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Introduction
The use of novel techniques has become an important
means of calculating highly precise monomer reactivity
ratios. Without doubt, the reliability of these studies lies
obviously on the accuracy of the calculation procedures.
Research in this area focuses on copolymer systems by
using and comparing several methods to calculate mono-
mer reactivity ratios. However, consensus about which
method to apply (with regard to the chemical viewpoint)
usually depends on numerous aspects that are related to the
method being selected or to domain-dependent problems.
The classical copolymerization model, that is the termi-

nal model, describes the instantaneous copolymer compo-
sition by means of the very well-known general copoly-
merization equation:

F1

F2
¼ f1

f2

ðr1f1 þ f2Þ
ðr2f2 þ f1Þ

ð1Þ

or by means of the following equivalent expression:

F1 ¼
ðr1 � 1Þf 21 þ f1

ðr1 þ r2 � 2Þf 21 þ 2ð1� r2Þf1 þ r2
ð2Þ

where F1 and f1 are the overall molar fractions of the
monomer (1) in the copolymer and in the feed, respec-
tively, whereas r1 and r2 are the reactivity ratios of mono-
mer (1) and of monomer (2), respectively. r1 and r2, are
determined typically by using this instantaneous copoly-
merization equation and analyzing series of low conver-
sion polymerizations. Traditional methods (such as Fine-
mann–R�ss and Kelen–T�dos procedures) are based on

Full Paper: Here we apply evolutionary techniques to the
calculation of copolymerization reactivity ratios from an
inverse problem perspective. To estimate monomer reac-
tivity ratios, we take into account the main aspects of both
inverse problems and evolutionary computation techni-
ques. Copolymers of methyl methacrylate (MMA) and a-
tocopheryl methacrylate (MVE) were prepared by free
radical copolymerization in dioxane solution using 2,29-
azoisobutyronitrile as the initiator. The reactivity ratios
were calculated according to the general copolymerization
equation using the Fineman–R�ss and Kelen–T�dos line-
arization methods, as well as the Tidwell–Mortimer non-
linear least-squares treatment. Reactivity ratios were com-
pared with four different simulations of an evolutionary
approach that implements a genetic algorithm. The reac-
tivity ratios obtained with these four simulations were
similar, the values being rMMA = 0.92 and rMVE = 1.00.
Results obtained with the application of evolutionary tech-
niques demonstrate high-quality solutions and show the
convenient use by estimating monomer reactivity ratios in
MMA-co-MVE (copolymer of MMA and MVE), a chain
addition copolymerization system with potential biomedi-

cal applications. The numerous advantages of genetic
parameters, performance, and major features of genetic
algorithms, are also discussed.

Macromol. Theory Simul. 2002, 11, No. 5 i WILEY-VCH Verlag GmbH, 69469 Weinheim 2002 1022-1344/2002/0506–0525$17.50+.50/0

Populations 0, 5, 10 and 249 from the GA2 genetic algo-
rithm.



526 D. Monett, J. A. M�ndez, G. A. Abraham, A. Gallardo, J. San Rom�n

linear transformations of this equation. However, it is
well established that these linear approaches are statisti-
cally invalid, although they can be used to obtain some
good initial r1 and r2 estimates (in which case the Kelen–
T�dos method is superior to the Finemann–R�ss). Non-
linear regression methods (Tidwell–Mortimer is a good
example) are nowadays recommended.
So far, the main goal is to estimate kinetic values for a

theoretical model and to find a method with which the
unknown values can be determined. We propose to ana-
lyze this problem by considering inverse modeling and
parameter estimation concepts, and by studying its solu-
tion through evolutionary approaches. With this purpose,
the estimation of reactivity ratios is first posed to optimi-
zation procedures because we are interested in reactivity
values such that the theoretical copolymer compositions
fit measurements of copolymer compositions as well as
possible. Then, we calculate the solution to the optimiza-
tion by introducing a novel approach for copolymeriza-
tions based on evolutionary techniques.
Evolutionary algorithms are probabilistic algorithms

based on principles of evolution and heredity. Genetic
algorithms (GAs) are one type of probabilistic algo-
rithm.[1] GAs have already been successfully applied to
optimization problems. Thus, GAs are considered to esti-
mate copolymerization reactivity ratios. Their major fea-
tures (e.g., genetic parameters, fitness functions and per-
formance) are described in this paper. Finally, we present
and discuss an application for the methyl methacrylate/a-
tocopheryl methacrylate (MMA-co-MVE) copolymer
system in order to show how GAs can be used for copoly-
merizations.

