the environment but
the value of the rate becomes independent of it). The result
presented in Fig. 2 was shown to be robust under changes
of initial conditions and other parameters characterizing
the classical dynamics. There are two limitations for the
above results to be obtained. On the one hand, the dif-
fusion constant cannot be too strong: In that case the
system heats up too fast and entropy saturates, making the
numerical simulation unreliable. On the other hand, diffu-
sion cannot be too small either: If that is the case decoher-
ence could become too weak and the interference fringes
could persist over many oscillations (the minimal value of
D required for efficient decoherence could be estimated as
follows: If the Wigner function is coherently spread over
a region of size Dx � 10, we would need a diffusion con-
stant larger than Dmin � h̄2�D2

x � 1024 for the environ-
ment to be able to wash out the smallest fringes in one
driving period. In fact, Fig. 2 shows that when D � 1025

the entropy production rate is 1 order of magnitude smaller
than the one corresponding to D � 1024.

It is interesting to note that while the simple picture
presented in [3] is in good qualitative agreement with our
results, the arguments presented in that paper are too
simple to include some important effects we found. In
particular, the oscillatory nature of the rate was completely
overlooked in [3]. However, having said this, it is still
possible to test some simple results obtained in [3] for the
3375
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FIG. 3. The transition time between the diffusion dominated
regime and the one where the entropy production rate is set
by the Lyapunov exponent is shown to depend linearly on
entropy (top) and logarithmically on the diffusion constant
(bottom). Numerical results were obtained using the following
parameters: B � 10, C � 0.5, E � 10, v � 6.16, D � 1023

(top), H �0� � 0 (bottom).

transition time between the diffusion dominated regime
and the one where the rate is fixed by the Lyapunov expo-
nent. For this purpose we performed two related studies.
First we analyzed the dependence of the transition time tc

on the diffusion constant. Of course, there is some
ambiguity in the definition of the transition time because
of the oscillatory nature of the rate. Here, we defined tc

as the time for which the rate reaches some value after the
initial transient (fortunately the values of the rate before
and after the transient differ by 2 orders of magnitude
making this a reasonable definition). Second we analyzed
the behavior of the rate as a function of the entropy of
the initial state (i.e., on the spread of the initial Wigner
function). Again, we used the same definition of tc (for
this study we considered a different set of parameters than
the one used to construct Fig. 1 to assure that the chaotic
sea can accommodate initial states with linear entropy
up to H � 4). With these results we obtained the plots
in Fig. 3 where the linear dependence of tc on the initial
entropy (mixed initial states produce entropy at a smaller
rate) and its logarithmic dependence on the diffusion
constant are shown.

Entropy production, a consequence of the entangling in-
teractions between the system and its environment, plays
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a central role in studies of decoherence (for example, it is
essential to find the “pointer states” of the system using
the “predictability sieve” [16]). Here we presented results
supporting the point of view stating [4] that entropy pro-
duction rate during decoherence could also be used as a
diagnostic for quantum chaos. On the other hand, these
results also make evident the fact that, for quantum sys-
tems that are classically chaotic, the nature of the classical
limit induced by decoherence is rather peculiar (and quite
different from the one corresponding to regular systems).
Indeed, this limit exhibits an unavoidable source of unpre-
dictability, being the rate at which information is lost into
the environment entirely fixed by the chaotic nature of the
Hamiltonian of the system.
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