Theory

Inverse Modeling and Parameter Estimation Concepts

The estimation of copolymerization reactivity ratios is an
example of a coefficient inverse problem from mathe-
matics also known as classical parameter estimation
problem: constant multipliers (i. e., reactivity ratios) in a
governing model should be found. The general nature of
an inverse problem is to determine unknown causes based
on observations of their effects. This means that we might
try to infer values for the reactivity ratios by observing
the copolymer compositions based on the initial feed
compositions.
The inversion problem for copolymerization systems

can be described as seen in Scheme 1. A solution to this
problem can be formulated as finding a least squares fit
of a set of predicted measurements to the monomer com-
positions in copolymer over time, or a minimization with
respect to the monomer reactivity ratios. Accordingly to
this, let us define the function w: <m e <, with m being
the number of experiences over time, to be the l2-norm of

the difference between predicted and observed monomer
compositions in copolymer as follows:

w2 ¼ 0 0Fpred � Fobs 0 02 ¼
Xm

i¼1

ðFpred
i � Fobs

i Þ2 ð3Þ

where F pred are the predicted data or theoretical composi-
tion values calculated by forward modeling (i.e., by con-
sidering the copolymer composition equation), and Fobs

are the observed data or experimental measurements of
monomer compositions in copolymer. The Euclidean dis-
tance is the square root of the l2-norm (i.e., w). It is the
measure of model fitting we use.
Let P be the parameter vector containing the param-

eters to be estimated. The dimension of P is the number
of parameters to be estimated (e.g., 2 for a free radical
copolymerization of two monomers). The system could
be described as a vector function s, i. e., s (P, F pred) = 0.
Following our assumptions above, the vector P contains
the monomer reactivity ratios, and F pred, the molar frac-
tions of the monomers calculated with the values of P.
In practice, observed measurements F obs are such that

F obs = F pred + e. By substituting this expression in Equa-
tion (3) we obtain:

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

e2i

s
ð4Þ

The values of ei might indicate that measurement errors
are present, such as errors when reading scales which are
almost unavoidable. Consequently, an absolute accuracy
of the measurements is not always fulfilled.
Our purpose is to estimate P using F obs. The function

s (P, F obs) = 0 is not valid any more, since e m 0. In this
case, we should instead use a function such as:

r (P, F1
obs, F2

obs, ..., Fm
obs) (5)

that has to be optimized using the Equation (4).

Optimization Techniques

The inversion problem can be formulated in terms of an
optimization, namely

minimize r, subject to w a d (6)

Scheme 1. The inversion problem for copolymerization sys-
tems.
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where d 2 < is an accuracy level for the acceptance of
the solutions. The idea here is to find a combination of
parameters on P such that the values of ei are close to
zero, which implies that w is also close to zero. However,
optimization problems are very difficult to deal with: for
most optimization methods any of the situations from
Table 1 is present. Furthermore, one of the ways to
approach these problems is by using exact methods but
their computational complexity makes them really
intractable.
Experiments with copolymers are in general resource

consuming (e.g., chemical substances and labor materi-
als) and usually require expensive, complex equipment.
Moreover, it is difficult to have the same conditions to
repeat similar reactions (i.e., environment, people, prod-
ucts). Also, if a procedure of calculating monomer reac-
tivity ratios is needed, the following situations are present
most of the time: (i) an appropriate method to be used
should be selected; (ii) the user should know its charac-
teristics or theory; (iii) he/she should know how to use
the method (e.g., simulations by means of computers);
(iv) he/she should have a particular implementation at
hand if needed.
Unfortunately, some other disadvantages might also

arise:
– Real problems (i.e., copolymerizations) are complex

and cannot always be symbolically represented (i.e.,
as complete as possible through an exact theory).

– Popular techniques that are still used have no statisti-
cal validity and should not be applied in further quan-
titative uses.[2]

– Other methods transform the original problem mathe-
matically, deriving a not entirely satisfactory predic-
tion of their properties.

– Conventional techniques based on compositional ana-
lysis of initial feed and copolymer formed might con-
sider other problems caused by conversion require-
ments.[3]

– Different experimental designs might lead to different
results for the same system being analyzed.

– Experimental errors with regard to equipment preci-
sion or human interaction might be presented.
Thus, the application of other approaches where the

above problems are not present becomes a necessity.
Evolutionary algorithms have emerged as effective and
efficient methods to improve solutions by optimization.
For these reasons, they have been successfully applied to
such domains. Particularly, GAs, a special kind of evolu-
tionary approach, have been well adapted to optimization
problems and their solutions outperform other numerical
approaches most of the times.

Genetic Algorithms (GAs)

The essential idea of GAs is to perform a search on a
space of potential solutions represented by a population
of individuals. Individuals undergo probabilistic genetic
operators such as recombination and mutation to simu-
late analogous processes in nature. A fitness function
evaluates the “quality” of individuals and the best ones
are selected to survive. When a stop criterion is satisfied,
then the more adapted individual represents the best solu-
tion for the problem being solved.
In terms of GAs suited to optimization procedures,

minimizing the function r from Equation (6) is equiva-
lent to obtain individuals with high fitness values. Then,
the aim of the genetic search is to find a parameter com-
bination so that the forward modeling fits the observed
data as closely as possible. With this purpose, a transfor-
mation such as the following could be used,

n = 1/(w + K) (7)

where n : < e < is a monotonically decreasing function
corresponding to the fitness of an individual, and K is a
convenient parameter to avoid indeterminations. In this
way, the values of w and n are inversely proportional,
whereas a value of K close to zero maintains the denomi-
nator values close to w, thus considering the simplest
transformation n = 1/w. Then, the following statement
yields:

minimize r () maximize n (8)

which means that individuals with high fitness values
will have the smallest error values. Thus, they will be the
more adapted from the population.
The pseudo-code in Figure 1 presents these ideas by

considering two non-overlapping populations P and P 9 (P
stands for the current population and P 9 for the surviving
one). The basic genetic cycle works as follows: first the
initial population P is created at random (there are also
other ways to initialize populations), the fitness of indivi-

Table 1. Some disadvantages when using optimization meth-
ods.

Source Problems

Optimization
methods

Traditional optimization methods: an initial approach
for the global optimum finding is needed.
In some cases, the optimum is not a global one and
strongly depends on the initial approach.
Such methods that use derivatives, gradients and simi-
lar expressions, cannot always identify the global opti-
mum.

Real systems Sometimes, analytical information about the problem
being solved (like derivatives) is not available.
Noisy and time-varying objective function values are
present (regarding measurements, for example).
Also, the set of feasible solutions is only a subset of the
domain of the variables (e.g., restrictions concerning
practical situations like avoiding reactivity ratios with
negative values).
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duals is evaluated, and general statistics of the process
are calculated (e.g., best individual up to now). Then, a
new population P 9 is created by selecting individuals
from the old one. There are a number of ways to imple-
ment selection mechanisms. For example, following a
Roulette Wheel procedure, individuals are chosen in pro-
portion to their fitness values: the higher the fitness, the
higher the possibility to be selected. Selected individuals
undergo mutations (new genetic information is intro-
duced) and crossover operators (genetic information is
exchanged among parents). The fitness of new indivi-
duals and statistics are once again calculated. The process
ends when a termination criterion is satisfied (e.g., while
at least one individual satisfying Equation (6) is found).

General Features of GAs

Encoding Mechanism

The encoding of individuals refers to how the genetic
information is stored. For instance, two of the most
applied mechanisms make use of bit strings (bits of 0’s
and 1’s) or real values to represent the genes on a chro-
mosome. We assume the second approach which make
use of real genes as in previous studies:[4] a chromosome
is a vector of g real genes, each gene varying in a real
interval and representing possible values for the monomer
reactivity ratios.
Let NIter be the total number of GA iterations (i.e., how

many times the “while” cycle from Figure 1 is executed).
The population, PðtÞ ¼ vt1; ..., v

t
n (1 f t f NIter, t 2 @),

comprises n individuals vti (1 f t f n, i 2 @) that repre-
sent possible solutions of the problem for each GA itera-
tion t. The number of genes on a free radical copolymer-
ization is equal to 2 ( g = 2) and we can assume that

vti ¼ rti ¼ ðrti1 ; r
t
i2
Þ rtij 2 <; j ¼ 1; 2 ð9Þ

Consequently, intervals that parameters belong to are
defined as follows:

rtij 2 Ij ¼ ½Iij ; uij � lij ; uij 2 < ð10Þ

where l and u denote appropriate lower and upper limits
for each interval I, respectively.
For example, a population might have 50 individuals or

50 pairs of monomer reactivity ratios (n = 50), each one
being a probable solution to the problem. In this case, the
chromosomes belong to a product set, denoted by I16 I2,
and consist of the search space or the widest region where
the monomer reactivity ratios are defined. The major
question is which pair results in a better approximation to
the measurement values. It can be assumed that reason-
able estimates of monomer reactivity ratios are available
to serve as starting points for the construction of the inter-
vals. Although the genetic search does not necessarily
need initial estimates, appropriate values from other
methods can be also used.

Fitness Function

For copolymerizations, the fitness function could be
related to Equation (7). The function w corresponds to
the difference (“distance”) between predicted and
observed monomer compositions in copolymer as men-
tioned above. Then, individuals (or pairs of monomer
reactivity ratios) that generate minimal solutions for the
distance (i.e., w) are the more adapted in the population
and have a greater fitness (i.e., n).

Genetic Operators

As we already discussed, genetic operators are applied to
the entire population. The most commonly used ones are
crossover (i.e., genetic information between parents is
exchanged to produce new offsprings) and mutation (i.e.,
genetic information is stochastically perturbed, thus new
genetic material is introduced). For example, Figure 2
shows the simplest crossover operator and how genetic
material is exchanged between two individuals. In con-
trast, mutation operators perturb genes only on a chromo-
some, e.g., by considering new values on their intervals.
Genetic operators are applied depending on probability

values. Both crossover and mutation probabilities are
expected to be numbers between 0 and 1. This means, if a
randomly generated number in [0,1] is less than the
crossover probability, then the parents can recombine
their chromosomes. Otherwise, the parents remain the
same in the next generation. Mutation probability
behaves similar. Examples, implementations, and theory
about genetic operators have been extensively described
in the literature.[1, 5]

Figure 1. Pseudo-code of a genetic algorithm.
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Other GA Features

Sometimes it is desirable to maintain the best already
obtained individuals to survive in further populations.
Elitist techniques are conceived with this purpose.
Besides, different kinds of GAs have also been studied,
as have replacement strategies to replace old individuals
by the fittest ones, hybrid GAs (e.g., GAs combined with
other local optimization procedures), parallel GAs (to
exploit the advantages of implicit parallelism on GAs as
well as to model more complex populations), etc. Many
systems, programs, as well as implementations codes for
GAs are available.[1, 6]

Experimental Part

Materials

a-Tocopherol (Vitamin E) was supplied by Merck. Meth-
acryloyl chloride (Acros) was distilled before use, triethyl-
amine (Fluka) was refluxed over potassium hydroxide, and
purified by distillation. The purified product was stored over
molecular sieve 4 � exhaustively dried at vacuum. MMA
was supplied by Merck and was distilled after filtration
though a column of alumina. 2,29-Azobis(isobutyronitrile)
was purified by fractional crystallization from methanol,
m.p. = 1048C. 1,4-Dioxane was dried over sodium hydro-
xide for 24 h and then was distilled at 1048C. Other pure-
grade reagents were used as purchased.

Copolymerization

MVE was synthesized as described in a previous paper.[7]

Briefly, a-tocopherol was reacted with methacryloyl chloride
in presence of triethylamine as catalyst. The product was
purified by dissolving it in toluene and was passed through a
chromatographic column containing silica gel (Merck
0.040–0.063 mm thickness), using a chloroform/hexane
mixture 9:1 as mobile phase. The purified fraction was ana-
lyzed by thin layer chromatography, using the same eluent
and pre-coated silica gel sheets supported on aluminium
(Merck) as the stationary phase.

The copolymerization reaction was performed in dioxane
solution at 508C in Pyrex glass flasks under purified nitrogen
atmosphere. Comonomer and initiator concentrations were 1
mol N L–1 and 1.5 wt.-%, respectively. After selected reaction
times, the flask contents were poured into a large excess of
methanol. The precipitated copolymer was filtered and dried
under vacuum until constant weight was attained. All the
copolymer systems isolated have molecular weightM

—
n higher

than 20 kg N mol–1 and polydispersity index of 2.5-2.8, deter-
mined by size exclusion chromatography. The molar fraction
of monomers units incorporated in the copolymers was deter-
mined by 1H NMR spectroscopy (Gemini 200). The spectra
were recorded at room temperature in 10% w/v CDCl3 solu-
tions (an example is shown in Figure 3 together with the
chemical structure). The analysis was performed by the inte-
gration of the characteristic resonance signals assigned to the
methoxy protons CH3O1 (3.40–3.85 ppm) of MMA struc-
tural unit, denoted as AOCH3 , and all the signals associated to
MVE and the rest of signals of MMA (0.50–2.40 ppm),
denoted as At. The molar fraction of MMA (F1) was calcu-
lated by using the following equation derived from the chem-
ical structure of the copolymer:

F1 ¼
AOCH3

3

AOCH3

3
þ

At �
AOCH3

3
N 5

� �
54

0
@

1
A

ð11Þ

Genetic Algorithm Settings

Four different computational simulations with GAs (GA1,
GA2, GA3, and GA4) were run. Their basic genetic features

Figure 2. Simple one-point crossover on GAs. When crossing
their genes, parents v1 and v2 produce offsprings v3 and v4 (“+”
stands for the crossover operator).

Figure 3. Chemical structure of MMA-co-MVE and 1H NMR
spectrum (F1 = 0.872).
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remained the same except when considering their termina-
tion criteria and the intervals from Equation (10), where the
individuals vary. In GA1, the first simulation, the threshold
level for the acceptance of the solutions (i. e., d from Equa-
tion (6)) was set to a value of the Euclidean distance less
than the obtained with the linearization methods. In this
case, each reactivity ratio varied in [0.0, 10.0] representing a
first wide region of definition of the genes. In GA2, the
threshold remained the same as in GA1. However, intervals
for the parameters were reduced to [0.5, 2.0] by considering
the zones where individuals from GA1 were concentrated.
The threshold in GA3 was set to the fitness value of the best
individual from GA2. The intervals, in this case, were
reduced to [0.9, 0.95] and [0.9, 1.1] expecting a more
approximated solution. Similarly, the threshold in GA4 was
set to the fitness value of the best individual from GA3. In
the fourth simulation the intervals from GA3 were preserved
without change.
Populations overall comprised 100 uniformly distributed

individuals, which were initialized at the first generation
using the Mersenne-Twister pseudo random number genera-
tor.[8] The selection of individuals used a fitness-based tourna-
ment. The crossover operator was the one-point simple arith-
metic crossover with probability pc = 0.8, while the mutation
operator was the uniform mutation with probability pm = 0.1.
In our simulations, the performance of the GAs was evalu-

ated on a Sun Ultra 5/10 computer with an UltraSPARC-IIi
400 MHz processor, 131072 KB of RAM, and SunOS
Release 5.6 Version Generic-105181-19 operating system.

Results and Discussion
Different derivatives of vitamin E are known for their
antioxidant properties, which have been related to the
preservation of cells and can be used as anti-aging
agents.[9] Recently, several reports were devoted to the
synthesis and characterization of novel polymeric sys-
tems bearing vitamin E[7, 10–12] due to their important bio-
medical application. The copolymers of MVE with MMA
have been developed to incorporate this antioxidant addi-
tive to acrylic bone cement formulations in order to avoid
the cytotoxicity associated to the residual monomers. In
this sense, the understanding of the copolymerization and
the determinations of the reactivity ratios are key issues
in the design of this material.
The copolymerization of MMA (monomer 1) with

MVE (monomer 2) in dioxane solutions was studied in a
wide range of compositions with feed molar fractions (f1)
ranging from 0.3 to 0.9 (feed molar fractions of 0.2 or
lower do not polymerize in the conditions used in this
work, probably due to the radical-capture effect of the
vitamin E derivative). The reaction time was initially
regulated to reach conversions lower than 10 wt.-%, in
order to satisfy the differential copolymerization equa-
tion.[13] The data of molar composition of the initial
comonomer mixture used and the obtained copolymers
are summarized in Table 2 (determined as described in

experimental). From this Table, approximated values of
the reactivity ratios r1 and r2 were obtained by means of
the Fineman–R�ss[14] and Kelen–T�dos[15] linearization
methods, as well as Tidwell–Mortimer[16] nonlinear least-
squares treatment. Approximations for the reactivity
ratios were also selected among the more adapted indivi-
duals from the GA simulations. The scores presented in
Table 3 correspond to all the reactivity ratios mentioned
above. The most reliable reactivity ratios were found to
be close to 1 for both comonomers, that means the mono-
mer distribution in the copolymer is expected to be ran-
dom and the reaction is not far from the ideal copolymer-
ization. These values have been drawn in Figure 4
together with the 95% confidence limits. As expected, the
Finemann–R�ss linearization gives the poorest estima-
tion, followed by the Kelen–T�dos method.

Table 2. Composition data of the free radical copolymerization
of MMA and MVE (where f1 and F1 are the molar fractions of
MMA in the monomer feed and in the copolymer, respectively).

Feeda)

f1
Copolymera)

F1

Conversion
%

0.9000 0.872 7
0.9004 0.867 6
0.7998 0.800 8
0.8004 0.793 9
0.7009 0.678 9
0.7007 0.707 7
0.5998 0.606 7
0.5998 0.589 9
0.4998 0.508 8
0.5017 0.469 10
0.3995 0.386 9
0.4003 0.376 9
0.3036 0.304 8
0.3032 0.297 8

a) The copolymer data error is associated to the NMR measure-
ment while the feed data error is related to the more accurate
weighting procedure. This is the reason for the decimal dis-
crepancy between both columns.

Table 3. Calculated reactivity ratios for the composition data
of the MMA-co-MVE copolymerization system.

Method Reactivity ratios

r1 r2 r1 N r2

Fineman–R�ss 0.70 l 0.03 0.61 l 0.14 0.43
Kelen–T�dos 0.80 l 0.12 0.86 l 0.09 0.69
Tidwell–Mortimer 0.92 1.00 0.92
GA1 (1576)a) 0.92 1.00 0.92
GA2 (249) 0.92 1.00 0.92
GA3 (100) 0.92 1.00 0.92
GA4 (64) 0.92 1.00 0.92

a) The number of GA iterations where the best values were
achieved are given in parentheses.
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On the other hand, the evolutionary approach proposed
in this work is able to select reliable pairs of data, as good
as those obtained by the nonlinear regression. In this
sense, Table 4 shows the error estimations for each
method by considering the most frequently used numeri-
cal techniques to assess them: the l2-norm, the Euclidean
distance, and the quadratic mean deviation. As can be
seen in Table 4, the GA simulations outperform the dis-
tances between theoretical and experimental data. For
example, a quadratic mean deviation of 2.31481610–4

for the GA4 shows a great precision. Looking at the error
estimations, we can infer that general copolymer proper-
ties could be predicted in a precise way under an evolu-
tionary performance.
Figure 5 shows populations at generations 0, 5, 10 and

249 for the GA2 simulation. In the interest of brevity,
intermediate generations have not been displayed. At the
start of the process (population 0) there are many differ-
ent chromosomes. Crossover plays an important role
here, when the population is diverse: individuals

exchange their characteristics producing new offsprings
with similar genetic information. However, the popula-
tion converges to a set of very similar chromosomes:
overlapping genes of individuals appears (note the super-
position of points in populations 5, 10 and 249). This
means that crossover has little effect in advanced popula-
tions. However, as chromosomes start to converge, muta-
tion helps to preserve a reasonable level of diversity. This
is why, in later generations, the mutation operator is more
effective producing a population that contains individuals
with new genetic material, which occasionally contri-
butes to the best solution for the problem. In particular,
the tendency is to create two well-defined lines in
advanced populations: a horizontal line that contains the
best estimations for r1, and a vertical one with the best
estimations for r2. Note that the point where both lines
intercept at population 249 represents the best chromo-
some (i.e., the best solution).
According to our expectations, the minimum distances

per generation in all GA simulations decreased. As an
example, Figure 6 shows how the minimum distance var-

Figure 4. Reactivity ratios r1 and r2 obtained by linear, non-
linear least-squares and GA4 methods.

Table 4. Error estimations by different numerical criteria.

Method Criterion

l2-norma) Euclidean
distanceb)

Quadratic mean
deviationc)

Fineman–R�ss 1.5600610–2 1.24901610–1 1.11430610–3

Kelen–T�dos 4.6950610–3 6.85202610–2 3.35358610–4

Tidwell–Mortimer 3.2407610–3 5.69274610–2 2.31481610–4

GA1 3.2408610–3 5.69285610–2 2.31490610–4

GA2 3.2408610–3 5.69276610–2 2.31482610–4

GA3 3.2408610–3 5.69278610–2 2.31484610–4

GA4 3.2407610–3 5.69274610–2 2.31481610–4

a) l2-norm = w 2.
b) l2-norm1/2 = w.
c) l2-norm/m = w 2/m, where m is the number of experimental

data.

Figure 5. Populations 0, 5, 10 and 249 from the GA2 genetic
algorithm.

Figure 6. Minimum distance w versus generation t for the
GA4 genetic algorithm.
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ies with the number of generations for the GA4, where
the best individual was found. Note that the value of the
minimum distance decreases drastically at first genera-
tions (until generation 10); however, as generations con-
tinue, the minimum distance converges to the best solu-
tion at generation 64. These behavior could also be
explained by considering the effect of the genetic opera-
tors mentioned before.
The average composition diagram shown in Figure 7

has been drawn with the data obtained from the GA4
simulation using the Lewis-Mayo classical copolymeriza-
tion equation (i.e., Equation (2)). In addition, the experi-
mental composition data obtained at low conversion
(Table 2) which fit the theoretical diagram adequately are
also depicted.

Conclusions
Genetic algorithms (GAs) are excellent evolutionary
methods for the accurate determination of reactivity
ratios in addition polymerization reactions. The applica-
tion of GAs to the determination of r1 and r2 for the free
radical copolymerization of MMA and MVE gives the
best optimized approach when considering a GA involv-
ing just one-point simple arithmetic crossover and uni-
form mutation. This approach has proved to be powerful
enough and the termination criteria is always satisfied for
the selected class of problems. As a useful and effective
method for any coefficient inverse problem, we are cur-

rently applying this methodology to high conversion
copolymerization data.
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Figure 7. Theoretical composition diagram calculated using r1
= 0.92 and r2 = 1.00 in the copolymerization equation, together
with the experimental data.


